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On the additive completion of primes
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Imre Z. Ruzsa (Budapest)

1. Introduction. We shall investigate sets B of positive integers with
the property that, in various senses, most positive integers are contained in
the sumset

(1.1) S = {p+ b : b ∈ B, p prime}.
We are interested in how thin this set can be in terms of the counting
function

B(x) = |B ∩ [1, x]|.
Erdős [2] (see also [5]) proved the existence of a setB such that S contains

all but finitely many natural numbers and

B(x) = O((log x)2).

Improving a result of Wolke [7], Kolountzakis [6] proved the existence of a
set B such that d(S) = 1, where d denotes asymptotic density, and

B(x) = O(log x log log x).

(It should be noted here that Wolke’s completion, while slightly denser, has
the interesting additional property of consisting exclusively of primes and
neighbours of primes.)

We improve Kolountzakis’ result as follows.

Theorem 1. (a) For every ε > 0 there is a set B such that

B(x) = O(log x)

and the set S defined in (1.1) satisfies d(S) > 1− ε, where d denotes lower
asymptotic density.
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(b) For every function ω(x)→∞ there exists a set B such that

B(x) = O(ω(x) log x)

and the set S defined in (1.1) satisfies d(S) = 1.

As far as I know, no lower estimate has been published for B(x) in either
context. An obvious counting argument yields that if d(S) = 1, then

lim inf B(x)/log x ≥ 1.

I think that Theorem 1 above is best possible in the following sense.

Conjecture 1. If d(S) = 1, then necessarily

B(x)/log x→∞.
I am unable to prove even the following weaker conjectures.

Conjecture 2. If S contains all but finitely many natural numbers, then
necessarily

B(x)/log x→∞.
Conjecture 3. If d(S) = 1, then necessarily

lim supB(x)/log x > 1.

In this direction we obtain the following result.

Theorem 2. If S satisfies

x− S(x) ≤ x1−log log log x/ log log x

for large x (hence a fortiori if S contains all but finitely many natural num-
bers), then

lim inf B(x)/log x ≥ eγ ,
where γ denotes the Euler–Mascheroni constant.

2. Proof of Theorem 1. We use P to denote the set of primes, and
the traditional π(x) (rather than P (x)) for its counting function.

Let 0 < c0 < 1 be a constant with the following property:

(2.1) π(x+ y)− π(x) ∼ y/log x

holds uniformly in the range xc0 ≤ y ≤ x as x → ∞ (2/3 is known to be
such a number), and fix another constant c1 with c0 < c1 < 1.

Both parts of the theorem will follow from the following finite version.

Lemma 2.1. For every ε > 0 there is a K = K(ε) and an N0 = N0(ε)
such that for N > N0 we can always find a set B ⊂ [N c0 , 2N c0 ] of integers
such that

(2.2) |B| ≤ K logN
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and the set S = P +B satisfies

(2.3) S(x) ≥ (1− ε)x for all N c1 ≤ x ≤ N.
P r o o f. We show the existence of such a set by a probabilistic argument.

Write
I = [N c0 , 2N c0 ] ∩ N, L = |I| = N c0 +O(1).

Let B be a random subset of I such that each n ∈ I is included into B
independently with a common probability

% =
K logN

2L
so that the expected number of elements is

E(|B|) = %L =
K

2
logN.

We will show that with a proper choice of K we have

(2.4) P((2.3) holds) > 1/N,

while

(2.5) P(|B| > K logN) < 1/N,

so that there will be a set that satisfies both (2.3) and |B| ≤ K logN .
Note that we will not establish that most sets B with about K logN

elements have property (2.3). We are able to do this with a more complicated
argument than the one in the sequel, which also exploits further properties
of the primes outside (2.1).

We show that (2.3) follows from the following related property of a set
B: for each xj = N/2j satisfying N c1 ≤ xj ≤ N we have

(2.6) S(xj) > (1− ε/2)xj .

To see how (2.6) implies (2.3), observe that the function T (x) = x−S(x)
is increasing. Hence for a general x, with, say, xj ≥ x > xj+1 = xj/2, we
find

T (x) ≤ T (xj) ≤ εxj/2 < εx

as wanted.
Now we estimate the probability that (2.6) holds for a fixed value of j.

A given number n ∈ [2N c0 , N ] will be in S if at least one number n − p, p
prime, is in B. This is possible if n − p ∈ I, or p ∈ n − I. The number of
such primes is

zn = π(n−N c0)− π(n− 2N c0) ∼ L/log n

by property (2.1). We have n 6∈ S only if none of these zn integers is in B;
the probability of this event is

P(n 6∈ S) = (1− %)zn ≤ exp(−%zn).
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We have

%zn ∼ K logN
2L

· L

log n
=
K logN
2 log n

≥ K/2,

thus %zn > K/3 for large N uniformly in the above range of n. Hence

(2.7) P(n 6∈ S) < e−K/3.

Consequently, the expectation of T (xj) satisfies

(2.8) E(T (xj)) < e−K/3xj + 2N c0 ,

where the last term comes from the fact that (2.7) need not hold for n <
2N c0 . Since our numbers satisfy xj ≥ N c1 , the second summand of (2.8) is
of a smaller order of magnitude than the first and we have

E(T (xj)) < 2e−K/3xj

for large N . From Markov’s inequality we can now infer

P(T (xj) ≥ (ε/2)xj) ≤ 4e−K/3/ε ≤ 1/2,

or in other words

(2.9) P(S(xj) > (1− ε/2)xj) ≥ 1/2,

provided

(2.10) e−K/3 ≤ ε/8.
The property that (2.6) holds for a fixed value of j defines an increasing

family of sets B (if a set B has this property, then so does every set con-
taining B). Such increasing families are always positively correlated, that
is, the probability that a random set is in the intersection of several such
families is at least as high as the product of the corresponding probabilities.
This is stated in this form in Alon and Spencer [1, Theorem 3.2] and is a
corollary to either Fortuin, Kasteleyn and Ginibre’s inequality [4] (the usual
approach), or to an earlier inequality of Esary, Proschan and Walkup [3]. In
our case this means that

P(S(xj) > (1− ε/2)xj for all j) ≥
∏

j

P(S(xj) > (1− ε/2)xj) ≥ 2−J ,

where J is the number of the values xj considered. Since these are defined
by xj = N/2j > N c1 , we have 2J ≤ 2N1−c1 < N, which concludes the proof
that (2.6), and hence (2.3) as well, holds at least with probability 1/N .

To show (2.5) note that

E(e|B|) = (1− %+ %e)L ≤ exp(%(e− 1)L) = exp
(
e− 1

2
K logN

)
.
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Thus from Markov’s inequality we get

P(|B| > K logN) = P(e|B| > eK logN )

≤ exp
(
e− 1

2
K logN −K logN

)
= NK(e−3)/2,

which is smaller than 1/N provided

(2.11) K > 2/(3− e).
(Alternatively, we could refer to various forms of Bernstein’s or Chernoff’s
inequality.)

We have established (2.4) and (2.5), thus the proof of Lemma 2.1 is
complete. For K we obtain the value

(2.12) K = 3 log(8/ε),

which satisfies (2.11) if ε < 3/4.

Proof of Theorem 1. (a) We define a sequence Ni starting from the N0

of the lemma by the recursion

Ni+1 = [N1/c1
i ].

We apply the lemma to each N = Ni to get a set Bi ⊂ [N c0
i , 2N

c0
i ] satisfying

|Bi| ≤ K logNi and (2.3) for the set Si = P+Bi in the range N c1
i ≤ x ≤ Ni.

We put B =
⋃
Bi. For the set S = P +B we have evidently

S(x) ≥ Si(x) ≥ (1− ε)x
in the above range, and since Ni is selected to make these overlap, we have
this everywhere. To estimate B(x) define k as the smallest subscript with
N c0
k > x. This means that Nk−1 ≤ x1/c0 , thus

Nk ≤ N1/c1
k−1 ≤ x1/(c0c1).

Observe that logNi grows exponentially, hence

B(x) ≤
∑

i≤k
|Bi| = O(|Bk|) = O(logNk) = O(log x)

as claimed.
(b) In the proof of part (a) we replace the constant ε by a decreasing

sequence εi tending to 0 sufficiently slowly.

3. Proof of Theorem 2. We prove Theorem 2 in the following form.
Suppose that α < eγ and B ⊂ [1, x] satisfies k = |B| ≤ α log x. Then for
some c < 1 and x > x0(α) there are at least

x1−c log log log x/ log log x

numbers up to x not of the form p+ b, b ∈ B, p prime.



274 I. Z. Ruzsa

Let pi denote the ith prime. Put

r =
[

log x
(log log x)3

]

and m = p1 . . . pr. By an averaging argument we find a residue class
a (mod m) such that

l = #{b ∈ B : (a− b,m) = 1} ≤ φ(m)
m

k.

Let b1, . . . , bl be the elements of B such that (b − a,m) = 1. Let π be any
permutation of the set {1, . . . , l}. We shall consider the integers n satisfying

(3.1) n ≡ a (mod m), n ≡ bj (mod pr+π(j)), j = 1, . . . , l.

These integers occupy a residue class modulo M , where

M = m

l∏

j=1

pr+j =
r+l∏

i=1

pi.

We show that the majority of these numbers lies outside P + B. Indeed,
suppose that n = p + b, or p = n − b. If b is one of b1, . . . , bl, say bj , then
n− b is divisible by pr+π(j). If b is none of these, then

(n− b,m) = (a− b,m) > 1,

thus n − b is divisible by one of p1, . . . , pr. Consequently, the prime p can
only be one of p1, . . . , pr+l, and the total number of such integers n (for all
permutations together) is at most k(r + l).

To estimate the number of integers n satisfying (3.1) we first find a bound
for M . By Mertens’s theorem we have

φ(m)
m

=
r∏

j=1

(
1− 1

pj

)
∼ e−γ(log r)−1 ∼ e−γ(log log x)−1.

Consequently,

l ≤ φ(m)
m

k ≤ (1 + o(1))αe−γ
log x

log log x
.

Write L = l + r. By the above estimate and the definition of r we have

L ≤ α1
log x

log log x

for large x with any α1 > αe−γ . Since α < eγ , we can achieve this with
α1 < 1.

Using the prime number theorem in the form pi ∼ i log i we obtain

M =
L∏

i=1

pi < L!(logL)Leo(L).
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By (3.2) this yields M = o(x), in particular, M < x for large x.
Each congruence (3.1) defines a residue class modulo M , thus at least

[x/M ] ≥ x/(2M) integers up to x. Since there are l! possible choices for the
permutation π, this means altogether at least

1
2
l!
M
x

numbers. As said above, of these numbers at most Lk can be in P +B, thus
the number elements outside P +B is at least

(3.2)
1
2
l!
M
x− Lk.

To estimate this number from below observe that
M

l!
≤ L!

l!
(logL)Leo(L) < Lr(logL)Leo(L)

< exp
(

(α1 + o(1))
log x log log log x

log log x

)
.

Hence the first term of (3.2) is larger than x1−c log log log x/ log log x with any
c > α1 for large x. Since Lk = o((log x)2), the second term is of smaller
order of magnitude than the first, and our claim is established for arbitrary
α1 < c < 1.
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