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1. Introduction. Let q be an arbitrary prime power and K a global
function field with full constant field Fq, i.e., with Fq algebraically closed
in K. We use the notation K/Fq if we want to emphasize the fact that Fq
is the full constant field of K. By a rational place of K we mean a place of
K of degree 1. We write g(K) for the genus of K and N(K) for the number
of rational places of K. For fixed g ≥ 0 and q we put

Nq(g) = maxN(K),

where the maximum is extended over all global function fields K/Fq with
g(K) = g. Equivalently, Nq(g) is the maximum number of Fq-rational points
that a smooth, projective, absolutely irreducible algebraic curve over Fq of
given genus g can have. The calculation of Nq(g) is a very difficult problem,
so usually one has to be satisfied with bounds for Nq(g). Upper bounds
for Nq(g) that improve on the classical Weil bound can be obtained by a
method of Serre [15] (see also [16, Proposition V.3.4]).

Global function fields K/Fq of genus g with many rational places, that
is, with N(K) reasonably close to Nq(g) or to a known upper bound for
Nq(g), have received a lot of attention in the literature. We refer to Garcia
and Stichtenoth [1], Niederreiter and Xing [10], [11], and van der Geer and
van der Vlugt [17] for recent surveys of this subject. The construction of
global function fields with many rational places, or equivalently of algebraic
curves over Fq with many Fq-rational points, is not only of great theoretical
interest, but it is also important for applications in the theory of algebraic-
geometry codes (see [13], [16]) and in recent constructions of low-discrepancy
sequences (see [5], [9], [12]).

In the present paper we concentrate on the case q = 5 and extend the
list of constructions of global function fields K/F5 with many rational places
in [6, Section 5] and [8]. The motivation for this is that the recent tables of
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lower and upper bounds for Nq(g) in [11] and [12] cover all genera g ≤ 50,
except in the case q = 5 where they cover only the range g ≤ 22. We now
close this gap by providing constructions for q = 5 and 23 ≤ g ≤ 50, and in
fact for many other values of the genus. A crucial role in this is played by a
general construction principle based on Hilbert class fields.

In Section 2 we review some background on Hilbert class fields and nar-
row ray class extensions. Section 3 presents the general construction prin-
ciple mentioned above and a list of examples for q = 5 derived from this
principle. Further examples for q = 5 obtained by other methods are given
in Section 4.

2. Background for the constructions. First we recall some perti-
nent facts about Hilbert class fields. A convenient reference for this topic is
Rosen [14]. Let F be a global function field with N(F ) ≥ 1 and distinguish
a rational place ∞ of F . The Hilbert class field H∞ of F with respect to
∞ is the maximal unramified abelian extension of F (in a fixed separable
closure of F ) in which ∞ splits completely. The extension H∞/F is finite
and its Galois group is isomorphic to the fractional ideal class group Pic(A)
of the ring A of elements of F that are regular outside ∞. In the case under
consideration (∞ rational), Pic(A) is isomorphic to the group Div0(F ) of
divisor classes of F of degree 0. In particular, we have [H∞ : F ] = h(F ),
the divisor class number of F . For each place P of F there is an associated
Galois automorphism τP ∈ Gal(H∞/F ), and the Artin symbol of P for the
extension H∞/F is equal to τP . The place P corresponds to the divisor class
of P −deg(P )∞ in Div0(F ). There is also a standard identification between
places of F and prime ideals in A.

Next we collect some facts about narrow ray class extensions which can
be found in [2, Section 7.5] and [4, Section 16]. Let F = F/Fq,∞, and A be
as above and let φ be a sign-normalized Drinfeld A-module of rank 1. By
[4, Section 15] we can assume that φ is defined over the Hilbert class field
H∞, i.e., that for each z ∈ A the Fq-endomorphism φz is a polynomial in
the Frobenius with coefficients from H∞. If H∞ is a fixed algebraic closure
of H∞ and M a nonzero integral ideal in A, then we write ΛM for the A-
submodule of H∞ consisting of the M -division points. Let EM := H∞(ΛM )
be the subfield of H∞ generated over H∞ by all elements of ΛM . Then
EM/F is called the narrow ray class extension of F with modulus M . The
field EM is independent of the specific choice of the sign-normalized Drinfeld
A-module φ of rank 1. Furthermore, EM/F is a finite abelian extension with

Gal(EM/F ) ' PicM (A) := IM (A)/PM (A),

where IM (A) is the group of fractional ideals of A that are prime to M and
PM (A) is the subgroup of principal fractional ideals that are generated by
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elements z ∈ F with z ≡ 1 mod M and sgn(z) = 1 (here sgn is the given
sign function). We have Gal(EM/H∞) ' (A/M)∗, the group of units of the
ring A/M . Thus, if Φq(M) denotes the order of the latter group, then

[EM : F ] = |PicM (A)| = h(F )Φq(M).

If M = Qn with a nonzero prime ideal Q in A and n ≥ 1, then

Φq(Qn) = (qd − 1)qd(n−1),

where d is the degree of the place of F corresponding to Q. Again in this
situation, EM/F is unramified away from ∞ and Q. Furthermore, the de-
composition group (and also the ramification group) D∞ of ∞ in EM/F is
the subgroup D∞ = {c + M : c ∈ F∗q} of (A/M)∗, and every place of H∞
lying over Q is totally ramified in EM/H∞.

In the special case where F is the rational function field Fq(x) over Fq, the
theory of narrow ray class extensions reduces to that of cyclotomic function
fields as developed by Hayes [3]. In this case it is customary to take for
∞ the unique pole of x in Fq(x). We will use the convention that a monic
irreducible polynomial P over Fq is identified with the place of Fq(x) which
is the unique zero of P , and we will denote this place also by P .

3. Examples from Hilbert class fields. We first establish a general
construction principle for global function fields with many rational places
that is based on Hilbert class fields.

Theorem 1. Let q be odd , let S be a subset of Fq, and put n = |S|.
Choose a polynomial f ∈ Fq[x] such that deg(f) is odd , f has no multiple
roots, and f(c) = 0 for all c ∈ S. For the global function field F = Fq(x, y)
with y2 = f(x), assume that its divisor class number h(F ) is divisible by
2nm for some positive integer m. Then there exists a global function field
K/Fq such that

g(K) =
h(F )

2n+1m
(deg(f)− 3) + 1 and N(K) ≥ (n+ 1)h(F )

2nm
,

with equality if n = q.

P r o o f. Note that F is a Kummer extension of the rational function field
Fq(x) with

g(F ) = 1
2 (deg(f)− 1)

by [16, Example III.7.6]. For each c ∈ S the place x − c of Fq(x) is totally
ramified in F/Fq(x), and so is the pole of x in Fq(x). Let ∞ denote the
unique place of F lying over the pole of x in Fq(x). For the principal divisor
(x− c) of F we thus have

(x− c) = 2Pc − 2∞,
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where all Pc, c ∈ S, are rational places of F . Consequently, the divisor class
of Pc −∞ has order 1 or 2 in the group Div0(F ), and so the subgroup J
of Div0(F ) generated by the divisor classes of all Pc −∞, c ∈ S, has order
dividing 2n. It follows that there exists a subgroup of G of Div0(F ) with
|G| = 2nm and G ⊇ J . Let H∞ be the Hilbert class field of F with respect
to the rational place ∞ and let K be the subfield of the extension H∞/F
fixed by G, viewed as a subgroup of Gal(H∞/F ). Then

[K : F ] =
h(F )
2nm

.

By construction, the places ∞ and Pc, c ∈ S, split completely in the exten-
sion K/F , and this yields the desired lower bound for N(K). Furthermore,
K/F is an unramified extension, and so the formula for g(K) follows imme-
diately from the Hurwitz genus formula.

Remark. It is obvious that there is an analog of Theorem 1 with base
fields F that are general Kummer extensions of Fq(x) with arbitrary q, but
Theorem 1 is of sufficient generality for our purposes.

From now on we take q = 5. In Table 1 we list examples of global function
fields K/F5 with many rational places that are obtained from Theorem 1.
The table contains the following data: the value of the genus g(K), the
value or a lower bound for the number N(K) of rational places, the values
of n and m, the polynomial f(x), and the value of the divisor class number
h(F ) of F = F5(x, y) with y2 = f(x). In the cases where the exact value of
N(K) is indicated, it can be obtained from Theorem 1 or by other simple
arguments. The divisor class numbers h(F ) have been calculated by the
standard method based on the results in [16, Section V.1] and with the help
of the software package Mathematica. Table 1 contains entries for g(K) =
15, 19, and 21 that improve on earlier examples in [8].

Table 1

g(K) N(K) n m f(x) h(F )

15 = 35 4 1 x(x+ 1)(x+ 2)(x− 1)(x3 + x2 + x− 2) 112

19 ≥ 45 4 1 x(x+ 1)(x+ 2)(x− 2)(x3 − 2x2 + 2x− 2) 144

21 = 50 4 1 (x5 − x)(x2 − x+ 1) 160

23 = 55 4 1 x(x+ 1)(x+ 2)(x− 1)(x3 + x2 − 2x+ 1) 176

24 = 46 1 1 x(x4 + x3 + 2x2 + x− 2) 46

27 = 52 1 1 x(x− 1)(x3 − x+ 2) 52

28 = 54 5 2 (x5 − x)(x2 − 2x− 2)(x2 − 2x− 1) 576

29 ≥ 56 3 1 x(x+ 1)(x+ 2)(x− 1)(x3 + x2 + x− 2) 112

30 = 58 1 1 x(x4 + x2 + 2) 58

32 = 62 1 1 x(x4 + 2x3 − 2x2 − 2x+ 2) 62
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Table 1 (cont.)

g(K) N(K) n m f(x) h(F )

35 ≥ 68 3 1 x(x+ 1)(x+ 2)(x4 + x2 − 2x− 2) 136

37 = 72 3 1 x(x+ 1)(x+ 2)(x4 − 2x− 1) 144

39 = 76 3 1 x(x+ 1)(x+ 2)(x4 + x3 − 2x2 + 2x+ 1) 152

40 = 65 4 3 x(x+ 1)(x+ 2)(x− 2)(x5 + 2x2 − 2x+ 1) 624

41 = 80 3 1 x(x+ 1)(x+ 2)(x4 + x− 1) 160

43 = 84 3 1 x(x+ 1)(x+ 2)(x4 − 2x2 − 2) 168

45 = 88 3 1 x(x+ 1)(x+ 2)(x4 + 2x2 + 2x+ 1) 176

46 ≥ 75 4 4 x(x+ 1)(x+ 2)(x− 2)(x3 − x2 − x+ 2)(x2 + x+ 2) 960

47 = 92 3 1 x(x+ 1)(x+ 2)(x4 − 2x2 − x− 2) 184

49 = 96 3 1 x(x+ 1)(x+ 2)(x4 + x3 + 2x2 + 2) 192

52 = 102 5 1 (x5 − x)(x4 + x2 + 2x+ 2) 544

53 = 104 3 1 x(x+ 1)(x+ 2)(x2 + x+ 2)(x2 − x+ 1) 208

55 = 108 3 1 x(x+ 1)(x+ 2)(x4 + x2 + 2x+ 2) 216

57 = 112 3 1 x(x+ 1)(x+ 2)(x4 − 2x2 + x+ 1) 224

58 ≥ 95 4 3 x(x+ 1)(x+ 2)(x− 2)(x5 + 2x2 + 1) 912

61 = 120 5 1 (x5 − x)(x4 + x2 + 2) 640

64 ≥ 105 4 2 x(x+ 1)(x+ 2)(x− 2)(x2 + x+ 1)(x3 − x2 − 2) 672

67 = 132 3 1 x(x+ 1)(x+ 2)(x4 + x3 + x− 2) 264

70 ≥ 115 4 2 x(x+ 1)(x+ 2)(x− 2)(x2 + 2x− 1)(x3 − 2x2 − 1) 736

76 = 150 5 1 (x5 − x)(x4 + 2) 800

85 = 140 4 1 x(x+ 1)(x+ 2)(x− 2)(x3 − x2 − 1)(x2 + x+ 1) 448

91 ≥ 150 4 2 x(x+ 1)(x+ 2)(x− 2)(x3 − x2 − x+ 2)(x2 + x+ 2) 960

94 = 155 4 1 x(x+ 1)(x+ 2)(x− 2)(x5 + x2 − 2x+ 2) 496

97 = 160 4 1 x(x+ 1)(x+ 2)(x− 2)(x2 + x+ 2)(x3 − x2 − x− 1) 512

100 = 165 4 1 x(x+ 1)(x+ 2)(x− 2)(x5 + x2 + 2x− 1) 528

103 ≥ 170 4 1 (x5 − x)(x4 + x2 + 2x+ 2) 544

109 ≥ 180 4 1 (x5 − x)(x2 − 2x− 2)(x2 − 2x− 1) 576

118 = 195 4 1 x(x+ 1)(x+ 2)(x− 2)(x5 + 2x2 − 2x+ 1) 624

121 = 200 4 1 (x5 − x)(x4 + x2 + 2) 640

127 = 210 4 1 x(x+ 1)(x+ 2)(x− 2)(x2 + x+ 1)(x3 − x2 − 2) 672

139 = 230 4 1 x(x+ 1)(x+ 2)(x− 2)(x2 + 2x− 1)(x3 − 2x2 − 1) 736

151 = 250 4 1 (x5 − x)(x4 + 2) 800

172 = 285 4 1 x(x+ 1)(x+ 2)(x− 2)(x5 + 2x2 + 1) 912

181 = 300 4 1 x(x+ 1)(x+ 2)(x− 2)(x3 − x2 − x+ 2)(x2 + x+ 2) 960

199 = 330 4 1 x(x+ 1)(x+ 2)(x− 2)(x5 + x2 − x− 2) 1056
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4. Further examples. In this section we construct examples of global
function fields K/F5 with many rational places that are obtained by princi-
ples other than Theorem 1. In particular, we close all gaps in Table 1 in the
range 23 ≤ g ≤ 50. We summarize all our examples from [6], [8], and the
present paper in Table 2. We list the value g of the genus, a lower bound
N for N5(g), and a reference to either [6], [8], Table 1 of the present paper
(abbreviated “Tb. 1”), or one of the following examples (“Ex.n” stands for
Example n).

Table 2

g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N 10 12 16 18 20 21 22 22 26 27 32 30 36 39 35 40

Ref [6] [6] [6] [6] [6] [6] [8] [6] [8] [8] [8] [6] [8] [8] Tb.1 [8]

g 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

N 42 32 45 30 50 51 55 46 52 45 52 54 56 58 72 62

Ref [8] [8] Tb.1 [8] Tb.1 [8] Tb.1 Tb.1 Ex.1 Ex.2 Tb.1 Tb.1 Tb.1 Tb.1 Ex.3 Tb.1

g 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

N 64 76 68 64 72 78 76 65 80 60 84 60 88 75 92 82

Ref Ex.4 Ex.5 Tb.1 Ex.6 Tb.1 Ex.7 Tb.1 Tb.1 Tb.1 Ex.8 Tb.1 Ex.9 Tb.1 Tb.1 Tb.1 Ex.10

g 49 50 51 52 53 55 56 57 58 61 64 67 70 76 85 91

N 96 70 104 102 104 108 101 112 95 120 105 132 115 150 140 150

Ref Tb.1 Ex.11 Ex.12 Tb.1 Tb.1 Tb.1 Ex.13 Tb.1 Tb.1 Tb.1 Tb.1 Tb.1 Tb.1 Tb.1 Tb.1 Tb.1

g 94 97 100 103 109 118 121 127 139 151 172 181 199

N 155 160 165 170 180 195 200 210 230 250 285 300 330

Ref Tb.1 Tb.1 Tb.1 Tb.1 Tb.1 Tb.1 Tb.1 Tb.1 Tb.1 Tb.1 Tb.1 Tb.1 Tb.1

Example 1. g(K) = 25, N(K) ≥ 52. Consider the function field F =
F5(x, y) with

y2 = x(x− 1)(x− 2).

Then g(F ) = 1, h(F ) = 8, and the place x2 − 2x − 2 is inert in F/F5(x).
Let Q be the unique place of F lying over x2 − 2x − 2. Then deg(Q) = 4.
We distinguish the rational place ∞ of F which is the unique pole of x, and
we denote by A the ring of elements of F that are regular outside ∞. Let
EQ/F be the narrow ray class extension of F with modulus Q. Then

[EQ : F ] = |PicQ(A)| = h(F )Φ5(Q) = 8 · 624.
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For c = 0, 1, 2 ∈ F5 we have the principal divisors (x − c) = 2Pc − 2∞
in F . Let J be the subgroup of PicQ(A) generated by the residue classes of
P0, P1, P2 modulo PQ(A). Since P 2

c = (x−c)A for c = 0, 1, 2 and the residue
class of x modulo x2 − 2x− 2 generates the group (F5[x]/(x2 − 2x− 2))∗ of
order 24, the order of J divides 24 ·8 = 192. Let G be a subgroup of PicQ(A)
with |G| = 384 and G ⊇ J . Now let K be the subfield of EQ/F fixed by G.
Then

[K : F ] =
8 · 624

384
= 13.

By considering the Artin symbols, we see that P0, P1, P2 split completely in
K/F , and ∞ also splits completely in K/F , hence N(K) ≥ 52. The only
ramified place in K/F is Q, and it is totally and tamely ramified. Thus, the
Hurwitz genus formula yields 2g(K)− 2 = (13− 1) · 4, that is, g(K) = 25.

Example 2. g(K) = 26, N(K) ≥ 45. Consider the function field F =
F5(x, y) with

y2 = x5 − x+ 1.
The place x5−x+1 is totally ramified in F/F5(x). Let Q be the unique place
of F lying over x5 − x + 1. Then deg(Q) = 5. We distinguish the rational
place ∞ of F which is the unique pole of x, and we denote by A the ring
of elements of F that are regular outside ∞. Let EM/F be the narrow ray
class extension of F with modulus M = Q2. Then the 5-rank of the group
PicM (A) ' Gal(EM/F ) is at least 5 by the proof of [7, Theorem 3]. For
c ∈ F5 we have the principal divisors (x − c) = Pc + P ′c − 2∞ in F , with
different rational places Pc and P ′c. The subgroup J of PicM (A) generated
by the residue classes of P0, P1, P2, P3 modulo PM (A) has 5-rank at most 4.
Thus, there exists a subgroup G of PicM (A) with [PicM (A) : G] = 5 and
G ⊇ J .

Now let K be the subfield of EM/F fixed by G. Then [K : F ] = 5. Since
for each c ∈ F5 we have PcP ′c = (x− c)A and

(x− c)55−1 ≡ 1 mod M,

we see that G contains also the residue classes of P ′0, P
′
1, P

′
2, P

′
3 modulo

PM (A). Therefore the places P0, P
′
0, P1, P

′
1, P2, P

′
2, P3, P

′
3, and ∞ split com-

pletely in K/F , hence N(K) ≥ 45. The only ramified place in K/F is Q,
and it is totally ramified. By [11, Theorem 1 and Lemma 3] the different
exponent of Q in K/F is 8. Using also g(F ) = 2, we conclude from the
Hurwitz genus formula that 2g(K)−2 = 5 ·(4−2)+8 ·5, that is, g(K) = 26.

Example 3. g(K) = 31, N(K) = 72. Let L/F5 be the function field in
[6, Example 5.4] with g(L) = 4 and N(L) = 18. Then [L : F5(x)] = 9 and
all rational places of L lie over the zero of x or the pole of x in F5(x). The
only ramified places in L/F5(x) are those lying over x2 + 2 or x2 − 2, each
with ramification index 3.
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Now let K = L(y) with

y4 = (x2 + 2)(x2 − 2).

Then all rational places of L split completely in the Kummer extension K/L,
and so N(K) = 72. The only ramified places in K/L are those lying over
x2 +2 or x2−2, and g(K) = 31 follows from the genus formula for Kummer
extensions (see [16, Corollary III.7.4]).

Example 4. g(K) = 33, N(K) = 64, K = F5(x, y1, y2) with

y4
1 = 2− x4, y4

2 = 2(x4 + 2).

The places x− 1, x− 2, x+ 1, and x+ 2 split completely in K/F5(x), thus
N(K) = 64. The field L = F5(x, y1) is as in [6, Example 5.3], so g(L) = 3.
The only ramified places in the Kummer extension K/L are those lying
over x4 + 2, and g(K) = 33 follows from the genus formula for Kummer
extensions.

Example 5. g(K) = 34, N(K) = 76. Consider the cyclotomic function
field EM with modulus M = x5 ∈ F5[x]. With the rational places P1 = x+1
and P2 = x − 1 of F5(x), let K be the subfield of the extension EM/F5(x)
constructed in [19, Theorem 1] (see also [18, Théorème 1]). Then in the
notation of [19, Theorem 1] we have

s = s5(2, 5) = dlog5 5e+
⌈

log5
5
2

⌉
= 2,

and so [K : F5(x)] = 25 and N(K) ≥ 25 · 3 + 1 = 76. To calculate g(K), we
proceed as in [19] and consider

S = {f ∈ F5[x] : f(x) = (x+ 1)h(x− 1)2j , h, j = 0, 1, . . .}
and

Sr = {f ∈ S : xr ‖ (f(x)− 1)} for r = 1, 2, . . .

We have to determine the three least values of r, called i1 < i2 < i3, for
which Sr is nonempty. It is trivial that S1 and S5 are nonempty. From
(x+ 1)2(x− 1)2 = x4 − 2x2 + 1 we conclude that S2 is nonempty. Put

S(5) = {f ∈ (F5[x]/(x5))∗ : f ∈ S},
where f is the residue class of f modulo x5. Then S(5) is generated by x+ 1
and x2 − 2x+ 1, and so |S(5)| ≤ 25. If we had i3 < 5, then |S(5)| ≥ 125
by [19, Lemma 3], a contradiction. Therefore i1 = 1, i2 = 2, i3 = 5. In [19,
Theorem 1] we thus have j1 = 1 and j2 = 2, and this yields

g(K) = 1 +
1
2
· 25 · 3− 1

2

(
1 + 1 +

25− 1
4

+ 1
)

= 34.

From N5(34) ≤ 83 it follows that N(K) = 76.
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Example 6. g(K) = 36, N(K) = 64, K = F5(x, y1, y2, y3) with

y2
1 = x(x2 − 2), y5

2 − y2 =
x4 − 1
y1 − 1

, y2
3 = x3 − 2x2 − x− 2.

The field L = F5(x, y1, y2) is as in [8, Example 4], so g(L) = 11 and N(L) =
32. All rational places of L split completely in the Kummer extension K/L,
hence N(K) = 64. The only ramified places in K/L are those lying over
x3−2x2−x−2, and g(K) = 36 follows from the genus formula for Kummer
extensions.

Example 7. g(K) = 38, N(K) = 78. Consider the cyclotomic func-
tion field EQ with Q = x4 − 2 ∈ F5[x]. Let G be the cyclic subgroup of
(F5[x]/(x4−2))∗ ' Gal(EQ/F5(x)) generated by the residue class of x mod-
ulo x4 − 2. Then |G| = 16. Now let K be the subfield of EQ/F5(x) fixed
by G. Then [K : F5(x)] = 39. The zero of x and the pole of x in F5(x)
split completely in K/F5(x), thus N(K) ≥ 78. The only ramified place in
K/F5(x) is Q, and it is totally and tamely ramified. Therefore the Hurwitz
genus formula yields 2g(K)− 2 = 39 · (−2) + (39− 1) · 4, that is, g(K) = 38.
From N5(38) ≤ 91 it follows that N(K) = 78.

Example 8. g(K) = 42, N(K) = 60, K = F5(x, y1, y2) with

y2
1 = (x2 + 2)(x4 − 2x2 − 2), y5

2 − y2 =
x5 − x

(x2 + 2)(x4 − 2x2 − 2)
.

The field L = F5(x, y1) is as in [6, Example 5.2], so g(L) = 2 and N(L) = 12.
All rational places of L split completely in the Artin–Schreier extensionK/L,
hence N(K) = 60. The only ramified places in K/L are the unique place
of L of degree 2 lying over x2 + 2 and the unique place of L of degree 4
lying over x4 − 2x2 − 2, thus g(K) = 42 follows from the genus formula for
Artin–Schreier extensions (see [16, Proposition III.7.8]).

Example 9. g(K) = 44, N(K) = 60, K = F5(x, y1, y2) with

y5
1 − y1 =

x5 − x
(x2 + 2)3 , y2

2 = (x2 + 2)(x8 − x4 − x2 − 2).

The field L = F5(x, y1) is as in [6, Example 5.12A], so g(L) = 12 and
N(L) = 30. All rational places of L split completely in the Kummer ex-
tension K/L, hence N(K) = 60. The only ramified places in K/L are the
unique place of L of degree 2 lying over x2 + 2 and the places of L lying
over x8 − x4 − x2 − 2, thus g(K) = 44 follows from the genus formula for
Kummer extensions.

Example 10. g(K) = 48, N(K) = 82, K = F5(x, y1, y2, y3) with

y2
1 = x(x2 − 2), y5

2 − y2 =
x4 − 1
y1

, y2
3 = x3 − 2x2 − x− 2.
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The field L = F5(x, y1, y2) is as in [8, Example 9], so g(L) = 17 and
N(L) = 42. All rational places of L, except the unique place of L lying
over x, split completely in the Kummer extension K/L, hence N(K) = 82.
The only ramified places in K/L are those lying over x3 − 2x2 − x− 2, and
g(K) = 48 follows from the genus formula for Kummer extensions.

Example 11. g(K) = 50, N(K) = 70. Let L/F5 be the function field in
Table 1 with g(L) = 15 and N(L) = 35. By the construction in the proof
of Theorem 1 we have [L : F5(x)] = 14, and the rational places of L lie over
x, x + 1, x + 2, x − 1 or the pole of x, with each rational place of L having
ramification index 2 over F5(x). Now let K = L(z) with

z2 = x3 + 2x2 − x− 1.

Then all rational places of L split completely in the Kummer extension
K/L, hence N(K) = 70. The only ramified places in K/L are those lying
over x3 + 2x2 − x − 1, and g(K) = 50 follows from the genus formula for
Kummer extensions.

Example 12. g(K) = 51, N(K) = 104. Let EQ/F be the same narrow
ray class extension as in Example 1 and let J be the same subgroup of
PicQ(A) as in Example 1. Let G be a subgroup of PicQ(A) with |G| =
192 and G ⊇ J . Now let K be the subfield of EQ/F fixed by G. Then
[K : F ] = 26. As in Example 1 we see that the places P0, P1, P2, and∞ split
completely in K/F , hence N(K) ≥ 104. The only ramified place in K/F
is Q, and it is totally and tamely ramified. Thus, the Hurwitz genus formula
yields 2g(K) − 2 = (26 − 1) · 4, that is, g(K) = 51. From N5(51) ≤ 115 it
follows that N(K) = 104.

Example 13. g(K) = 56, N(K) = 101. Consider the cyclotomic func-
tion field EM with modulus M = x7 ∈ F5[x]. With the rational places
P1 = x+ 1, P2 = x− 1, and P3 = x+ 2, let K be the subfield of the exten-
sion EM/F5(x) constructed in [19, Theorem 1] (see also [18, Théorème 1]).
Then in the notation of [19, Theorem 1] we have

s = s5(3, 7) = dlog5 7e+
⌈

log5
7
2

⌉
+
⌈

log5
7
3

⌉
= 4,

and so [K : F5(x)] = 25 and N(K) ≥ 25 · 4 + 1 = 101. To calculate g(K),
we proceed as in [19] and consider

S = {f ∈ F5[x] : f(0) = 1, f(x) = (x+1)h(x−1)j(x+2)k, h, j, k = 0, 1, . . .}
and

Sr = {f ∈ S : xr ‖ (f(x)− 1)} for r = 1, 2, . . .

We have to obtain information on the five least values of r, called i1 < i2 <
i3 < i4 < i5, for which Sr is nonempty. It is trivial that S1 and S5 are
nonempty. From (x + 1)2(x − 1)2 = x4 − 2x2 + 1 we conclude that S2 is
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nonempty, and from

(x+ 1)(x− 1)8(x+ 2)4 = x13 + . . .+ 2x3 + 1

we conclude that S3 is nonempty. Therefore i1 = 1, i2 = 2, i3 = 3. Put

S(5) = {f ∈ (F5[x]/(x5))∗ : f ∈ S},
where f is the residue class of f modulo x5. Then S(5) is generated by 1 + x,
1− x, and 1− 2x, and so |S(5)| ≤ 53. If we had i4 = 4, then |S(5)| = 54 by
[19, Lemma 3], a contradiction. Therefore i4 = 5. Put

S(7) = {f ∈ (F5[x]/(x7))∗ : f ∈ S},
where f is the residue class of f modulo x7. Then S(7) is generated by
1 + x, 1− x, and 1− 2x. Since S(7) is contained in the 5-Sylow subgroup of
(F5[x]/(x7))∗, it follows from [19, Lemma 4(ii)] that |S(7)| ≤ 5s = 54. If we
had i5 = 6, then |S(7)| = 55 by [19, Lemma 3], a contradiction. Therefore
i5 ≥ 7. In [19, Theorem 1] we thus have j1 = 1, j2 = 2, j3 = 3, j4 = 5, and
this yields

g(K) = 1 +
1
2
· 25 · 5− 1

2

(
1 + 1 + 1 + 5 +

25− 1
4

+ 1
)

= 56.

From N5(56) ≤ 125 it follows that N(K) = 101.
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