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Cohomology groups of units in Zdp-extensions
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Mingzhi Xu (Columbus, Ohio)

In this paper, K is an arbitrary number field and p is a prime number.
Let Zp be the p-adic integers and let K∞ be a Galois extension of K such
that G = Gal(K∞/K) ∼= Zdp, d ∈ Z, d ≥ 1. For an arbitrary field F between
K and K∞, let E(F ) be the group of global units of F and let E(F )univ be
the intersection

⋂
L⊂K∞,L/F finiteNL/F (E(L)). The Iwasawa algebra Zp[[G]]

will be denoted by Λ. An ideal in Λ that contains two elements that are
relatively prime will be called an ideal of height at least two. For a set S of
primes in K above p, MS(F ) denotes the maximal abelian p-extension of F
which is unramified outside of S, and let XS(F ) = Gal(MS(F )/F ).

If F is finite over K, then A(F ) will be the p-part of the ideal class
group of F , and for a prime ℘ ⊂ K, U℘(F ) will be the group of local units
of F ⊗K K℘ which are congruent to 1 modulo the primes above ℘. The
product

∏
℘∈S U℘(F ) is denoted by U(F ). The closure of E(F ) ∩ U(F ) in

U(F ) is written as E(F ). If F is infinite over K, we define A(F ), E(F ) and
U(F ) to be the inverse limits lim←−A(L), lim←−E(L) and lim←−U(L) respectively,
where the inverse limits are over finite extensions L of K such that L ⊂ F ,
and are with respect to norm maps. Define T (F ) to be the set of primes of
K which ramify in K∞/F , and let r1 and r2 be the numbers of real and
complex primes of K.

Suppose F is finite over K, and let r1(F ) and r2(F ) be the numbers
of real and complex primes of F . Then rankZ E(F ) = r1(F ) + r2(F ) − 1.
Hence we must have E(F ) ∼= Zcp × B, where c ≤ r1(F ) + r2(F ) − 1 and
B is finite. Let δF = r1(F ) + r2(F ) − 1 − c. For a general F , if the set
{δL : L ⊂ F,L/K finite} is bounded, then we say that the weak Leopoldt
hypothesis holds for F and S.

Fix a set S of primes in K above p. If ℘ is any prime in S and F is finite
over K, let v be a prime of F lying above ℘ and let F ∗v be the multiplicative
group of Fv, the completion of F at v. Following Wintenberger ([12]), we
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define Z(Fv) to be lim←−n F ∗v /(F ∗v )p
n

. If F/K is an infinite extension, Z(Fv)
is defined to be lim←−Z(Lq), where the inverse limit is over finite extensions L
of K such that L ⊂ F , and q is the prime of L lying under v. We also define
Z℘(F ) = lim←−

∏
q|℘,q⊂L Z(Lq), where the inverse limit is over finite extensions

L of K such that L ⊂ F . Observe that for any F with K ⊂ F ⊂ K∞, we
have U℘(F ) ⊂ Z℘(F ).

If H is a closed subgroup of G, define I(H) to be the ideal of Λ generated
by {γ − 1 : γ ∈ H}. If H = Gal(K∞/F ), we also write I(H) as I(F ), and
we define ΛH to be Λ/I(H) = Zp[[G/H]]. For convenience, we let X(F ) =
XS(F ). The maps

πX : X(K∞)/(I(F )X(K∞))→ X(F ),

πA : A(K∞)/(I(F )A(K∞))→ A(F ),

πU : U(K∞)/(I(F )U(K∞))→ U(F ),

πE : E(K∞)/(I(F )E(K∞))→ E(F )

will be the natural projection maps.
Before we state the main results, let us state the exact assumptions.

We assume that the Iwasawa-µ-conjecture is true for K. We also assume
that for every Zp-extension F of K such that F ⊂ K∞, the weak Leopoldt
hypothesis holds for F and S. In addition, we assume that for any finite
extension F of K such that F ⊂ K∞, Leopoldt’s conjecture holds for F .

Our main result is: Let F be any field between K and K∞. For any
integer i ≥ 0, there exist a positive integer n and an ideal A of height at
least two in Λ, both independent of F , such that

InT (K)AHi(Gal(K∞/F ), E(K∞)) = 0.

When d = 1, this was proved by Iwasawa ([5]). Greenberg ([3]) proved
many fundamental results when d ≥ 2 and S is the set of all primes above p.
In [9], Rubin proved a key result (Theorem 7.6(i)) for the case when d = 2
and K is an imaginary quadratic field, which will be generalized to prove
our result.

In addition, the rank of XS(K∞) will be given by a formula which gen-
eralizes a result of Greenberg. The more general module XS(F ) is also con-
sidered and the result can be found in Theorem 2.2.

1. The Λ-modules U(K∞), X(K∞) and A(K∞)

Lemma 1.1. For ℘ ∈ S, let D℘ be the decomposition group of ℘ in K∞/K.
Let πZ,℘ be the natural projection: Z℘(K∞)/I(F )Z℘(K∞) → Z℘(F ). Then
I(D℘)d−1 ker(πZ,℘) = 0.

P r o o f. This follows from Lemma 5.2 in [12] and induction.
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If Q is any set of primes of K above p, then the product
∏
℘∈Q I(D℘)

will be written as IQ.

Theorem 1.2. We have

IT (F )∩S coker(πU ) = 0 and IdT (F )∩S ker(πU ) = 0.

P r o o f. When d = 2 and K is imaginary quadratic, this was proved by
Rubin in Theorem 5.1(i) of [9]. The proof here is similar. More precisely, it
follows from Lemma 1.1 and class field theory by looking at coker(πU )℘ and
ker(πU )℘ for each ℘ ∈ S.

Lemma 1.3. Let L∞ be an abelian extension of K∞ that is Galois over K
and let Z = Gal(L∞/K∞). Suppose L1 is the fixed field of I(F )Z and L2 is
the maximal abelian extension of F in L∞. Then L2 ⊂ L1, and Gal(L1/L2)
is finitely generated over Zp. Also G acts trivially on Gal(L1/L2). If
Gal(K∞/F ) is cyclic, then L1 = L2.

This is exactly Lemma 5.2 of [9]. From the proof given there, we see
that if α1, . . . , αn ∈ Gal(L1/F ) generate Gal(K∞/F ), then Gal(L1/L2) is
generated by the commutators [αi, αj ], 1 ≤ i ≤ n, 1 ≤ j ≤ n.

A ΛH -module M is called a torsion ΛH -module if M can be annihilated
by an element α in ΛH which is not a zero divisor. For any Λ-module Y , let
Y H = {y ∈ Y : hy = y for all h ∈ H} and YH = Y/I(H)Y .

Lemma 1.4. Suppose H ⊂ G and 0 → Y → Z → W → 0 is an exact
sequence of Λ-modules. Then there is an exact sequence

H1(H,Z)→ H1(H,W )→ YH → ZH →WH → 0.

If H = Gal(K∞/F ) is cyclic, then the sequence

0→ Y H → ZH →WH → YH → ZH →WH → 0

is exact.

P r o o f. The first sequence is just part of the long exact homology se-
quence. The second is a straightforward consequence of the Snake Lemma.

Lemma 1.5. If M is a finitely generated torsion-free Λ-module of rank %,
then for any f ∈ Λ, f 6= 0, there is an exact sequence

0→M → Λ% → N → 0,

such that N is a torsion Λ-module with an annihilator g such that (g, f) = 1,
where (g, f) is the greatest common divisor of g and f .

P r o o f. Let Λf = {a/b : a and b ∈ Λ, (b, f) = 1}. Since Λf is a principal
ideal domain, M ⊗ Λf is a free Λf -module. The lemma follows.

Lemma 1.6. Let s =
∑
℘∈S [K℘ : Qp] − r1 − r2. If L/K is a finite

extension such that L ⊂ K∞, let S1 = {q : q is a prime in L, and there
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exists ℘ ∈ S such that q |℘} and let s(L) =
∑
q∈S1

[Fq : Qp]− r1(L)− r2(L).
Then s(L) = s[L : K].

P r o o f. Because L/K is unramified outside of p, we have r1(L) =
[L : K]r1 and r2(L) = [L : K]r2. Also for each ℘ ∈ S,

∑
q|℘,q⊂L[Fq : Qp] =

[L : K]. It follows that s(L) = s[L : K].

From now on, we assume that for every Zp-extension F of K such that
F ⊂ K∞, the weak Leopoldt hypothesis holds for F and S. Fix such an F .
Then for any field L between K and F , by class field theory and Lemma 1.6,
rankZp X(L) = [L : K]s+ δL. Since δL is bounded, if s were negative, then
we could choose an L such that [L : K] is large enough that rankZp X(L) =
[L : K]s+ δL is negative, which is a contradiction. Therefore, s ≥ 0.

Theorem 1.7. Let S be as above. Then

(i) I(G) coker(πX) = 0 and I(G)IT (F )−S ker(πX) = 0. Furthermore,
coker(πX) = Gal(F∞/F ) where F∞ is the maximal extension of F in K∞
which is unramified outside of S, and ker(πX) is finitely generated over Zp
when F/K is finite.

(ii) I(G) coker(πA) = 0 and I(G)IT (F ) ker(πA) = 0. Further , coker(πA)
= Gal(Funr/F ) where Funr is the maximal extension of F in K∞ which is
everywhere unramified , and ker(πA) is finitely generated over Zp when F/K
is finite.

P r o o f. For K imaginary quadratic, this was proved by Rubin [9]. We
follow his procedures.

Since coker(πX) = Gal(MS(F )∩K∞/F ), assertion (i) for coker(πX) is
clear. Let M1 be MS(K∞)I(F )X(K∞) and let M2 be the maximal abelian
extension of F in MS(K∞). Then Gal(M1/K∞) = X(K∞)/I(F )X(K∞)
and ker(πX) = Gal(M1/K∞MS(F )). From Lemma 1.3, it follows that I(G)
annihilates Gal(M1/M2). Next we consider Gal(M2/K∞MS(F )).

Since Gal(M2/F ) is abelian, we have

Gal(M2/MS(F )) =
∏

v∈S′
Iv,

where S′ is the set of primes of F lying above T (F ) − S, and for each
v ∈ S′, Iv is the inertia group of v in Gal(M2/F ). If T (F )−S is empty, then
M2 = MS(F ). For v ∈ S′, we have v |℘, where ℘ ∈ T (F ) − S. If γ ∈ D℘

then γv = v, so that γ−1Ivγ = Iv. Since M2/K∞ is unramified above v, Iv
injects into Gal(K∞/F ) and it follows that γ−1 annihilates Iv. Thus I(D℘)
annihilates Iv. This means IT (F )−S annihilates Gal(M2/MS(F )).

Finally, we prove that ker(πX) is finitely generated over Zp when F/K
is finite. By Lemma 1.3, Gal(M1/M2) is finitely generated over Zp. Now
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by the properties of {Iv}v∈S′ proved above and since Gal(M2/MS(F )) =∏
v∈S′ Iv, we find that Gal(M2/MS(F )) is finitely generated over Zp. Be-

cause ker(πX) = Gal(M1/K∞MS(F )), we have proved (i).
The proof of (ii) is exactly the same as the proof of (i), except that

X(K∞), MS(K∞) and MS(F ) need to be changed into A(K∞), L(K∞)
and L(F ), where L(K∞) (resp. L(F )) is the maximal abelian unramified
p-extension of K∞ (resp. F ).

Theorem 1.8. Assume that for every Zp-extension F of K such that
F ⊂ K∞, the weak Leopoldt hypothesis holds for F and S. Then X(K∞) is
a finitely generated Λ-module of rank s.

P r o o f. For K imaginary quadratic, this was proved by Rubin in Theo-
rem 5.3(iii) of [9], and for S = {all ℘ above p} by Greenberg [3]. We basically
follow [3].

If F is a finite extension of K, then the exact sequence

0→ ker(πX)→ X(K∞)F → X(F )

shows that, because ker(πX) and X(F ) are finitely generated over Zp, so is
X(K∞)F . This implies that X(K∞) is a finitely generated Λ-module. The
statement about rankΛX(K∞) can be proved by induction. We shall use τ
to denote rankΛX(K∞). Let Y be the torsion Λ-submodule of X(K∞) and
let Z = X(K∞)/Y . We use induction on d to prove τ = s.

If d = 1, then K∞ is a Zp-extension of K. Let F be a field between K and
K∞. LetM(F ) be the maximal abelian extension of F contained inMS(K∞)
so it corresponds to the commutator subgroup of Gal(MS(K∞)/F ). Thus

rankZp(X(K∞)/I(F )X(K∞)) = rankZp Gal(M(F )/K∞).

By the same argument as in the proof of Theorem 1.7(i), we find that ξF =
rankZp Gal(M(F )/MS(F )) is bounded by a number independent of F , and

rankZp(X(K∞)/I(F )X(K∞)) = rankZp Gal(MS(F )/K∞) + ξF

= rankZp X(F )− 1 + ξF .

However, rankZp X(F ) = [F : K]s+ δF . Thus

rankZp(X(K∞)/I(F )X(K∞)) = [F : K]s− 1 + ξF + δF .

On the other hand, it follows from the structure theory of Λ-modules that

rankZp(X(K∞)/I(F )X(K∞)) = τ [F : K] + εF ,

where εF = rankZp(Y/I(F )Y ), so it is bounded. We now have [F : K]s−1+
ξF + δF = τ [F : K] + εF , which means τ = s, since δF is bounded because
of the weak Leopoldt hypothesis. This proves that τ = s when d = 1.
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If d ≥ 2, we assume that the conclusion is true for d − 1. Let H be a
direct summand of G isomorphic to Zp and let h be a topological generator
of H. From the exact sequence 0 → Y → X(K∞) → Z → 0 and Lemma
1.4, we get

0→ YH → X(K∞)H → ZH → 0,

since ZH = 0. This implies

rankΛH X(K∞)H = rankΛH (ZH) + rankΛH (YH).

But from Lemma 1.5, we have an exact sequence

0→ Z → Λτ → N → 0,

in which N has an annihilator g such that (g, h− 1) = 1. This gives us the
exact sequence

NH → ZH → ΛτH → NH → 0.

Since the image of g in ΛH , which is not zero, annihilates NH and NH , we
know that rankΛH (ZH) = τ . Combining the above, we get

rankΛH X(K∞)H = τ + rankΛH (YH).

Let Φ ∈ Λ be a nonzero annihilator of Y and for all ℘ ∈ T (K ′)− S such that
D℘ is cyclic, let h℘ be a topological generator of D℘. The fixed field of H
will be denoted by K ′. We choose H so that h−1 does not divide Φ or h℘−1
for all ℘ ∈ T (K ′)− S such that D℘ is cyclic. For such H, YH is a torsion
ΛH -module, since the projection Φ of Φ in ΛH is a nonzero annihilator of YH .
Hence rankΛH X(K∞)H = τ . Now we consider the following exact sequence
of ΛH -modules:

0→ ker(πX)→ X(K∞)H → X(K ′)→ coker(πX)→ 0.

Because of the way H was chosen, there exists α ∈ IT (K′)−S such that α is
not a zero divisor in ΛH . Since I(G)IT (K′)−S ker(πX) = 0 and I(G) coker(πX)
= 0, we conclude that both ker(πX) and coker(πX) are torsion ΛH -modules.
This means

τ = rankΛH X(K∞)H = rankΛH X(K ′).

By the induction hypothesis, rankΛH X(K ′) = s. This completes the
proof of Theorem 1.8.

2. Results about X(F ) and A(F ). Let µp∞ be the discrete group of
all p-power roots of unity. We denote by X the set of continuous characters
% : G → µp∞ . Every % ∈ X extends uniquely to a continuous homomorphism
on Λ. For f ∈ Λ, define X (f) = {% ∈ X : %(f) = 0}. Let γ1, . . . , γd be fixed
topological generators of G. We define an injection from X (f) to µdp∞ by
mapping % ∈ X (f) to (%(γ1), . . . , %(γd)). This identifies X (f) with the set
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of zeros of f in (µp∞)d. Also, I(f) will represent the set {g ∈ Λ : %(g) =
0 for all % ∈ X (f)}. Following Monsky [8], we let Ed be the free rank d
Zp-module Hom((µp∞)d, µp∞). We define closed subsets of (µp∞)d to be
the subsets that are finite unions of subsets of (µp∞)d each of which is
defined by a set of equations τj(ζ) = εj , where τj ∈ Ed, ζ ∈ (µp∞)d, εj ∈
µp∞ . Finally, a Zp-flat in (µp∞)d is a set T defined by equations τj(ζ) =
εj , where {τj} is a subset of a basis of Ed, ζ ∈ (µp∞)d, and εj ∈ µp∞ .
Suppose {τj : 1 ≤ j ≤ d} is a basis of Ed and T is defined by τj for all
j such that 1 ≤ j ≤ k. Then we say that the dimension of T is d − k.
Theorem 2.6 of [8] implies that X (f), as a subset of (µp∞)d, is closed. This
means X (f) is a finite union of Zp-flats. We write dimX (f) ≤ α if there is
a finite set {Ui} of Zp-flats such that

⋃
i Ui covers X (f) and dimUi ≤ α for

all i.

Lemma 2.1. Suppose d ≥ 2 and f ∈ Λ.

(i) If dimX (f) ≤ d− 2, then I(f) is an ideal of height at least two.
(ii) If f is relatively prime to γ−1 for every γ 6= 1 in G, then dimX (f) ≤

d− 2.
(iii) Let g be a prime in Λ such that X (g) has codimension 1. There

exists a field F such that K ⊂ F ⊂ K∞ and H = Gal(K∞/F ) ∼= Zp, with
the property g |h− 1, where h is a topological generator of H.

P r o o f. (i) Since dimX (f) ≤ d − 2, X (f) can be written as
⋃m
i=1 Ti,

where m is a positive integer and for all i, 1 ≤ i ≤ m, Ti is a Zp-flat such
that dimTi ≤ d− 2. It follows that for each i, 1 ≤ i ≤ m, there exist
fi, gi ∈ Λ such that (fi, gi) = 1 and Ti ⊂ X (fi) ∩X (gi). Let Ai be the ideal
generated by fi and gi, 1 ≤ i ≤ m. Then

∏m
i=1Ai ⊂ I(f) and

∏m
i=1Ai is

an ideal of height at least two in Λ. This means I(f) is an ideal of height at
least two in Λ.

(ii) can be deduced from Theorem 2.6 of [7].
(iii) By (ii), we could get a γ ∈ G such that (g, γ − 1) 6= 1. Since g is

prime, g | γ − 1. Let F be the fixed field of γ. Then H = Gal(K∞/F ) is
generated by γ topologically. This completes the proof of (iii).

Theorem 2.2. Let g be a prime element in Λ. Let F be any field such
that K ⊂ F ⊂ K∞ and H = Gal(K∞/F ) ∼= Zp. If g |h − 1, where h is a
topological generator of H, then rankΛ/gΛ(X(F )⊗ (Λ/gΛ)) = s.

P r o o f. Let G′ be a direct summand of G such that G′ ∼= Zp and
H ⊂ G′. We can now write Gal(F/K) as V ⊕ G′′, where G′′ ∼= Zd−1

p and
V ∼= G′/H. Denote by L the fixed field of G′′ and by K ′ the fixed field of V .
Let g′ be a topological generator of G′, and let Λ′ be the Iwasawa algebra
Zp[[G′′]].
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Since g is a prime and g |h − 1, g = ωk+1/ωk, where k is a positive
integer and ωj = g′p

j − 1 for j = k, k + 1. For the field Ki between K and
L corresponding to g′p

i

, let Bi be K ′Ki. Since Gal(K ′Ki/Ki) ∼= G′′, X(Bi)
can be considered as a Λ′-module. Consider the exact sequence

0→ ker(πX(Bi))→ X(F )/I(Bi)X(F )→ X(Bi)→ coker(πX(Bi))→ 0,

where the middle map is the natural projection πX(Bi). Let T ′(Bi) be the
primes of K which ramify in F/Bi. Write M2(Bi) for the maximal abelian
extension of Bi in MS(F ). S′′ will denote the set of primes of Bi lying above
T ′(Bi)−S. From the proof of Theorem 1.7(i), we find that coker(πX(Bi)) is
finite, and that ker(πX(Bi)) is a torsion Λ′-module if

∏
v∈S′′ Iv is a torsion

Λ′-module, where Iv is the inertia group of v in Gal(M2(Bi)/Bi), and
Iv can be embedded into Gal(F/Bi). Since Gal(F/Bi) is finite, there ex-
ists a positive integer j such that pjIv = 0 for all v ∈ S′′, which means
pj
∏
v∈S′′ Iv = 0.

This means rankΛ′(X(F )/I(Bi)X(F )) = rankΛ′ X(Bi). By Lemma 1.6
and Theorem 1.8, rankΛ′(X(F )/I(Bi)X(F )) = rankΛ′ X(Bi) = spi.

Next consider the exact sequence

0→ I(Bk)X(F )/I(Bk+1)X(F )→ X(F )/I(Bk+1)X(F )

→ X(F )/I(Bk)X(F )→ 0.

Since

I(Bk)X(F )/I(Bk+1)X(F ) = ωkX(F )/ωk+1X(F ) = ωkX(F )/gωkX(F ),

we have
rankΛ′(ωkX(F )/gωkX(F )) = s(pk+1 − pk).

Claim. ωkX(F )/gωkX(F ) and X(F )/gX(F ) have the same rank as
Λ/gΛ-modules.
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If the claim is true, then since Λ′ can be embedded into Λ/gΛ and
rankΛ′(Λ/gΛ) = pk+1 − pk, we have

rankΛ/gΛ(X(F )⊗ (Λ/gΛ)) = rankΛ/gΛ(X(F )/gX(F )) = s.

This would complete the proof of the theorem.
To prove the claim, we consider the commutative diagram

0 W X(F ) ωkX(F ) 0

0 W X(F ) ωkX(F ) 0

// //

g

²²

//

g

²²

//

g

²²
// // // //

where W is the kernel of multiplication by ωk and the vertical maps are
multiplications by g. By the Snake Lemma, we get the exact sequence

W/gW → X(F )/gX(F )→ ωkX(F )/gωkX(F )→ 0.

Since ωk is not a zero divisor in Λ/gΛ and ωk(W/gW ) = 0, we have proved
the claim.

From now on, assume that for any field F between K and K∞ such that
F is finite over K, Leopoldt’s conjecture holds for F .

According to the classification theorem, for any torsion Λ-module Y , we
have exact sequences

0→
⊕

Λ/fiΛ→ Y → N → 0,

0→ N1 → Y →
⊕

Λ/fiΛ→ N2 → 0,

in which fi ∈ Λ for all i and N , N1, N2 can be annihilated by an ideal of
height at least two in Λ. We call the ideal generated by

∏
fi the character-

istic ideal of Y , written char(Y ).

3. Preliminary results

Proposition 3.1. (i) If f ∈ Λ and H ⊂ G, then I(f)H1(H,Λ/fΛ)
= 0.

(ii) If Y is a finitely generated torsion Λ-module, then there is an ideal B
of height at least two in Λ such that for any H ⊂ G, BI(char(Y ))H1(H,Y )
= 0.

P r o o f. For K imaginary quadratic, this was proved by Rubin in [9],
Lemma 7.3. The same argument can be used here.

Proposition 3.2. Suppose d ≥ 2. Let Y = X(K∞)torsion be the torsion
submodule of the Λ-module X(K∞). There is an ideal C of height at least
two in Λ such that CIT (K) ⊂ I(char(Y )) and CIT (K) ⊂ I(char(A(K∞))).
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P r o o f. It follows from Theorem 1 of [2] and Lemma 2.1 and Theo-
rem 2.2.

Proposition 3.3. There is an ideal B ⊂ Λ of height at least two, such
that for every H ⊂ Gal(K∞/K),

IT (K)BH1(H,U(K∞)/E(K∞)) = 0 and IT (K)BH1(H,A(K∞)) = 0.

P r o o f. When K is imaginary quadratic and d = 2, this is Corollary 7.5
of [9].

By the inclusion U(K∞)/E(K∞) ⊂ X(K∞) of global class field the-
ory, (U(K∞)/E(K∞))torsion ⊂ Y . If U(K∞)/E(K∞) is torsion, we can use
Propositions 3.2 and 3.1 to get IT (K)BH1(H,U(K∞)/E(K∞)) = 0. In gen-
eral, there is an exact sequence

0→ (U(K∞)/E(K∞))torsion → U(K∞)/E(K∞)→ Z → 0,

where, by the exact sequence 0 → U(K∞)/E(K∞) → X(K∞) → A(K∞)
→ 0 of global class field theory, and by Theorems 1.7(ii) and 1.8, Z is a
torsion-free Λ-module of rank s. Now by using Lemma 1.5, one could see that
H1(H,Z) is pseudo-null. Now IT (K)BH1(H,U(K∞)/E(K∞)) = 0 follows
from Proposition 3.2 and I(char(Y ))H1(H,U(K∞)/E(K∞)torsion) = 0.

By Propositions 3.1 and 3.2, there is an ideal B ⊂ Λ of height at least
two, such that H1(H,A(K∞)) is annihilated by IT (K)B. This proves the
second equation.

4. Main theorems. From now on, if M is a Λ-module, we denote
M/I(F )M by MF .

Theorem 4.1. Suppose F is any extension of K contained in K∞. There
is an ideal A ⊂ Λ of height at least two, independent of F , such that

I3
T (K)A coker(πE) = 0 and Id+1

T (K)A ker(πE) = 0.

P r o o f. When d = 2 and K is an imaginary quadratic field, this was
proved by Rubin in [9], Theorem 7.6(i).

Consider the two commutative diagrams with exact rows

H1(H,U(K∞)/E(K∞)) (E(K∞))F (U(K∞))F (U(K∞)/E(K∞))F 0

0 E(F ) U(F ) U(F )/E(F ) 0

// //

πE
²²

πU

²²

// //

πU/E
²²

// // // //
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and
H1(H,A(K∞)) (U(K∞)/E(K∞))F (X(K∞))F (A(K∞))F 0

0 U(F )/E(F ) X(F ) A(F ) 0

// //

πU/E
²²

//

πX

²²

//

πA

²²
// //// // //

in which the top rows come from the exact sequences

0→ E(K∞)→ U(K∞)→ U(K∞)/E(K∞)→ 0,

0→ U(K∞)/E(K∞)→ X(K∞)→ A(K∞)→ 0.

By the Snake Lemma, we get the following exact sequences:

H1(H,U(K∞)/E(K∞))→ ker(πE)→ ker(πU )→ ker(πU/E)→ coker(πE)

→ coker(πU )→ coker(πU/E)→ 0

and

H1(H,A(K∞))→ ker(πU/E)→ ker(πX)→ ker(πA)→ coker(πU/E)

→ coker(πX)→ coker(πA)→ 0.

Now the annihilator of ker(πE) comes from the annihilators of ker(πU ) (The-
orem 1.2) and H1(H,U(K∞)/E(K∞)) (Proposition 3.3). Similarly we get
the annihilator of ker(πU/E) from the annihilators of ker(πX) (Theorem 1.7)
and H1(H,A(K∞)) (Proposition 3.3), and then the annihilator of coker(πE)
comes from that of ker(πU/E) and coker(πU ) (Theorem 1.2). This completes
the proof of this theorem.

Theorem 4.2. Assume that the Iwasawa-µ-conjecture is true for K. Also
assume that for any field F between K and K∞ such that F is finite over K,
Leopoldt’s conjecture holds for F . Let F , A be as in Theorem 4.1 above. Then

I3
T (K)A((E(F )/E(F )univ)⊗ Zp) = 0.

P r o o f. When d = 1, this result is due to Iwasawa ([5]).

If F/K is a finite extension, it follows from Theorem 4.1 that

E(F )/
⋂

L⊂K∞, L/F finite

NL/F (E(L)) ∼= coker(πE)

is annihilated by I3
T (K)A. Now from our assumption of Leopoldt’s conjecture,

we get

I3
T (K)A

(
E(F )⊗ Zp/

⋂

L⊂K∞, L/F finite

NL/F (E(L)⊗ Zp)
)

= 0.

This implies

I3
T (K)A lim←−

L⊂K∞, L/F finite

E(F )⊗ Zp/NL/F (E(L)⊗ Zp) = 0,
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which implies
I3
T (K)A lim←−

L⊂K∞, L/F finite

(E(F )/NL/F E(L))⊗ Zp = 0.

Now it is clear that I3
T (K)A((E(F )/E(F )univ) ⊗ Zp) = 0. We proved the

conclusion in this case.
If F/K is an infinite extension, then

(E(F )/E(F )univ)⊗ Zp = lim−→
L⊂F,L/K finite

((E(L)/E(L)univ)⊗ Zp).

This proves the theorem.

Next we consider the cohomology group H1(Gal(K∞/F ), E(K∞)). We
first prove some results about H1(Gal(B/F ), E(B)), where B is a finite,
cyclic extension of F in K∞. Since πE is dependent on F , we can write
πE(F ) for πE to indicate this dependence.

Proposition 4.3. Suppose B is a finite, cyclic extension of F in K∞.
Let π′ be the natural map

π′ : E(B)/I(Gal(K∞/F ))E(B)→ E(F ),

which is induced by the norm map. Then there exists an ideal A of height
at least two in Λ, independent of B and F , such that Id+4

T (K)A ker(π′) = 0.

P r o o f. If we let φ be the natural projection

φ : E(B)→ E(B)/I(Gal(K∞/F ))E(B),

then πE(F ) = π′ ◦ φ ◦ πE(B) and for any ξ ∈ ker(π′), there exists η ∈ E(B)
such that φ(η) = ξ. Now from Theorem 4.1, there exists an ideal B of
height at least two in Λ such that I3

T (K)B coker(πE(B)) = 0. This means

for any α ∈ I3
T (K)B, there exists ζ ∈ E(K∞)/I(B)E(K∞) such that αη =

πE(B)(ζ). From this, we get αξ = φ(αη) = φ(πE(B)(ζ)), which implies π′ ◦
φ ◦πE(B)(ζ) = 0, from which we get πE(F )(ζ) = 0. From Theorem 4.1 again,
Id+1
T (K)B ker(πE(F )) = 0. This means βζ = 0 for any β ∈ Id+1

T (K)B, which
implies αβη = πE(B)(βζ) = 0. This yields αβξ = φ(αβη) = 0. The proof is
complete.

Proposition 4.4. Let B, F and π′ be as in Proposition 4.3. Then

ker(π′) = H1(Gal(B/F ), E(B)).

P r o o f. By the definition of π′ and by the definition before Theorem 3
in Chapter IV of [1], we get ker(π′) = Ĥ−1(Gal(B/F ), E(B)) and

Ĥ1(Gal(B/F ), E(B)) = H1(Gal(B/F ), E(B)).

Since Gal(B/F ) is cyclic, by Theorem 5 in Chapter IV of [1], we get

Ĥ−1(Gal(B/F ), E(B)) = Ĥ1(Gal(B/F ), E(B)).
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Combining the above gives ker(π′) = H1(Gal(B/F ), E(B)). This completes
the proof.

Corollary 4.5. Suppose F is a finite extension over K and suppose
B ⊂ K∞ is finite and cyclic over F . Then there exists an ideal A of height
at least two in Λ, independent of B and F , such that

Id+4
T (K)AH1(Gal(B/F ), E(B)) = 0.

P r o o f. Combining Propositions 4.3 and 4.4, we get

Id+4
T (K)AH1(Gal(B/F ), E(B)) = 0.

Since F/K is a finite extension, the extension B/K is also finite. This implies
H1(Gal(B/F ), E(B)) = H1(Gal(B/F ), E(B) ⊗ Zp) by our assumption of
Leopoldt’s conjecture. Now since Gal(B/F ) is a p-group, we get

H1(Gal(B/F ), E(B)) ∼= H1(Gal(B/F ), E(B)⊗ Zp),
as Λ-modules. This shows that

Id+4
T (K)AH1(Gal(B/F ), E(B)) = 0.

Theorem 4.6. Assume that the Iwasawa-µ-conjecture is true for K. Also
assume that for any field F between K and K∞ such that F is finite over K,
Leopoldt’s conjecture holds for F . Suppose F is a field such that K ⊂ F
⊂ K∞. There exists an ideal A of height at least two in Λ, independent
of F , such that

I
d(d+4)
T (K) AH1(Gal(K∞/F ), E(K∞)) = 0.

P r o o f. When d = 1, this result is due to Iwasawa ([5]).

First we assume that F/K is a finite extension. Since

H1(Gal(K∞/F ), E(K∞)) = lim−→
B⊂K∞,B/F finite

H1(Gal(B/F ), E(B)),

we only need to show I
d(d+4)
T (K) AH1(Gal(B/F ), E(B)) = 0 when B ⊂ K∞ and

B/F is a finite extension.
Since K∞/K is a Zdp-extension, Gal(B/F ) is a product of m cyclic fac-

tors, where m is an integer, m ≤ d. If m = 0, Gal(B/F ) is trivial, so we can
assume 1 ≤ m ≤ d.

We use induction on m to prove Im(d+4)
T (F ) AH1(Gal(B/F ), E(B)) = 0.

If m = 1, then B/F is a cyclic extension. From Corollary 4.5, there exists
an ideal A of height at least two in Λ, independent of F and B, such that
Id+4
T (K)AH1(Gal(B/F ), E(B)) = 0.

Suppose the conclusion is true for m−1, that is, if Gal(B/F ) is a product
of m−1 cyclic factors, then there exists an ideal B of height at least two in Λ,
independent of F and B, such that I(m−1)(d+4)

T (K) BH1(Gal(B/F ), E(B)) = 0.
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Now if Gal(B/F ) is a product of m cyclic factors, we let H be a subgroup of
Gal(B/F ) such that H is a product of m−1 cyclic factors, and Gal(B/F )/H
is cyclic. Let C be the fixed field ofH. Then the restriction-inflation sequence
gives us the exact sequence

0→ H1(Gal(C/F ), E(C))→ H1(Gal(B/F ), E(B))

→ H1(Gal(B/C), E(B)).

Since Gal(C/F ) is cyclic, we have an ideal C of height at least two in Λ,
independent of F and C, such that Id+4

T (K)CH1(Gal(C/F ), E(C)) = 0. As for
H1(Gal(B/C), E(B)), the induction hypothesis implies

I
(m−1)(d+4)
T (K) BH1(Gal(B/C), E(B)) = 0.

Combining these we get

I
m(d+4)
T (K) BCH1(Gal(B/F ), E(B)) = 0.

This completes the proof of the theorem for F/K finite.
We now consider the case when F/K is an infinite extension. Let L be

any subextension of F/K such that L/K is finite. Consider the inflation-
restriction exact sequence

H1(Gal(F/L), E(F ))→ H1(Gal(K∞/L), E(K∞))

→ H1(Gal(K∞/F ), E(K∞))Gal(F/L) → H2(Gal(F/L), E(F )),

which implies, after taking direct limits,

lim−→
L⊂F,L/K finite

H1(Gal(K∞/L), E(K∞)) ∼= H1(Gal(K∞/F ), E(K∞)),

since

lim−→
L⊂F,L/K finite

Hi(Gal(F/L), E(F )) = 0 for i = 1, 2,

and

lim−→
L⊂F,L/K finite

H1(Gal(K∞/F ), E(K∞))Gal(F/L) = H1(Gal(K∞/F ), E(K∞)).

Now we have I
d(d+4)
T (K) AH1(Gal(K∞/F ), E(K∞)) = 0. This completes the

proof of the theorem.

Next, we are going to show that Hi(Gal(K∞/F ), E(K∞)) can be anni-
hilated by similar products for all i ≥ 2. Since

Hi(Gal(K∞/F ), E(K∞)) = lim−→
B⊂K∞, B/F finite

Hi(Gal(B/F ), E(B)),

we only need to prove the following:
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Theorem 4.7. Assume that the Iwasawa-µ-conjecture is true for K. Also
assume that for any field F between K and K∞ such that F is finite over K,
Leopoldt’s conjecture holds for F . Let B be a finite extension of F contained
in K∞. For any integer i ≥ 1, there exists a positive integer n and an ideal
A of height at least two in Λ, both independent of F and B, such that

InT (K)AHi(Gal(B/F ), E(B)) = 0.

P r o o f. Since K∞/K is a Zdp-extension, Gal(B/F ) is an abelian group
which is a product of w finite cyclic groups, where w is an integer between
1 and d. We use induction on i.

If i = 1, the theorem is true because of Theorem 4.6 above. Suppose it
is true up to some i ≥ 1; we need to show that it is also true for i+ 1.

If w = 1, then B/F is cyclic. This means

Hi+1(Gal(B/F ), E(B)) = H1(Gal(B/F ), E(B))

when i is even, and

Hi+1(Gal(B/F ), E(B)) = (E(F )/E(F )univ)⊗ Zp
when i is odd. This and Theorems 4.2 and 4.6 imply that the conclusion is
true in this case. Suppose that the conclusion of the theorem is true up to
some w ≥ 1. We need to show that it is also true for w + 1.

Let C be an extension of F in B such that Gal(B/C) is a product
of w finite cyclic groups and that Gal(C/F ) is cyclic. Then by Section 4 of
Chapter 2 in [10], we have the following Hochschild–Serre spectral sequence:

Hp(Gal(C/F ),Hq(Gal(B/C), E(B)))⇒p H
∗(Gal(B/F ), E(B)).

Using the notation in the same section of [10], we let

Ep,q2 = Hp(Gal(C/F ),Hq(Gal(B/C), E(B))).

Here p, q are nonnegative integers.
Since the conclusion of the theorem is true for Hq(Gal(B/C), E(B)) for

any integer q between 1 and i + 1, there exists a positive integer m and
an ideal B of height at least two in Λ, both independent of B and C, such
that ImT (K)B annihilates Hq(Gal(B/C), E(B)) for all integers q between 1
and i+1. Since H0(Gal(B/C), E(B)) = E(C), there exists a positive integer
l and an ideal C of height at least two in Λ, both independent of F and C,
such that

I lT (K)CHi+1(Gal(C/F ),H0(Gal(B/C), E(B))) = 0.

This implies that there exists a positive integer k and an ideal D of height
at least two in Λ, both independent of F , B or C, such that

IkT (K)D
⊕

p+q=i+1

Ep,q2 = 0.
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From this we get

IkT (K)D
⊕

p+q=i+1

Ep,q∞ = 0.

This means
I
k(i+1)
T (K) D(i+1)Hi+1(Gal(B/F ), E(B)) = 0.

Now we can conclude that there exists a positive integer n and an ideal
A of height at least two in Λ, both independent of F and B, such that
InT (K)AHi+1(Gal(B/F ), E(B)) = 0.

Acknowledgements. I would like to thank my advisor Karl Rubin for
introducing the problem to me. I would also like to thank Professor Warren
Sinnott and Professor Karl Rubin for helpful discussions.

References
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