Cohomology groups of units in \mathbb{Z}_p^d -extensions

by

MINGZHI XU (Columbus, Ohio)

In this paper, K is an arbitrary number field and p is a prime number. Let \mathbb{Z}_p be the p-adic integers and let K_∞ be a Galois extension of K such that $\mathcal{G} = \operatorname{Gal}(K_\infty/K) \cong \mathbb{Z}_p^d, d \in \mathbb{Z}, d \geq 1$. For an arbitrary field F between K and K_∞ , let $\mathcal{E}(F)$ be the group of global units of F and let $\mathcal{E}(F)^{\operatorname{univ}}$ be the intersection $\bigcap_{L \subset K_\infty, L/F \text{ finite}} N_{L/F}(\mathcal{E}(L))$. The Iwasawa algebra $\mathbb{Z}_p[[\mathcal{G}]]$ will be denoted by Λ . An ideal in Λ that contains two elements that are relatively prime will be called an ideal of height at least two. For a set S of primes in K above p, $M_S(F)$ denotes the maximal abelian p-extension of F which is unramified outside of S, and let $X_S(F) = \operatorname{Gal}(M_S(F)/F)$.

If F is finite over K, then A(F) will be the p-part of the ideal class group of F, and for a prime $\wp \subset K$, $U_{\wp}(F)$ will be the group of local units of $F \otimes_K K_{\wp}$ which are congruent to 1 modulo the primes above \wp . The product $\prod_{\wp \in S} U_{\wp}(F)$ is denoted by U(F). The closure of $\mathcal{E}(F) \cap U(F)$ in U(F) is written as $\overline{\mathcal{E}}(F)$. If F is infinite over K, we define A(F), $\overline{\mathcal{E}}(F)$ and U(F) to be the inverse limits $\varprojlim A(L)$, $\varprojlim \overline{\mathcal{E}}(L)$ and $\varprojlim U(L)$ respectively, where the inverse limits are over finite extensions L of \overline{K} such that $L \subset F$, and are with respect to norm maps. Define T(F) to be the set of primes of K which ramify in K_{∞}/F , and let r_1 and r_2 be the numbers of real and complex primes of K.

Suppose F is finite over K, and let $r_1(F)$ and $r_2(F)$ be the numbers of real and complex primes of F. Then $\operatorname{rank}_{\mathbb{Z}} \mathcal{E}(F) = r_1(F) + r_2(F) - 1$. Hence we must have $\overline{\mathcal{E}}(F) \cong \mathbb{Z}_p^c \times B$, where $c \leq r_1(F) + r_2(F) - 1$ and B is finite. Let $\delta_F = r_1(F) + r_2(F) - 1 - c$. For a general F, if the set $\{\delta_L : L \subset F, L/K \text{ finite}\}$ is bounded, then we say that the *weak Leopoldt* hypothesis holds for F and S.

Fix a set S of primes in K above p. If \wp is any prime in S and F is finite over K, let v be a prime of F lying above \wp and let F_v^* be the multiplicative group of F_v , the completion of F at v. Following Wintenberger ([12]), we

¹⁹⁹¹ Mathematics Subject Classification: 14H25, 14G10, 14G25.

^[289]

define $Z(F_v)$ to be $\lim_{n} F_v^*/(F_v^*)^{p^n}$. If F/K is an infinite extension, $Z(F_v)$ is defined to be $\lim_{n \to \infty} Z(L_q)$, where the inverse limit is over finite extensions L of K such that $L \subset F$, and q is the prime of L lying under v. We also define $Z_{\wp}(F) = \lim_{n \to \infty} \prod_{q \mid \wp, q \subset L} Z(L_q)$, where the inverse limit is over finite extensions L of K such that $L \subset F$. Observe that for any F with $K \subset F \subset K_{\infty}$, we have $U_{\wp}(F) \subset Z_{\wp}(F)$.

If *H* is a closed subgroup of \mathcal{G} , define I(H) to be the ideal of Λ generated by $\{\gamma - 1 : \gamma \in H\}$. If $H = \operatorname{Gal}(K_{\infty}/F)$, we also write I(H) as I(F), and we define Λ_H to be $\Lambda/I(H) = \mathbb{Z}_p[[\mathcal{G}/H]]$. For convenience, we let $X(F) = X_S(F)$. The maps

$$\pi_X : X(K_{\infty})/(I(F)X(K_{\infty})) \to X(F),$$

$$\pi_A : A(K_{\infty})/(I(F)A(K_{\infty})) \to A(F),$$

$$\pi_U : U(K_{\infty})/(I(F)U(K_{\infty})) \to U(F),$$

$$\pi_{\mathcal{E}} : \overline{\mathcal{E}}(K_{\infty})/(I(F)\overline{\mathcal{E}}(K_{\infty})) \to \overline{\mathcal{E}}(F)$$

will be the natural projection maps.

Before we state the main results, let us state the exact assumptions. We assume that the Iwasawa- μ -conjecture is true for K. We also assume that for every \mathbb{Z}_p -extension F of K such that $F \subset K_{\infty}$, the weak Leopoldt hypothesis holds for F and S. In addition, we assume that for any finite extension F of K such that $F \subset K_{\infty}$, Leopoldt's conjecture holds for F.

Our main result is: Let F be any field between K and K_{∞} . For any integer $i \geq 0$, there exist a positive integer n and an ideal \mathcal{A} of height at least two in Λ , both independent of F, such that

$$I^n_{T(K)}\mathcal{A}H^i(\operatorname{Gal}(K_\infty/F),\mathcal{E}(K_\infty))=0$$

When d = 1, this was proved by Iwasawa ([5]). Greenberg ([3]) proved many fundamental results when $d \ge 2$ and S is the set of all primes above p. In [9], Rubin proved a key result (Theorem 7.6(i)) for the case when d = 2and K is an imaginary quadratic field, which will be generalized to prove our result.

In addition, the rank of $X_S(K_\infty)$ will be given by a formula which generalizes a result of Greenberg. The more general module $X_S(F)$ is also considered and the result can be found in Theorem 2.2.

1. The A-modules $U(K_{\infty})$, $X(K_{\infty})$ and $A(K_{\infty})$

LEMMA 1.1. For $\wp \in S$, let D_{\wp} be the decomposition group of \wp in K_{∞}/K . Let $\pi_{Z,\wp}$ be the natural projection: $Z_{\wp}(K_{\infty})/I(F)Z_{\wp}(K_{\infty}) \to Z_{\wp}(F)$. Then $I(D_{\wp})^{d-1} \ker(\pi_{Z,\wp}) = 0$.

Proof. This follows from Lemma 5.2 in [12] and induction.

If Q is any set of primes of K above p, then the product $\prod_{\wp \in Q} I(D_{\wp})$ will be written as I_Q .

THEOREM 1.2. We have

 $I_{T(F)\cap S} \operatorname{coker}(\pi_U) = 0$ and $I_{T(F)\cap S}^d \operatorname{ker}(\pi_U) = 0.$

Proof. When d = 2 and K is imaginary quadratic, this was proved by Rubin in Theorem 5.1(i) of [9]. The proof here is similar. More precisely, it follows from Lemma 1.1 and class field theory by looking at $\operatorname{coker}(\pi_U)_{\wp}$ and $\operatorname{ker}(\pi_U)_{\wp}$ for each $\wp \in S$.

LEMMA 1.3. Let L_{∞} be an abelian extension of K_{∞} that is Galois over Kand let $Z = \operatorname{Gal}(L_{\infty}/K_{\infty})$. Suppose L_1 is the fixed field of I(F)Z and L_2 is the maximal abelian extension of F in L_{∞} . Then $L_2 \subset L_1$, and $\operatorname{Gal}(L_1/L_2)$ is finitely generated over \mathbb{Z}_p . Also \mathcal{G} acts trivially on $\operatorname{Gal}(L_1/L_2)$. If $\operatorname{Gal}(K_{\infty}/F)$ is cyclic, then $L_1 = L_2$.

This is exactly Lemma 5.2 of [9]. From the proof given there, we see that if $\alpha_1, \ldots, \alpha_n \in \text{Gal}(L_1/F)$ generate $\text{Gal}(K_{\infty}/F)$, then $\text{Gal}(L_1/L_2)$ is generated by the commutators $[\alpha_i, \alpha_j], 1 \leq i \leq n, 1 \leq j \leq n$.

A Λ_H -module M is called a *torsion* Λ_H -module if M can be annihilated by an element α in Λ_H which is not a zero divisor. For any Λ -module Y, let $Y^H = \{y \in Y : hy = y \text{ for all } h \in H\}$ and $Y_H = Y/I(H)Y$.

LEMMA 1.4. Suppose $H \subset \mathcal{G}$ and $0 \to Y \to Z \to W \to 0$ is an exact sequence of Λ -modules. Then there is an exact sequence

$$H_1(H,Z) \to H_1(H,W) \to Y_H \to Z_H \to W_H \to 0.$$

If $H = \operatorname{Gal}(K_{\infty}/F)$ is cyclic, then the sequence

$$0 \to Y^H \to Z^H \to W^H \to Y_H \to Z_H \to W_H \to 0$$

is exact.

Proof. The first sequence is just part of the long exact homology sequence. The second is a straightforward consequence of the Snake Lemma.

LEMMA 1.5. If M is a finitely generated torsion-free Λ -module of rank ϱ , then for any $f \in \Lambda$, $f \neq 0$, there is an exact sequence

$$0 \to M \to \Lambda^{\varrho} \to N \to 0,$$

such that N is a torsion Λ -module with an annihilator g such that (g, f) = 1, where (g, f) is the greatest common divisor of g and f.

Proof. Let $\Lambda_f = \{a/b : a \text{ and } b \in \Lambda, (b, f) = 1\}$. Since Λ_f is a principal ideal domain, $M \otimes \Lambda_f$ is a free Λ_f -module. The lemma follows.

LEMMA 1.6. Let $s = \sum_{\wp \in S} [K_{\wp} : \mathbb{Q}_p] - r_1 - r_2$. If L/K is a finite extension such that $L \subset K_{\infty}$, let $S_1 = \{q : q \text{ is a prime in } L, \text{ and there} \}$

exists $\wp \in S$ such that $q | \wp$ and let $s(L) = \sum_{q \in S_1} [F_q : \mathbb{Q}_p] - r_1(L) - r_2(L)$. Then s(L) = s[L : K].

Proof. Because L/K is unramified outside of p, we have $r_1(L) = [L:K]r_1$ and $r_2(L) = [L:K]r_2$. Also for each $\wp \in S$, $\sum_{q|\wp,q \in L} [F_q:\mathbb{Q}_p] = [L:K]$. It follows that s(L) = s[L:K].

From now on, we assume that for every \mathbb{Z}_p -extension F of K such that $F \subset K_{\infty}$, the weak Leopoldt hypothesis holds for F and S. Fix such an F. Then for any field L between K and F, by class field theory and Lemma 1.6, $\operatorname{rank}_{\mathbb{Z}_p} X(L) = [L:K]s + \delta_L$. Since δ_L is bounded, if s were negative, then we could choose an L such that [L:K] is large enough that $\operatorname{rank}_{\mathbb{Z}_p} X(L) = [L:K]s + \delta_L$ is negative, which is a contradiction. Therefore, $s \geq 0$.

THEOREM 1.7. Let S be as above. Then

(i) $I(\mathcal{G}) \operatorname{coker}(\pi_X) = 0$ and $I(\mathcal{G})I_{T(F)-S} \operatorname{ker}(\pi_X) = 0$. Furthermore, $\operatorname{coker}(\pi_X) = \operatorname{Gal}(F_{\infty}/F)$ where F_{∞} is the maximal extension of F in K_{∞} which is unramified outside of S, and $\operatorname{ker}(\pi_X)$ is finitely generated over \mathbb{Z}_p when F/K is finite.

(ii) $I(\mathcal{G}) \operatorname{coker}(\pi_A) = 0$ and $I(\mathcal{G})I_{T(F)} \operatorname{ker}(\pi_A) = 0$. Further, $\operatorname{coker}(\pi_A) = \operatorname{Gal}(F_{\operatorname{unr}}/F)$ where F_{unr} is the maximal extension of F in K_{∞} which is everywhere unramified, and $\operatorname{ker}(\pi_A)$ is finitely generated over \mathbb{Z}_p when F/K is finite.

Proof. For K imaginary quadratic, this was proved by Rubin [9]. We follow his procedures.

Since $\operatorname{coker}(\pi_X) = \operatorname{Gal}(M_S(F) \cap K_{\infty}/F)$, assertion (i) for $\operatorname{coker}(\pi_X)$ is clear. Let M_1 be $M_S(K_{\infty})^{I(F)X(K_{\infty})}$ and let M_2 be the maximal abelian extension of F in $M_S(K_{\infty})$. Then $\operatorname{Gal}(M_1/K_{\infty}) = X(K_{\infty})/I(F)X(K_{\infty})$ and $\operatorname{ker}(\pi_X) = \operatorname{Gal}(M_1/K_{\infty}M_S(F))$. From Lemma 1.3, it follows that $I(\mathcal{G})$ annihilates $\operatorname{Gal}(M_1/M_2)$. Next we consider $\operatorname{Gal}(M_2/K_{\infty}M_S(F))$.

Since $\operatorname{Gal}(M_2/F)$ is abelian, we have

$$\operatorname{Gal}(M_2/M_S(F)) = \prod_{v \in S'} I_v,$$

where S' is the set of primes of F lying above T(F) - S, and for each $v \in S'$, I_v is the inertia group of v in $\operatorname{Gal}(M_2/F)$. If T(F) - S is empty, then $M_2 = M_S(F)$. For $v \in S'$, we have $v \mid \wp$, where $\wp \in T(F) - S$. If $\gamma \in D_{\wp}$ then $\gamma v = v$, so that $\gamma^{-1}I_v\gamma = I_v$. Since M_2/K_∞ is unramified above v, I_v injects into $\operatorname{Gal}(K_\infty/F)$ and it follows that γ^{-1} annihilates I_v . Thus $I(D_{\wp})$ annihilates I_v . This means $I_{T(F)-S}$ annihilates $\operatorname{Gal}(M_2/M_S(F))$.

Finally, we prove that ker (π_X) is finitely generated over \mathbb{Z}_p when F/K is finite. By Lemma 1.3, $\operatorname{Gal}(M_1/M_2)$ is finitely generated over \mathbb{Z}_p . Now

by the properties of $\{I_v\}_{v\in S'}$ proved above and since $\operatorname{Gal}(M_2/M_S(F)) = \prod_{v\in S'} I_v$, we find that $\operatorname{Gal}(M_2/M_S(F))$ is finitely generated over \mathbb{Z}_p . Because $\ker(\pi_X) = \operatorname{Gal}(M_1/K_\infty M_S(F))$, we have proved (i).

The proof of (ii) is exactly the same as the proof of (i), except that $X(K_{\infty})$, $M_S(K_{\infty})$ and $M_S(F)$ need to be changed into $A(K_{\infty})$, $L(K_{\infty})$ and L(F), where $L(K_{\infty})$ (resp. L(F)) is the maximal abelian unramified *p*-extension of K_{∞} (resp. F).

THEOREM 1.8. Assume that for every \mathbb{Z}_p -extension F of K such that $F \subset K_{\infty}$, the weak Leopoldt hypothesis holds for F and S. Then $X(K_{\infty})$ is a finitely generated Λ -module of rank s.

Proof. For K imaginary quadratic, this was proved by Rubin in Theorem 5.3(iii) of [9], and for $S = \{ all \wp above p \}$ by Greenberg [3]. We basically follow [3].

If F is a finite extension of K, then the exact sequence

$$0 \to \ker(\pi_X) \to X(K_\infty)_F \to X(F)$$

shows that, because ker(π_X) and X(F) are finitely generated over \mathbb{Z}_p , so is $X(K_{\infty})_F$. This implies that $X(K_{\infty})$ is a finitely generated Λ -module. The statement about rank_{Λ} $X(K_{\infty})$ can be proved by induction. We shall use τ to denote rank_{Λ} $X(K_{\infty})$. Let Y be the torsion Λ -submodule of $X(K_{\infty})$ and let $Z = X(K_{\infty})/Y$. We use induction on d to prove $\tau = s$.

If d = 1, then K_{∞} is a \mathbb{Z}_p -extension of K. Let F be a field between K and K_{∞} . Let M(F) be the maximal abelian extension of F contained in $M_S(K_{\infty})$ so it corresponds to the commutator subgroup of $\operatorname{Gal}(M_S(K_{\infty})/F)$. Thus

$$\operatorname{rank}_{\mathbb{Z}_p}(X(K_\infty)/I(F)X(K_\infty)) = \operatorname{rank}_{\mathbb{Z}_p}\operatorname{Gal}(M(F)/K_\infty).$$

By the same argument as in the proof of Theorem 1.7(i), we find that $\xi_F = \operatorname{rank}_{\mathbb{Z}_p} \operatorname{Gal}(M(F)/M_S(F))$ is bounded by a number independent of F, and

$$\operatorname{rank}_{\mathbb{Z}_p}(X(K_{\infty})/I(F)X(K_{\infty})) = \operatorname{rank}_{\mathbb{Z}_p}\operatorname{Gal}(M_S(F)/K_{\infty}) + \xi_F$$
$$= \operatorname{rank}_{\mathbb{Z}_p}X(F) - 1 + \xi_F.$$

However, $\operatorname{rank}_{\mathbb{Z}_n} X(F) = [F:K]s + \delta_F$. Thus

$$\operatorname{rank}_{\mathbb{Z}_p}(X(K_\infty)/I(F)X(K_\infty)) = [F:K]s - 1 + \xi_F + \delta_F.$$

On the other hand, it follows from the structure theory of Λ -modules that

$$\operatorname{rank}_{\mathbb{Z}_p}(X(K_\infty)/I(F)X(K_\infty)) = \tau[F:K] + \varepsilon_F,$$

where $\varepsilon_F = \operatorname{rank}_{\mathbb{Z}_p}(Y/I(F)Y)$, so it is bounded. We now have [F:K]s-1+ $\xi_F + \delta_F = \tau[F:K] + \varepsilon_F$, which means $\tau = s$, since δ_F is bounded because of the weak Leopoldt hypothesis. This proves that $\tau = s$ when d = 1. M. Z. Xu

If $d \geq 2$, we assume that the conclusion is true for d-1. Let H be a direct summand of \mathcal{G} isomorphic to \mathbb{Z}_p and let h be a topological generator of H. From the exact sequence $0 \to Y \to X(K_{\infty}) \to Z \to 0$ and Lemma 1.4, we get

$$0 \to Y_H \to X(K_\infty)_H \to Z_H \to 0,$$

since $Z^H = 0$. This implies

$$\operatorname{rank}_{\Lambda_H} X(K_{\infty})_H = \operatorname{rank}_{\Lambda_H}(Z_H) + \operatorname{rank}_{\Lambda_H}(Y_H)$$

But from Lemma 1.5, we have an exact sequence

(

$$0 \to Z \to \Lambda^{\tau} \to N \to 0,$$

in which N has an annihilator g such that (g, h - 1) = 1. This gives us the exact sequence

$$N^H \to Z_H \to \Lambda_H^\tau \to N_H \to 0.$$

Since the image of g in Λ_H , which is not zero, annihilates N_H and N^H , we know that rank $\Lambda_H(Z_H) = \tau$. Combining the above, we get

$$\operatorname{rank}_{\Lambda_H} X(K_\infty)_H = \tau + \operatorname{rank}_{\Lambda_H}(Y_H).$$

Let $\Phi \in \Lambda$ be a nonzero annihilator of Y and for all $\wp \in T(K') - S$ such that D_{\wp} is cyclic, let h_{\wp} be a topological generator of D_{\wp} . The fixed field of H will be denoted by K'. We choose H so that h-1 does not divide Φ or $h_{\wp}-1$ for all $\wp \in T(K') - S$ such that D_{\wp} is cyclic. For such H, Y_H is a torsion Λ_H -module, since the projection $\overline{\Phi}$ of Φ in Λ_H is a nonzero annihilator of Y_H . Hence rank $\Lambda_H X(K_{\infty})_H = \tau$. Now we consider the following exact sequence of Λ_H -modules:

$$0 \to \ker(\pi_X) \to X(K_\infty)_H \to X(K') \to \operatorname{coker}(\pi_X) \to 0.$$

Because of the way H was chosen, there exists $\alpha \in I_{T(K')-S}$ such that α is not a zero divisor in Λ_H . Since $I(\mathcal{G})I_{T(K')-S} \ker(\pi_X) = 0$ and $I(\mathcal{G}) \operatorname{coker}(\pi_X)$ = 0, we conclude that both $\ker(\pi_X)$ and $\operatorname{coker}(\pi_X)$ are torsion Λ_H -modules. This means

$$\tau = \operatorname{rank}_{\Lambda_H} X(K_{\infty})_H = \operatorname{rank}_{\Lambda_H} X(K').$$

By the induction hypothesis, $\operatorname{rank}_{A_H} X(K') = s$. This completes the proof of Theorem 1.8.

2. Results about X(F) and A(F). Let $\mu_{p^{\infty}}$ be the discrete group of all *p*-power roots of unity. We denote by \mathcal{X} the set of continuous characters $\varrho: \mathcal{G} \to \mu_{p^{\infty}}$. Every $\varrho \in \mathcal{X}$ extends uniquely to a continuous homomorphism on Λ . For $f \in \Lambda$, define $\mathcal{X}(f) = \{\varrho \in \mathcal{X} : \varrho(f) = 0\}$. Let $\gamma_1, \ldots, \gamma_d$ be fixed topological generators of \mathcal{G} . We define an injection from $\mathcal{X}(f)$ to $\mu_{p^{\infty}}^d$ by mapping $\varrho \in \mathcal{X}(f)$ to $(\varrho(\gamma_1), \ldots, \varrho(\gamma_d))$. This identifies $\mathcal{X}(f)$ with the set of zeros of f in $(\mu_{p^{\infty}})^d$. Also, I(f) will represent the set $\{g \in \Lambda : \varrho(g) = 0$ for all $\varrho \in \mathcal{X}(f)\}$. Following Monsky [8], we let E_d be the free rank $d \mathbb{Z}_p$ -module Hom $((\mu_{p^{\infty}})^d, \mu_{p^{\infty}})$. We define closed subsets of $(\mu_{p^{\infty}})^d$ to be the subsets that are finite unions of subsets of $(\mu_{p^{\infty}})^d$ each of which is defined by a set of equations $\tau_j(\zeta) = \epsilon_j$, where $\tau_j \in E_d$, $\zeta \in (\mu_{p^{\infty}})^d$, $\epsilon_j \in \mu_{p^{\infty}}$. Finally, a \mathbb{Z}_p -flat in $(\mu_{p^{\infty}})^d$ is a set T defined by equations $\tau_j(\zeta) = \epsilon_j$, where $\{\tau_j\}$ is a subset of a basis of E_d , $\zeta \in (\mu_{p^{\infty}})^d$, and $\epsilon_j \in \mu_{p^{\infty}}$. Suppose $\{\tau_j : 1 \leq j \leq d\}$ is a basis of E_d and T is defined by τ_j for all j such that $1 \leq j \leq k$. Then we say that the dimension of T is d - k. Theorem 2.6 of [8] implies that $\mathcal{X}(f)$, as a subset of $(\mu_{p^{\infty}})^d$, is closed. This means $\mathcal{X}(f)$ is a finite union of \mathbb{Z}_p -flats. We write dim $\mathcal{X}(f) \leq \alpha$ if there is a finite set $\{U_i\}$ of \mathbb{Z}_p -flats such that $\bigcup_i U_i$ covers $\mathcal{X}(f)$ and dim $U_i \leq \alpha$ for all i.

LEMMA 2.1. Suppose $d \geq 2$ and $f \in \Lambda$.

(i) If dim $\mathcal{X}(f) \leq d-2$, then I(f) is an ideal of height at least two.

(ii) If f is relatively prime to $\gamma - 1$ for every $\gamma \neq 1$ in \mathcal{G} , then dim $\mathcal{X}(f) \leq d-2$.

(iii) Let g be a prime in Λ such that $\mathcal{X}(g)$ has codimension 1. There exists a field F such that $K \subset F \subset K_{\infty}$ and $H = \operatorname{Gal}(K_{\infty}/F) \cong \mathbb{Z}_p$, with the property $g \mid h - 1$, where h is a topological generator of H.

Proof. (i) Since dim $\mathcal{X}(f) \leq d-2$, $\mathcal{X}(f)$ can be written as $\bigcup_{i=1}^{m} T_i$, where *m* is a positive integer and for all $i, 1 \leq i \leq m, T_i$ is a \mathbb{Z}_p -flat such that dim $T_i \leq d-2$. It follows that for each $i, 1 \leq i \leq m$, there exist $f_i, g_i \in \Lambda$ such that $(f_i, g_i) = 1$ and $T_i \subset \mathcal{X}(f_i) \cap \mathcal{X}(g_i)$. Let \mathcal{A}_i be the ideal generated by f_i and $g_i, 1 \leq i \leq m$. Then $\prod_{i=1}^{m} \mathcal{A}_i \subset I(f)$ and $\prod_{i=1}^{m} \mathcal{A}_i$ is an ideal of height at least two in Λ . This means I(f) is an ideal of height at least two in Λ .

(ii) can be deduced from Theorem 2.6 of [7].

(iii) By (ii), we could get a $\gamma \in \mathcal{G}$ such that $(g, \gamma - 1) \neq 1$. Since g is prime, $g | \gamma - 1$. Let F be the fixed field of γ . Then $H = \text{Gal}(K_{\infty}/F)$ is generated by γ topologically. This completes the proof of (iii).

THEOREM 2.2. Let g be a prime element in Λ . Let F be any field such that $K \subset F \subset K_{\infty}$ and $H = \operatorname{Gal}(K_{\infty}/F) \cong \mathbb{Z}_p$. If $g \mid h - 1$, where h is a topological generator of H, then $\operatorname{rank}_{\Lambda/q\Lambda}(X(F) \otimes (\Lambda/g\Lambda)) = s$.

Proof. Let G' be a direct summand of \mathcal{G} such that $G' \cong \mathbb{Z}_p$ and $H \subset G'$. We can now write $\operatorname{Gal}(F/K)$ as $V \oplus G''$, where $G'' \cong \mathbb{Z}_p^{d-1}$ and $V \cong G'/H$. Denote by L the fixed field of G'' and by K' the fixed field of V. Let g' be a topological generator of G', and let Λ' be the Iwasawa algebra $\mathbb{Z}_p[[G'']]$.

Since g is a prime and g | h - 1, $g = \omega_{k+1}/\omega_k$, where k is a positive integer and $\omega_j = g'^{p^j} - 1$ for j = k, k + 1. For the field K_i between K and L corresponding to g'^{p^i} , let B_i be $K'K_i$. Since $\operatorname{Gal}(K'K_i/K_i) \cong G'', X(B_i)$ can be considered as a Λ' -module. Consider the exact sequence

$$0 \to \ker(\pi_{X(B_i)}) \to X(F)/I(B_i)X(F) \to X(B_i) \to \operatorname{coker}(\pi_{X(B_i)}) \to 0,$$

where the middle map is the natural projection $\pi_{X(B_i)}$. Let $T'(B_i)$ be the primes of K which ramify in F/B_i . Write $M_2(B_i)$ for the maximal abelian extension of B_i in $M_S(F)$. S'' will denote the set of primes of B_i lying above $T'(B_i) - S$. From the proof of Theorem 1.7(i), we find that $\operatorname{coker}(\pi_{X(B_i)})$ is finite, and that $\operatorname{ker}(\pi_{X(B_i)})$ is a torsion Λ' -module if $\prod_{v \in S''} I_v$ is a torsion Λ' -module, where I_v is the inertia group of v in $\operatorname{Gal}(M_2(B_i)/B_i)$, and I_v can be embedded into $\operatorname{Gal}(F/B_i)$. Since $\operatorname{Gal}(F/B_i)$ is finite, there exists a positive integer j such that $p^j I_v = 0$ for all $v \in S''$, which means $p^j \prod_{v \in S''} I_v = 0$.

This means $\operatorname{rank}_{A'}(X(F)/I(B_i)X(F)) = \operatorname{rank}_{A'}X(B_i)$. By Lemma 1.6 and Theorem 1.8, $\operatorname{rank}_{A'}(X(F)/I(B_i)X(F)) = \operatorname{rank}_{A'}X(B_i) = sp^i$.

Next consider the exact sequence

$$0 \to I(B_k)X(F)/I(B_{k+1})X(F) \to X(F)/I(B_{k+1})X(F)$$
$$\to X(F)/I(B_k)X(F) \to 0.$$

Since

$$I(B_k)X(F)/I(B_{k+1})X(F) = \omega_k X(F)/\omega_{k+1}X(F) = \omega_k X(F)/g\omega_k X(F),$$

we have

$$\operatorname{rank}_{A'}(\omega_k X(F)/g\omega_k X(F)) = s(p^{k+1} - p^k).$$

CLAIM. $\omega_k X(F)/g\omega_k X(F)$ and X(F)/gX(F) have the same rank as $\Lambda/g\Lambda$ -modules.

If the claim is true, then since Λ' can be embedded into $\Lambda/g\Lambda$ and $\operatorname{rank}_{\Lambda'}(\Lambda/g\Lambda) = p^{k+1} - p^k$, we have

$$\operatorname{rank}_{\Lambda/g\Lambda}(X(F)\otimes(\Lambda/g\Lambda))=\operatorname{rank}_{\Lambda/g\Lambda}(X(F)/gX(F))=s.$$

This would complete the proof of the theorem.

To prove the claim, we consider the commutative diagram

$$\begin{array}{c} 0 \longrightarrow W \longrightarrow X(F) \longrightarrow \omega_k X(F) \longrightarrow 0 \\ & \downarrow^g \qquad \downarrow^g \qquad \downarrow^g \\ 0 \longrightarrow W \longrightarrow X(F) \longrightarrow \omega_k X(F) \longrightarrow 0 \end{array}$$

where W is the kernel of multiplication by ω_k and the vertical maps are multiplications by g. By the Snake Lemma, we get the exact sequence

$$W/gW \to X(F)/gX(F) \to \omega_k X(F)/g\omega_k X(F) \to 0.$$

Since ω_k is not a zero divisor in $\Lambda/g\Lambda$ and $\omega_k(W/gW) = 0$, we have proved the claim.

From now on, assume that for any field F between K and K_{∞} such that F is finite over K, Leopoldt's conjecture holds for F.

According to the classification theorem, for any torsion Λ -module Y, we have exact sequences

$$0 \to \bigoplus \Lambda / f_i \Lambda \to Y \to N \to 0,$$

$$0 \to N_1 \to Y \to \bigoplus \Lambda / f_i \Lambda \to N_2 \to 0,$$

in which $f_i \in \Lambda$ for all *i* and *N*, N_1 , N_2 can be annihilated by an ideal of height at least two in Λ . We call the ideal generated by $\prod f_i$ the *characteristic ideal* of *Y*, written char(*Y*).

3. Preliminary results

PROPOSITION 3.1. (i) If $f \in \Lambda$ and $H \subset \mathcal{G}$, then $I(f)H_1(H, \Lambda/f\Lambda) = 0$.

(ii) If Y is a finitely generated torsion Λ -module, then there is an ideal \mathcal{B} of height at least two in Λ such that for any $H \subset \mathcal{G}$, $\mathcal{B}I(\operatorname{char}(Y))H_1(H,Y) = 0$.

Proof. For K imaginary quadratic, this was proved by Rubin in [9], Lemma 7.3. The same argument can be used here.

PROPOSITION 3.2. Suppose $d \geq 2$. Let $Y = X(K_{\infty})_{\text{torsion}}$ be the torsion submodule of the Λ -module $X(K_{\infty})$. There is an ideal \mathcal{C} of height at least two in Λ such that $\mathcal{C}I_{T(K)} \subset I(\text{char}(Y))$ and $\mathcal{C}I_{T(K)} \subset I(\text{char}(A(K_{\infty})))$. Proof. It follows from Theorem 1 of [2] and Lemma 2.1 and Theorem 2.2.

PROPOSITION 3.3. There is an ideal $\mathcal{B} \subset \Lambda$ of height at least two, such that for every $H \subset \operatorname{Gal}(K_{\infty}/K)$,

 $I_{T(K)}\mathcal{B}H_1(H, U(K_{\infty})/\overline{\mathcal{E}}(K_{\infty})) = 0 \quad and \quad I_{T(K)}\mathcal{B}H_1(H, A(K_{\infty})) = 0.$

Proof. When K is imaginary quadratic and d = 2, this is Corollary 7.5 of [9].

By the inclusion $U(K_{\infty})/\overline{\mathcal{E}}(K_{\infty}) \subset X(K_{\infty})$ of global class field theory, $(U(K_{\infty})/\overline{\mathcal{E}}(K_{\infty}))_{\text{torsion}} \subset Y$. If $U(K_{\infty})/\overline{\mathcal{E}}(K_{\infty})$ is torsion, we can use Propositions 3.2 and 3.1 to get $I_{T(K)}\mathcal{B}H_1(H, U(K_{\infty})/\overline{\mathcal{E}}(K_{\infty})) = 0$. In general, there is an exact sequence

$$0 \to (U(K_{\infty})/\overline{\mathcal{E}}(K_{\infty}))_{\text{torsion}} \to U(K_{\infty})/\overline{\mathcal{E}}(K_{\infty}) \to Z \to 0,$$

where, by the exact sequence $0 \to U(K_{\infty})/\overline{\mathcal{E}}(K_{\infty}) \to X(K_{\infty}) \to A(K_{\infty})$ $\to 0$ of global class field theory, and by Theorems 1.7(ii) and 1.8, Z is a torsion-free Λ -module of rank s. Now by using Lemma 1.5, one could see that $H_1(H,Z)$ is pseudo-null. Now $I_{T(K)}\mathcal{B}H_1(H,U(K_{\infty})/\overline{\mathcal{E}}(K_{\infty})) = 0$ follows from Proposition 3.2 and $I(\operatorname{char}(Y))H_1(H,U(K_{\infty})/\overline{\mathcal{E}}(K_{\infty})_{\operatorname{torsion}}) = 0$.

By Propositions 3.1 and 3.2, there is an ideal $\mathcal{B} \subset \Lambda$ of height at least two, such that $H_1(H, A(K_{\infty}))$ is annihilated by $I_{T(K)}\mathcal{B}$. This proves the second equation.

4. Main theorems. From now on, if M is a Λ -module, we denote M/I(F)M by M_F .

THEOREM 4.1. Suppose F is any extension of K contained in K_{∞} . There is an ideal $\mathcal{A} \subset \Lambda$ of height at least two, independent of F, such that

 $I_{T(K)}^{3}\mathcal{A}\operatorname{coker}(\pi_{\mathcal{E}}) = 0 \quad and \quad I_{T(K)}^{d+1}\mathcal{A}\operatorname{ker}(\pi_{\mathcal{E}}) = 0.$

Proof. When d = 2 and K is an imaginary quadratic field, this was proved by Rubin in [9], Theorem 7.6(i).

Consider the two commutative diagrams with exact rows

in which the top rows come from the exact sequences

$$0 \to \overline{\mathcal{E}}(K_{\infty}) \to U(K_{\infty}) \to U(K_{\infty}) / \overline{\mathcal{E}}(K_{\infty}) \to 0, 0 \to U(K_{\infty}) / \overline{\mathcal{E}}(K_{\infty}) \to X(K_{\infty}) \to A(K_{\infty}) \to 0.$$

By the Snake Lemma, we get the following exact sequences:

$$H_1(H, U(K_\infty)/\overline{\mathcal{E}}(K_\infty)) \to \ker(\pi_{\mathcal{E}}) \to \ker(\pi_U) \to \ker(\pi_{U/\mathcal{E}}) \to \operatorname{coker}(\pi_{\mathcal{E}}) \to \operatorname{coker}(\pi_U) \to \operatorname{coker}(\pi_{U/\mathcal{E}}) \to 0$$

and

$$H_1(H, A(K_{\infty})) \to \ker(\pi_{U/\mathcal{E}}) \to \ker(\pi_X) \to \ker(\pi_A) \to \operatorname{coker}(\pi_{U/\mathcal{E}}) \\ \to \operatorname{coker}(\pi_X) \to \operatorname{coker}(\pi_A) \to 0$$

Now the annihilator of $\ker(\pi_{\mathcal{E}})$ comes from the annihilators of $\ker(\pi_U)$ (Theorem 1.2) and $H_1(H, U(K_{\infty})/\overline{\mathcal{E}}(K_{\infty}))$ (Proposition 3.3). Similarly we get the annihilator of $\ker(\pi_{U/\mathcal{E}})$ from the annihilators of $\ker(\pi_X)$ (Theorem 1.7) and $H_1(H, A(K_{\infty}))$ (Proposition 3.3), and then the annihilator of $\operatorname{coker}(\pi_{\mathcal{E}})$ comes from that of $\ker(\pi_{U/\mathcal{E}})$ and $\operatorname{coker}(\pi_U)$ (Theorem 1.2). This completes the proof of this theorem.

THEOREM 4.2. Assume that the Iwasawa- μ -conjecture is true for K. Also assume that for any field F between K and K_{∞} such that F is finite over K, Leopoldt's conjecture holds for F. Let F, \mathcal{A} be as in Theorem 4.1 above. Then

$$I^3_{T(K)}\mathcal{A}((\mathcal{E}(F)/\mathcal{E}(F)^{\mathrm{univ}})\otimes\mathbb{Z}_p)=0.$$

Proof. When d = 1, this result is due to Iwasawa ([5]).

If F/K is a finite extension, it follows from Theorem 4.1 that

$$\overline{\mathcal{E}}(F) / \bigcap_{L \subset K_{\infty}, L/F \text{ finite}} N_{L/F}(\overline{\mathcal{E}}(L)) \cong \operatorname{coker}(\pi_{\mathcal{E}})$$

is annihilated by $I^3_{T(K)}\mathcal{A}$. Now from our assumption of Leopoldt's conjecture, we get

$$I_{T(K)}^{3}\mathcal{A}\Big(\mathcal{E}(F)\otimes\mathbb{Z}_{p}/\bigcap_{L\subset K_{\infty},\ L/F\ \text{finite}}N_{L/F}(\mathcal{E}(L)\otimes\mathbb{Z}_{p})\Big)=0.$$

This implies

$$I^{3}_{T(K)}\mathcal{A} \varprojlim_{L \subset K_{\infty}, L/F \text{ finite}} \mathcal{E}(F) \otimes \mathbb{Z}_{p}/N_{L/F}(\mathcal{E}(L) \otimes \mathbb{Z}_{p}) = 0$$

which implies

$$I_{T(K)}^{3}\mathcal{A} \varprojlim_{L \subset K_{\infty}, L/F \text{ finite}} (\mathcal{E}(F)/N_{L/F}\mathcal{E}(L)) \otimes \mathbb{Z}_{p} = 0.$$

Now it is clear that $I^3_{T(K)}\mathcal{A}((\mathcal{E}(F)/\mathcal{E}(F)^{\text{univ}})\otimes\mathbb{Z}_p)=0$. We proved the conclusion in this case.

If F/K is an infinite extension, then

 $(\mathcal{E}(F)/\mathcal{E}(F)^{\mathrm{univ}})\otimes\mathbb{Z}_p = \varinjlim_{L\subset F,\ L/K\ \mathrm{finite}} ((\mathcal{E}(L)/\mathcal{E}(L)^{\mathrm{univ}})\otimes\mathbb{Z}_p).$

This proves the theorem.

Next we consider the cohomology group $H^1(\text{Gal}(K_{\infty}/F), \mathcal{E}(K_{\infty}))$. We first prove some results about $H^1(\text{Gal}(B/F), \overline{\mathcal{E}}(B))$, where B is a finite, cyclic extension of F in K_{∞} . Since $\pi_{\mathcal{E}}$ is dependent on F, we can write $\pi_{\mathcal{E}(F)}$ for $\pi_{\mathcal{E}}$ to indicate this dependence.

PROPOSITION 4.3. Suppose B is a finite, cyclic extension of F in K_{∞} . Let π' be the natural map

$$\pi': \overline{\mathcal{E}}(B)/I(\operatorname{Gal}(K_{\infty}/F))\overline{\mathcal{E}}(B) \to \overline{\mathcal{E}}(F)$$

which is induced by the norm map. Then there exists an ideal \mathcal{A} of height at least two in Λ , independent of B and F, such that $I_{T(K)}^{d+4}\mathcal{A}\ker(\pi')=0$.

Proof. If we let ϕ be the natural projection

$$\phi: \overline{\mathcal{E}}(B) \to \overline{\mathcal{E}}(B)/I(\operatorname{Gal}(K_{\infty}/F))\overline{\mathcal{E}}(B)$$

then $\pi_{\mathcal{E}(F)} = \pi' \circ \phi \circ \pi_{\mathcal{E}(B)}$ and for any $\xi \in \ker(\pi')$, there exists $\eta \in \mathcal{E}(B)$ such that $\phi(\eta) = \xi$. Now from Theorem 4.1, there exists an ideal \mathcal{B} of height at least two in Λ such that $I^3_{T(K)}\mathcal{B}\operatorname{coker}(\pi_{\mathcal{E}(B)}) = 0$. This means for any $\alpha \in I^3_{T(K)}\mathcal{B}$, there exists $\zeta \in \overline{\mathcal{E}}(K_{\infty})/I(B)\overline{\mathcal{E}}(K_{\infty})$ such that $\alpha\eta = \pi_{\mathcal{E}(B)}(\zeta)$. From this, we get $\alpha\xi = \phi(\alpha\eta) = \phi(\pi_{\mathcal{E}(B)}(\zeta))$, which implies $\pi' \circ \phi \circ \pi_{\mathcal{E}(B)}(\zeta) = 0$, from which we get $\pi_{\mathcal{E}(F)}(\zeta) = 0$. From Theorem 4.1 again, $I^{d+1}_{T(K)}\mathcal{B}\ker(\pi_{\mathcal{E}(F)}) = 0$. This means $\beta\zeta = 0$ for any $\beta \in I^{d+1}_{T(K)}\mathcal{B}$, which implies $\alpha\beta\eta = \pi_{\mathcal{E}(B)}(\beta\zeta) = 0$. This yields $\alpha\beta\xi = \phi(\alpha\beta\eta) = 0$. The proof is complete.

PROPOSITION 4.4. Let B, F and π' be as in Proposition 4.3. Then $\ker(\pi') = H^1(\operatorname{Gal}(B/F), \overline{\mathcal{E}}(B)).$

Proof. By the definition of π' and by the definition before Theorem 3 in Chapter IV of [1], we get $\ker(\pi') = \widehat{H}^{-1}(\operatorname{Gal}(B/F), \overline{\mathcal{E}}(B))$ and

$$\widehat{H}^1(\operatorname{Gal}(B/F),\overline{\mathcal{E}}(B)) = H^1(\operatorname{Gal}(B/F),\overline{\mathcal{E}}(B)).$$

Since $\operatorname{Gal}(B/F)$ is cyclic, by Theorem 5 in Chapter IV of [1], we get

$$\widehat{H}^{-1}(\operatorname{Gal}(B/F),\overline{\mathcal{E}}(B)) = \widehat{H}^{1}(\operatorname{Gal}(B/F),\overline{\mathcal{E}}(B))$$

300

Combining the above gives $\ker(\pi') = H^1(\operatorname{Gal}(B/F), \overline{\mathcal{E}}(B))$. This completes the proof.

COROLLARY 4.5. Suppose F is a finite extension over K and suppose $B \subset K_{\infty}$ is finite and cyclic over F. Then there exists an ideal A of height at least two in Λ , independent of B and F, such that

$$\mathcal{L}^{d+4}_{T(K)}\mathcal{A}H^1(\operatorname{Gal}(B/F),\mathcal{E}(B)) = 0$$

Proof. Combining Propositions 4.3 and 4.4, we get

$$\mathcal{A}_{T(K)}^{d+4}\mathcal{A}H^1(\operatorname{Gal}(B/F),\overline{\mathcal{E}}(B)) = 0.$$

Since F/K is a finite extension, the extension B/K is also finite. This implies $H^1(\text{Gal}(B/F), \overline{\mathcal{E}}(B)) = H^1(\text{Gal}(B/F), \mathcal{E}(B) \otimes \mathbb{Z}_p)$ by our assumption of Leopoldt's conjecture. Now since Gal(B/F) is a *p*-group, we get

$$H^1(\operatorname{Gal}(B/F), \mathcal{E}(B)) \cong H^1(\operatorname{Gal}(B/F), \mathcal{E}(B) \otimes \mathbb{Z}_p),$$

as Λ -modules. This shows that

$$I_{T(K)}^{d+4} \mathcal{A}H^1(\operatorname{Gal}(B/F), \mathcal{E}(B)) = 0.$$

THEOREM 4.6. Assume that the Iwasawa- μ -conjecture is true for K. Also assume that for any field F between K and K_{∞} such that F is finite over K, Leopoldt's conjecture holds for F. Suppose F is a field such that $K \subset F$ $\subset K_{\infty}$. There exists an ideal \mathcal{A} of height at least two in Λ , independent of F, such that

$$I_{T(K)}^{d(d+4)} \mathcal{A}H^1(\operatorname{Gal}(K_{\infty}/F), \mathcal{E}(K_{\infty})) = 0.$$

Proof. When d = 1, this result is due to Iwasawa ([5]).

First we assume that F/K is a finite extension. Since

$$H^{1}(\operatorname{Gal}(K_{\infty}/F), \mathcal{E}(K_{\infty})) = \varinjlim_{B \subset K_{\infty}, B/F \text{ finite}} H^{1}(\operatorname{Gal}(B/F), \mathcal{E}(B)),$$

we only need to show $I_{T(K)}^{d(d+4)} \mathcal{A}H^1(\operatorname{Gal}(B/F), \mathcal{E}(B)) = 0$ when $B \subset K_{\infty}$ and B/F is a finite extension.

Since K_{∞}/K is a \mathbb{Z}_p^d -extension, $\operatorname{Gal}(B/F)$ is a product of m cyclic factors, where m is an integer, $m \leq d$. If m = 0, $\operatorname{Gal}(B/F)$ is trivial, so we can assume $1 \leq m \leq d$.

We use induction on m to prove $I_{T(F)}^{m(d+4)} \mathcal{A}H^1(\operatorname{Gal}(B/F), \mathcal{E}(B)) = 0.$

If m = 1, then B/F is a cyclic extension. From Corollary 4.5, there exists an ideal \mathcal{A} of height at least two in Λ , independent of F and B, such that $I_{T(K)}^{d+4}\mathcal{A}H^1(\operatorname{Gal}(B/F), \mathcal{E}(B)) = 0.$

Suppose the conclusion is true for m-1, that is, if $\operatorname{Gal}(B/F)$ is a product of m-1 cyclic factors, then there exists an ideal \mathcal{B} of height at least two in Λ , independent of F and B, such that $I_{T(K)}^{(m-1)(d+4)}\mathcal{B}H^1(\operatorname{Gal}(B/F),\mathcal{E}(B)) = 0$.

M. Z. Xu

Now if $\operatorname{Gal}(B/F)$ is a product of m cyclic factors, we let H be a subgroup of $\operatorname{Gal}(B/F)$ such that H is a product of m-1 cyclic factors, and $\operatorname{Gal}(B/F)/H$ is cyclic. Let C be the fixed field of H. Then the restriction-inflation sequence gives us the exact sequence

$$0 \to H^{1}(\operatorname{Gal}(C/F), \mathcal{E}(C)) \to H^{1}(\operatorname{Gal}(B/F), \mathcal{E}(B))$$
$$\to H^{1}(\operatorname{Gal}(B/C), \mathcal{E}(B))$$

Since $\operatorname{Gal}(C/F)$ is cyclic, we have an ideal \mathcal{C} of height at least two in Λ , independent of F and C, such that $I_{T(K)}^{d+4}\mathcal{C}H^1(\operatorname{Gal}(C/F), \mathcal{E}(C)) = 0$. As for $H^1(\operatorname{Gal}(B/C), \mathcal{E}(B))$, the induction hypothesis implies

$$I_{T(K)}^{(m-1)(d+4)}\mathcal{B}H^1(\operatorname{Gal}(B/C),\mathcal{E}(B)) = 0.$$

Combining these we get

$$I_{T(K)}^{m(d+4)} \mathcal{BCH}^1(\operatorname{Gal}(B/F), \mathcal{E}(B)) = 0$$

This completes the proof of the theorem for F/K finite.

We now consider the case when F/K is an infinite extension. Let L be any subextension of F/K such that L/K is finite. Consider the inflationrestriction exact sequence

$$\begin{aligned} H^{1}(\mathrm{Gal}(F/L),\mathcal{E}(F)) &\to H^{1}(\mathrm{Gal}(K_{\infty}/L),\mathcal{E}(K_{\infty})) \\ &\to H^{1}(\mathrm{Gal}(K_{\infty}/F),\mathcal{E}(K_{\infty}))^{\mathrm{Gal}(F/L)} \to H^{2}(\mathrm{Gal}(F/L),\mathcal{E}(F)), \end{aligned}$$

which implies, after taking direct limits,

$$\varinjlim_{L \subset F, L/K \text{ finite}} H^1(\operatorname{Gal}(K_{\infty}/L), \mathcal{E}(K_{\infty})) \cong H^1(\operatorname{Gal}(K_{\infty}/F), \mathcal{E}(K_{\infty})),$$

since

$$\lim_{L \subset F, L/K \text{ finite}} H^i(\text{Gal}(F/L), \mathcal{E}(F)) = 0 \quad \text{ for } i = 1, 2,$$

and

$$\varinjlim_{L \subset F, L/K \text{ finite}} H^1(\operatorname{Gal}(K_{\infty}/F), \mathcal{E}(K_{\infty}))^{\operatorname{Gal}(F/L)} = H^1(\operatorname{Gal}(K_{\infty}/F), \mathcal{E}(K_{\infty})).$$

Now we have $I_{T(K)}^{d(d+4)} \mathcal{A}H^1(\operatorname{Gal}(K_{\infty}/F), \mathcal{E}(K_{\infty})) = 0$. This completes the proof of the theorem.

Next, we are going to show that $H^i(\text{Gal}(K_{\infty}/F), \mathcal{E}(K_{\infty}))$ can be annihilated by similar products for all $i \geq 2$. Since

$$H^{i}(\operatorname{Gal}(K_{\infty}/F), \mathcal{E}(K_{\infty})) = \varinjlim_{B \subset K_{\infty}, B/F \text{ finite}} H^{i}(\operatorname{Gal}(B/F), \mathcal{E}(B)),$$

we only need to prove the following:

THEOREM 4.7. Assume that the Iwasawa- μ -conjecture is true for K. Also assume that for any field F between K and K_{∞} such that F is finite over K, Leopoldt's conjecture holds for F. Let B be a finite extension of F contained in K_{∞} . For any integer $i \geq 1$, there exists a positive integer n and an ideal \mathcal{A} of height at least two in Λ , both independent of F and B, such that

$$I^n_{T(K)}\mathcal{A}H^i(\operatorname{Gal}(B/F),\mathcal{E}(B))=0.$$

Proof. Since K_{∞}/K is a \mathbb{Z}_p^d -extension, $\operatorname{Gal}(B/F)$ is an abelian group which is a product of w finite cyclic groups, where w is an integer between 1 and d. We use induction on i.

If i = 1, the theorem is true because of Theorem 4.6 above. Suppose it is true up to some $i \ge 1$; we need to show that it is also true for i + 1.

If w = 1, then B/F is cyclic. This means

$$H^{i+1}(\operatorname{Gal}(B/F), \mathcal{E}(B)) = H^1(\operatorname{Gal}(B/F), \mathcal{E}(B))$$

when i is even, and

$$H^{i+1}(\operatorname{Gal}(B/F), \mathcal{E}(B)) = (\mathcal{E}(F)/\mathcal{E}(F)^{\operatorname{univ}}) \otimes \mathbb{Z}$$

when *i* is odd. This and Theorems 4.2 and 4.6 imply that the conclusion is true in this case. Suppose that the conclusion of the theorem is true up to some $w \ge 1$. We need to show that it is also true for w + 1.

Let C be an extension of F in B such that $\operatorname{Gal}(B/C)$ is a product of w finite cyclic groups and that $\operatorname{Gal}(C/F)$ is cyclic. Then by Section 4 of Chapter 2 in [10], we have the following Hochschild–Serre spectral sequence:

$$H^p(\operatorname{Gal}(C/F), H^q(\operatorname{Gal}(B/C), \mathcal{E}(B))) \Rightarrow_p H^*(\operatorname{Gal}(B/F), \mathcal{E}(B)).$$

Using the notation in the same section of [10], we let

$$E_2^{p,q} = H^p(\operatorname{Gal}(C/F), H^q(\operatorname{Gal}(B/C), \mathcal{E}(B))).$$

Here p, q are nonnegative integers.

Since the conclusion of the theorem is true for $H^q(\text{Gal}(B/C), \mathcal{E}(B))$ for any integer q between 1 and i + 1, there exists a positive integer m and an ideal \mathcal{B} of height at least two in Λ , both independent of B and C, such that $I^m_{T(K)}\mathcal{B}$ annihilates $H^q(\text{Gal}(B/C), \mathcal{E}(B))$ for all integers q between 1 and i + 1. Since $H^0(\text{Gal}(B/C), \mathcal{E}(B)) = \mathcal{E}(C)$, there exists a positive integer l and an ideal \mathcal{C} of height at least two in Λ , both independent of F and C, such that

$$I^{l}_{T(K)}\mathcal{C}H^{i+1}(\operatorname{Gal}(C/F), H^{0}(\operatorname{Gal}(B/C), \mathcal{E}(B))) = 0.$$

This implies that there exists a positive integer k and an ideal \mathcal{D} of height at least two in Λ , both independent of F, B or C, such that

$$I_{T(K)}^k \mathcal{D} \bigoplus_{p+q=i+1} E_2^{p,q} = 0$$

From this we get

$$I_{T(K)}^{k}\mathcal{D}\bigoplus_{p+q=i+1}E_{\infty}^{p,q}=0.$$

This means

$$I_{T(K)}^{k(i+1)} \mathcal{D}^{(i+1)} H^{i+1}(\text{Gal}(B/F), \mathcal{E}(B)) = 0.$$

Now we can conclude that there exists a positive integer n and an ideal \mathcal{A} of height at least two in Λ , both independent of F and B, such that $I^n_{T(K)}\mathcal{A}H^{i+1}(\operatorname{Gal}(B/F), \mathcal{E}(B)) = 0.$

Acknowledgements. I would like to thank my advisor Karl Rubin for introducing the problem to me. I would also like to thank Professor Warren Sinnott and Professor Karl Rubin for helpful discussions.

References

- J. W. S. Cassels and A. Fröhlich (eds.), Algebraic Number Theory, Academic Press, 1967.
- R. Greenberg, The Iwasawa invariants of Γ-extensions of a fixed number field, Amer. J. Math. 95 (1973), 204-214.
- [3] —, On the structure of certain Galois groups, Invent. Math. 47 (1978), 85–99.
- [4] K. Iwasawa, On \mathbf{Z}_l -extensions of algebraic number fields, Ann. of Math. 98 (1973), 246–326.
- [5] —, On cohomology groups of units for \mathbb{Z}_p -extensions, Amer. J. Math. 105 (1983), 189–200.
- [6] S. Lang, Cyclotomic Fields, I and II, Springer, 1990.
- [7] H. Matsumura, Commutative Algebra, Math. Lecture Note Ser. 56, Benjamin/ Cummings, 1980.
- [8] P. Monsky, On p-adic power series, Math. Ann. 255 (1981), 217–227.
- K. Rubin, The "main conjecture" of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), 25–68.
- [10] S. Shatz, Profinite Groups, Arithmetic, and Geometry, Princeton Univ. Press, 1972.
- [11] L. Washington, Introduction to Cyclotomic Fields, Springer, 1982.
- J.-P. Wintenberger, Structure galoisienne de limites projectives d'unités locales, Compositio Math. 42 (1981), 89–103.

Department of Mathematics The Ohio State University 231 West 18th Avenue Columbus, Ohio 43210 U.S.A. E-mail: mingxu@math.ohio-state.edu

> Received on 15.7.1997 and in revised form on 5.5.1998

(3222)

304