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On the number of polynomials of bounded measure

by

A. Dubickas (Vilnius) and S. V. Konyagin (Moscow)

1. Introduction. The Mahler measure of the polynomial

f(x) = a0x
d + a1x

d−1 + . . .+ ad = a0(x− α1) . . . (x− αd), a0 6= 0,

is defined by

M(f) = M(f(x)) = |a0|
d∏

j=1

max(1, |αj |).

Our purpose here is to give an upper bound for the cardinality of the set
of polynomials in Z[x] of given degree and of bounded Mahler’s measure.
Since M(±xtf(x)) = M(f(x)), let us suppose that a0 > 0 and ad 6= 0. This
allows us to avoid some trivial complications. We will denote by N(d, T ) the
set of polynomials f(x) ∈ Z[x] of degree d such that M(f) ≤ T , a0 > 0,
f(0) = ad 6= 0.

Firstly, notice that if T < 1 then the set N(d, T ) is empty. Secondly,
if T = 1 then by Kronecker’s theorem each f(x) in N(d, 1) is a product
of cyclotomic polynomials. The result of E. Dobrowolski [Do] implies that
N(d, T ) is of the same structure for T < exp

(
c1
( log log d

log d

)3)
. For a sufficiently

large d this holds with c1 = 9/4− ε, ε > 0 [Lo]. By Lehmer’s conjecture [Le]
there exists a positive constant δ such that the set N(d, T ) has the same
structure for T < 1 + δ. Therefore for small T the cardinality of N(d, T ) is
equal to the number of ways to write d as a sum of the form

d =
∑

m≥1

dmϕ(m)

where ϕ is the Euler totient function and dm is a nonnegative integer. The
asymptotics for this number was found by D. W. Boyd and H. L. Mont-
gomery [Bo-Mo].

The structure of the set N(d, T ) for larger T is much more complicated.
Let us start by giving some trivial lower and upper bounds for cardN(d, T ).
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By Landau’s inequality [La],

M(f) ≤
√√√√

d∑

j=0

a2
j ≤
√
d+ 1 max

0≤j≤d
|aj |.

Hence all polynomials with integer coefficients such that 1 ≤ a0 ≤ T/
√
d+ 1,

|aj | ≤ T/
√
d+ 1, j = 1, . . . , d, ad 6= 0 lie in N(d, T ). If T ≥ √d+ 1, we can

bound cardN(d, T ) from below by
[

T√
d+ 1

](
2
[

T√
d+ 1

]
+ 1
)d−1

2
[

T√
d+ 1

]
>

1
2

(
T√
d+ 1

)d+1

.

Here and throughout the paper [ ] denotes the integral part. If 1 ≤ T <√
d+ 1, then this lower bound holds trivially. Hence we obtain the following

lower bound:

(1) cardN(d, T ) > 1
2T

d+1(d+ 1)−(d+1)/2.

On the other hand, if M(f) ≤ T then

|aj | = |a0| · |α1α2 . . . αj + . . .+ αd−j+1 . . . αd| ≤
(
d

j

)
T.

Hence cardN(d, T ) is bounded from above by

2[T ]2
d−1∏

j=1

(
2
[(
d

j

)
T

]
+ 1
)
≤ 2T 2

d−1∏

j=1

(
2
(
d

j

)
T + 1

)

≤ 2 · 3d−1T d+1
d−1∏

j=1

(
d

j

)

= 2 · 3d−1T d+1d!−d−1
d∏

j=1

j2j .

It is an easy exercise to show by induction that

d∏

j=1

j2j ≤ dd(d+1) exp
(
d− d2

2

)
.

Utilizing Stirling’s formula

d! >
√

2πd
(
d

e

)d
exp
(
− 1

12d

)
,

we get
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cardN(d, T ) < T d+1 exp
(
d2

2
+

3d
2

+
d+ 1
12d

+ (d− 1) log 3 + log 2− d+ 1
2

log(2πd)
)
.

Thus, for sufficiently large d,

(2) cardN(d, T ) < T d+1 exp(d2/2).

Comparing these trivial estimates (1) and (2) we see that they differ
by a factor depending on d only. So for “large” T we cannot expect to do
much better than (2). However, for “small” T , e.g. fixed T , this bound can
be substantially improved. For example, the interesting case T < 2 was
considered by M. Mignotte [Mi]. He proved that the number of irreducible
polynomials of degree d and of Mahler’s measure smaller than 2 is less than
2(8d)2d+1. Combined with the results of [Bo-Mo] this implies that

(3) cardN(d, T ) < dc2d

for T < 2 and some absolute positive constant c2.
Denote by N1(d, T ) the set of monic (a0 = 1), irreducible polynomials

f(x) ∈ Z[x] of degree d such that M(f) ≤ T , |f(0)| = |ad| = 1. Recently
one of the authors [Ko] proved that

(4) cardN1(d, T ) < T c3d exp(d19/20)

provided that d is sufficiently large where c3 is an effectively computable
constant.

In all what follows, let d be a sufficiently large positive integer. Through-
out this paper c, c4, c5, c6, . . . will be assumed to be positive effective con-
stants, and ε, ε1, ε2 will be assumed to be small positive constants. Let
θ = 1.32471 . . . be the real root of the polynomial x3 − x− 1.

Theorem. (i) If 1 ≤ T < exp
((

9
4 − ε

)( log log d
log d

)3)
, then

cardN(d, T ) = c4(log d)−1/2d−1 exp
(

1
π

√
105ζ(3)d

)
(1 + o(1)),

where c4 = 1
4π2 (105ζ(3)e−γ)1/2 and o(1)→ 0 as d→∞.

(ii) If exp
((

9
4 − ε

)( log log d
log d

)3) ≤ T < θ, then

cardN(d, T ) < T d(1/2+c log log d/log d).

(iii) If θ ≤ T , then

cardN(d, T ) < T d(1+c log log d/log d).

We will prove (ii) and (iii) with c = 16. The case (i) is given here only
for completeness. As mentioned above it is a combination of the results
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obtained in [Lo] and [Bo-Mo]. Combining (i)–(iii) we obtain the following
general estimate for every positive ε1:

cardN(d, T ) < T d(1+16 log log d/log d) exp(3.58
√
d)(5)

< T (1+ε1)d exp(4
√
d).

Taking T = 2 in (5) we obtain cardN(d, 2) < (2+ε2)d, which strengthens
the inequality (3). Notice also that (5) strengthens (4), since cardN(d, T ) ≥
cardN1(d, T ). However, for large T , T > exp

(
d log d

2c log log d

)
, the trivial inequal-

ity (2) gives a stronger upper bound than (iii).
In Section 2 we give some auxiliary lemmas. Section 3 contains a sketch

of proof. The proof of (iii) is given in Sections 4 and 5 where we bound the
number of polynomials with small and large leading coefficients respectively.
Finally, in Section 6 we complete the proof of (ii).

The authors thank the organizers of the Number Theory Conference
dedicated to Professor A. Schinzel in Zakopane (July 1997). In the pleasant
atmosphere of this conference the idea to write this paper came and a part of
the work was done. The research of the second named author was supported
by Grants 96-01-00378 and 96-15-96072 from the Russian Foundation for
Basic Research.

2. Auxiliary lemmas. Let e1, . . . , ed be the natural basis of the d-
dimensional Euclidean space Rd. We put

‖x‖ = max
1≤j≤d

|xj |

for the l∞ norm of the vector x = x1e1 + . . . + xded. For a convex closed
bounded set A ⊂ Rd and j = 1, . . . , d we put

Fj(A) = A+ [−ej/2; ej/2] = {x+ µej : x ∈ A, |µ| ≤ 1/2}.
Let F (A) be the 1/2-neighbourhood of A:

F (A) = {x+ y : x ∈ A, ‖y‖ ≤ 1/2} = F1(F2 . . . Fd(A) . . .).

Suppose that G ⊂ {1, . . . , d} and g = cardG. We denote by OG(A) the
orthogonal projection of the set A onto the linear space spanned by the
vectors ej with j ∈ G. Finally, we denote by VolgOG(A) the volume of the
g-dimensional (1 ≤ g ≤ d) convex set OG(A), and let Vol0O∅(A) = 1. With
this notation we have the following general lemma for d ≥ 1:

Lemma 0. We have

VoldF (A) =
∑

VolgOG(A),

where the sum is taken over all subsets G of {1, . . . , d}.
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P r o o f. Let Â be a convex closed bounded set in Rd, and let G ⊂
{1, . . . , d}, j ∈ G. Expressing the volumes OG(Â) and OG(Fj(Â)) as in-
tegrals over OG\{j}(Â) we get

VolgOG(Fj(Â))−VolgOG(Â) =
(

1
2 + 1

2

)
Volg−1OG\{j}(Â)

= Volg−1OG\{j}(Â).

Therefore, we obtain the following reduction formula:

VolgOG(Fj(Â)) = VolgOG(Â) + Volg−1OG\{j}(Â).

Note that

F (A) = O{1,...,d}(F1(F2 . . . Fd(A) . . .)).

Taking into account that the operators OG and Fj commute for j ∈ G, we
can apply the above formula when proceeding with VoldF (A), thus reducing
one of Fj ’s at each step. It is easy to see that in this way we finally get the
stated formula.

The next lemma is an estimate of the 1/2-capacity [Ti, 1.1.7] of convex
polytopes contained in a parallelepiped.

Lemma 1. Suppose that 0 < τ < 1/12, d > d(τ) and let

P =
d∏

j=1

[−uj/2;uj/2]

be a parallelepiped in Rd. Let A ⊂ P be a convex polytope with at most
d−1+1/(10τ) vertices. If D is a subset of A such that the distance between
any two elements of D is at least 1, then

cardD < exp(d1−9τ )
d∏

j=1

(1 + ujd
6τ−1/2).

P r o o f. The unit cubes with centers at the points of D are mutually
nonoverlapping. The union of these cubes is a subset of F (A), so that
cardD ≤ VoldF (A). By Lemma 0, it remains to estimate each VolgOG(A)
from above.

Suppose first that g ≥ d1−10τ . Then OG(A) is a convex polytope with
at most

d−1+1/(10τ) ≤ g(−1+1/(10τ))/(1−10τ) = g1/(10τ)

vertices. Clearly, OG(A) is contained in the parallelepiped

OG(P ) =
∏

j∈G
[−uj/2;uj/2] ⊂ Rg.
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We now need an upper bound for the volume of a convex polytope Ag
with ≤ g1/(10τ) vertices contained in a parallelepiped Πg ⊂ Rg. With-
out loss of generality we can assume that Πg is the g-dimensional cube
[−1/

√
g; 1/
√
g]g inscribed in the unit ball Bg. The volume of the ball is

estimated by the volume of the cube as follows:

VolgBg =
πg/2

Γ (1 + g/2)
<

πg/2

(g/(2e))g/2
=
(

2πe
g

)g/2
= (πe)g/2VolgΠg.

Using the inequality

VolgAg
VolgBg

≤
(

10 log(g1/(10τ))
g

)g/2
=
(

log g
τg

)g/2

(see [Bá–Fü] or [Gl]), we bound the volume of the convex polytope Ag:

VolgAg
VolgΠg

<

(
πe log g
τg

)g/2
.

Thus,
VolgOG(A)
VolgOG(P )

< (d1/2−6τ )−g

for d sufficiently large.
If g < d1−10τ , then we bound VolgOG(A) from above trivially:

VolgOG(A) ≤ VolgOG(P )

= VolgOG(P )(d1/2−6τ )−g(d1/2−6τ )g

< VolgOG(P )(d1/2−6τ )−g exp(d1−9τ ).

Thus for all G ⊂ {1, . . . , d} we have the upper bound

VolgOG(A) < VolgOG(P )(d1/2−6τ )−g exp(d1−9τ )

= exp(d1−9τ )(d1/2−6τ )−g
∏

j∈G
uj .

Now Lemma 1 follows from Lemma 0.

For a vector w = (w1, . . . , wd) ∈ Cd define

Sk(w) =
d∑

j=1

wkj

and write ‖w‖ = max1≤j≤d |wj | for the l∞ norm. We denote by <z and =z
the real and imaginary part of z respectively.

Lemma 2. Let W be a subset of Cd such that ‖w‖ ≤ exp
( log d

10d

)
for all

w ∈W and
max

1≤k≤d
|<(Sk(u)− Sk(v))|/k ≥ d−1/5
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for any two distinct u, v ∈W . Then

cardW < exp(d8/9).

P r o o f. For a complex number z = a+ ib we define

z̃ = d−3([|a|d3] sgn a+ i[|b|d3] sgn b).

Then |z̃| ≤ |z| and

|z − z̃| = d−3({|a|d3}2 + {|b|d3}2)1/2 <
√

2d−3.

If w = (w1, . . . , wd), then write w̃ for the vector with coordinates w̃j .
For w ∈W and 1 ≤ k ≤ d we have

|Sk(w̃)− Sk(w)| =
∣∣∣
d∑

j=1

(w̃kj − wkj )
∣∣∣ ≤ d max

1≤j≤d
|w̃kj − wkj |

<
√

2d−2k exp
(

(k − 1) log d
10d

)
< 2kd−19/10.

Hence there exists a number K = K(u, v), 1 ≤ K ≤ d, such that

|<(SK(ũ)− SK(ṽ))| > |<(SK(u)− SK(v))| − 4Kd−19/10

≥ Kd−1/5 − 4Kd−19/10 > Kd−1/5/2.

Let D be the set of vectors

(2d1/5<S1(w̃), . . . , 2k−1d1/5<Sk(w̃), . . . , 2d−4/5<Sd(w̃))

in Rd where w ∈W . By the above we see that the map W → D is injective
and that the distance between any two elements of D is at least 1. Let A be
the convex hull of the vectors

(2d6/5<y, . . . , 2k−1d6/5<yk, . . . , 2d1/5<yd).
Here |y| ≤ exp

( log d
10d

)
and d3y ∈ Z[i], i.e. y runs over the set of all possible

points w̃j . In particular, each vector in D is the arithmetic mean of some d of
the above vectors. Hence D is a subset of A. Clearly, the number of vertices
in the polytope A is bounded above by the number of Gauss’ integers in the
circle |y| ≤ d3 exp

( log d
10d

)
. An upper bound for these is obtained by counting

the number of unit squares with center at Gauss’ integer:

π

(√
2 + d3 exp

(
log d
10d

))2

< 4d6.

Moreover, A is contained in the parallelepiped

P =
d∏

j=1

[−uj/2;uj/2] with uj = 4j−1d6/5 exp
(
j log d
10d

)
.
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Taking τ = 1/75 we now apply Lemma 1:

cardD < exp(d22/25)
d∏

j=1

(
1 + 4j−1d39/50 exp

(
j log d
10d

))
.

Since 1 + x < ex, x > 0, we bound the last product by

exp
( d∑

j=1

4j−1d39/50 exp
(
j log d
10d

))
< exp(5d22/25 log d).

Thus,

cardW = cardD < exp(d22/25(1 + 5 log d)) < exp(d8/9).

Lemma 3. Let n ∈ N and let Nu ∈ N, ru ∈ N ∪ {0}, bu ∈ R, bu ≥ 1, for
u = 0, 1, 2, . . . If Nu ≤ bun and

∑
u≥0 ru = n, then

(6)
∏

u≥0

(
Nu − 1 + ru

ru

)
≤ nn

∏

u≥0

bruu

and

(7)
∏

u≥0

(
Nu − 1 + ru

ru

)
≤
(

22
(

1 +
B log n
n

))n∏

u≥0

bruu ,

where B =
∑
u≥0 ruu.

P r o o f. Since(
Nu − 1 + ru

ru

)
=
Nu + ru − 1

ru
· Nu + ru − 2

ru − 1
· . . . · Nu

1
≤ Nru

u ,

we get (6) immediately.
In order to prove (7) we assume that n ≥ 23 and B > 0. Indeed, if

n ≤ 22 then inequality (7) follows from (6). If B = 0, then r0 = n and using
n! > (n/e)n we find that

∏

u≥0

(
Nu − 1 + ru

ru

)
=
(
N0 − 1 + r0

r0

)
≤ (b0n+ n)n

n!

< (e(b0 + 1))n ≤ (2eb0)n < (22b0)n.

Put now U =
[
B log n
n

]
. We have

B ≥
∑

u≥U+1

ruu ≥ (U + 1)
∑

u≥U+1

ru.

Thus,
∑

0≤u≤U
ru = n−

∑

u≥U+1

ru ≥ n− B

U + 1
> n

(
1− 1

log n

)
.
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Since the function x log x is convex, we obtain
∑

0≤u≤U
ru log ru > n

(
1− 1

log n

)
log
(
n(1− 1/logn)

U + 1

)
.

It follows that
∏

u≥0

rruu ≥
∏

0≤u≤U
rruu >

(
n

(
1− 1

logn

))n(1−1/logn)(
B logn
n

+ 1
)−n

(8)

≥ nn
(

1
e

(
1− 1

log 23

))n(
B log n
n

+ 1
)−n

.

Utilizing the inequalities ru ≤ n and ru! ≥ (ru/e)ru we obtain
(
Nu − 1 + ru

ru

)
≤ (Nu + n)ru

ru!
≤
(
e(bu + 1)n

ru

)ru
≤
(

2ebun
ru

)ru
.

Thus, applying (8), we see that the left hand side of (7) does not exceed
∏

u≥0

(2ebun)rur−ruu <

(
2e2

1− 1/log 23

)n(
B logn
n

+ 1
)n∏

u≥0

bruu

<

(
22
(

1 +
B logn
n

))n∏

u≥0

bruu .

3. Sketch of proof. For each polynomial f in N(d, T ) we define a vector
with nonnegative entries in the following way. Suppose first that the leading
coefficient a0 is in the range 1 ≤ a0 < d1/5/2. Then the vector has the form

(a0, q1, q2, nl, sl, nl+1, sl+1, . . .).

Here l =
[ log d

10

]
, nu is the number of zeros of f lying in

Ku =
{
z ∈ C : exp

(
u

d

)
< |z| ≤ exp

(
u+ 1
d

)
, =z > 0

}
,

su is the number of zeros of f lying in

Lu =
[
− exp

(
u+ 1
d

)
;− exp

(
u

d

))
∪
(

exp
(
u

d

)
; exp

(
u+ 1
d

)]
,

q1 = [d log |Λ1|], q2 = [d log |Λ2|] where Λ1 and Λ2 are the products of zeros
of f lying in

⋃
u≥lKu and

⋃
u≥l Lu respectively.

If however a0 ≥ d1/5/2, then the vector has the form

(a0, q3, q4, q5, q6, n0, s0,m0, r0, n1, s1,m1, r1, . . .).

Here a0, nu, su are as above, mu is the number of zeros of f lying in

Mu =
{
z ∈ C : exp

(
−u+ 1

d

)
< |z| ≤ exp

(
−u
d

)
, =z > 0

}
,
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ru is the number of zeros of f lying in

Ru =
[
− exp

(
−u
d

)
;− exp

(
−u+ 1

d

))
∪
(

exp
(
−u+ 1

d

)
; exp

(
−u
d

)]
,

qk = [(−1)k+1d log |Λk|], k = 3, . . . , 6, where Λ3, . . . , Λ6 are the products of
the zeros of f lying in {|z| > 1, =z > 0}, {|z| ≤ 1, =z > 0}, (−∞;−1) ∪
(1;∞) and [−1, 1] respectively.

Now we prove that the number of all different vectors which are defined
as above for the polynomials in N(d, T ), T > exp((log d)−3), is less than

(9) T c5
√
d(log d)3/2

.

Indeed, notice first that the number of different vectors (a0, q1, . . . , q6) is
at most

T (d log T + 1)6 < T (dT )6 < T 6(log d)4+7.

Put xu =
∑
k≥u nk, u = 1, 2, . . . Then the values n1, n2, . . . are determined

uniquely by x1, x2, . . . We also have x1 ≥ x2 ≥ . . . Since all xk are nonneg-
ative integers and

d log |Λ3| ≥
∑

u≥1

∑

z∈Ku
log |z| ≥

∑

u≥1

unu =
∑

u≥1

xu,

the number of different vectors (n1, n2, . . .) is bounded from above by
q3∑
q=0

p(q) ≤ (q3 + 1) p(q3)

where p(q) is the number of partitions of q. The well known asymptotic
formula for the number of partitions (see, e.g., [An])

p(q) ∼ exp(π
√

2q/3)

4
√

3q

implies that the number of different vectors (n1, n2, . . .) does not exceed
c6 exp(c7

√
q3). Similarly, the number of different vectors (s1, s2, . . .),

(m1,m2, . . .), (r1, r2, . . .) is bounded above by c6 exp(c7
√
q5), c6 exp(c7

√
q4)

and c6 exp(c7
√
q6) respectively. Since the number of different (n0, s0,m0, r0)

is at most d4, bounding |Λ1|, |Λ2|, |Λ3|, |Λ4|−1, |Λ5|, |Λ6|−1 from above by
T , we estimate the number of all different vectors by

T 6(log d)4+7d4c46 exp(4c7
√
d log T ) < T c5

√
d(log d)3/2

.

We see that the number of different vectors is less than T c8d log log d/log d.
Therefore we only need to prove the upper estimates for the cardinality (ii)
and (iii) for the polynomials in N(d, T ), T > exp((log d)−3), corresponding
to the fixed vector (a0, q1, q2, nl, sl, . . .) or (a0, q3, q4, q5, q6, n0, s0,m0, r0, . . .).
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For the polynomial

f = a0x
d + a1x

d−1 + . . .+ ad = a0(x− α1)(x− α2) . . . (x− αd)
we define

Sk = Sk(f) =
d∑

j=1

αkj .

By the Newton identities we have

(10) a0Sk + a1Sk−1 + . . .+ ak−1S1 + kak = 0.

Suppose that f and

g = a0x
d + h1x

d−1 + . . .+ hd = a0(x− β1)(x− β2) . . . (x− βd)
are two distinct polynomials with the same leading coefficient a0. There
exists a positive integer k ≤ d such that h1 = a1, . . . , hk−1 = ak−1, but
hk 6= ak. Then S1(f) = S1(g), . . . , Sk−1(f) = Sk−1(g), but Sk(f) 6= Sk(g).
From (10) we deduce that

(11) |Sk(f)− Sk(g)| = |ak − hk| k
a0
≥ k

a0
.

Consider now the polynomials in N(d, T ) corresponding to the fixed
vector (a0, q1, q2, nl, sl, nl+1, sl+1, . . .) where 1 ≤ a0 < d1/5/2. Put

n =
∑

u≥l
nu, s =

∑

u≥l
su.

We can assume that α1 = αn+1, . . . , αn = α2n lie in
⋃
u≥lKu and that

α2n+1, . . . , α2n+s ∈
⋃
u≥l Lu (and similarly for the roots βj of g). From (11)

we find that either

(12)
∣∣∣

d∑

j=2n+s+1

(αkj − βkj )
∣∣∣ ≥ k

2a0

or

(13)
∣∣∣

2n+s∑

j=1

(αkj − βkj )
∣∣∣ ≥ k

2a0
.

Below we will argue as follows. All Ku and Lu will be covered by disjoint
squares and intervals respectively (see Section 4). The crucial step is to
estimate the number of ways to distribute n + s roots into corresponding
squares and intervals. We will show that for each distribution where each
square and interval contains the same number of αj ’s and βj ’s, 1 ≤ j ≤
2n + s, the inequality opposite to (13) holds. Thus, inequality (12) holds.
We see that the l∞ norm of the vectors (0, 0, . . . , 0, α2n+s+1, . . . , αd) and
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(0, 0, . . . , 0, β2n+s+1, . . . , βd) is bounded above by exp
( log d

10d

)
. Since

∣∣∣<
d∑

j=2n+s+1

(αkj − βkj )
∣∣∣ =

∣∣∣
d∑

j=2n+s+1

(αkj − βkj )
∣∣∣ ≥ k

2a0
> kd−1/5,

we can apply Lemma 2. For any way to distribute roots the number of
distinct polynomials corresponding to this way is bounded above by

(14) exp(d8/9) < exp(d8/9(log T )(log d)3) < T d
9/10

.

4. Polynomials with small leading coefficient. For any nonnegative
integer u we cover Ku by disjoint squares with side of length

(15)
exp(−(u+ 1)(d− 1)/d)

7
√

2na0
.

If αj and βj belong to the same square, then

|αkj − βkj | = |αj − βj | · |αk−1
j + αk−2

j βj + . . .+ βk−1
j |

≤ exp(−(u+ 1)(d− 1)/d)
7na0

k exp
(

(u+ 1)(k − 1)
d

)
≤ k

7na0

for k ≤ d. Therefore, if each square contains the same number of αj ’s and
βj ’s, then

∣∣∣
n∑

j=1

(αkj − βkj )
∣∣∣ ≤ k

7a0
.

We also have
∣∣∣

2n∑

j=n+1

(αkj − βkj )
∣∣∣ =

∣∣∣
2n∑

j=n+1

(αkj − β
k

j )
∣∣∣ =

∣∣∣
n∑

j=1

(αkj − βkj )
∣∣∣ ≤ k

7a0
.

Similarly, cover Lu by disjoint intervals of length

(16)
exp(−(u+ 1)(d− 1)/d)

7sa0
.

If each interval contains the same number of αj ’s and βj ’s, we have
∣∣∣

2n+s∑

j=2n+1

(αkj − βkj )
∣∣∣ ≤ k

7a0
.

Thus,
∣∣∣

2n+s∑

j=1

(αkj − βkj )
∣∣∣ ≤ 3k

7a0
,

which contradicts (13).
Clearly, the number of polynomials with different distribution of roots

is bounded above by the number of ways to distribute roots into respective
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squares and intervals. More precisely, this is the number of ways to put nu,
u = l, l + 1, . . . , roots into Nu squares times the number of ways to put su,
u = l, l + 1, . . . , roots into intervals. The number of squares Nu with side
length (15) which cover Ku is bounded from above by

π

2
98n2a2

0 exp
(

2(u+ 1)(d− 1)
d

)((
exp

(
u+ 1
d

)

+
exp(−(u+ 1)(d− 1)/d)

7na0

)2

−
(

exp
(
u

d

)
− exp(−(u+ 1)(d− 1)/d)

7na0

)2)
.

By a short computation we see that this is bounded by c9na2
0 exp(2u). The

number of ways to put nu roots into Nu squares equals
(
Nu+nu−1

nu

)
.

In order to estimate the product

∏

u≥l

(
Nu + nu − 1

nu

)

we apply Lemma 3 with bu = c9a
2
0 exp(2u) and B = q1. Indeed, the inequal-

ity
∑

u≥l
unu ≤ d log |Λ1| < q1 + 1

implies that
∑

u≥l
unu ≤ q1.

If n ≤ q1(log d)−2, then by (6) we have

∏

u≥l

(
Nu + nu − 1

nu

)
≤ nn

∏

u≥l
(c9a2

0)nu exp(2unu)(17)

≤ cn9a2n
0 exp(q1(log d)−1 + 2q1).

If n > q1(log d)−2, then by (7) we find

∏

u≥l

(
Nu + nu − 1

nu

)
≤
(

22
(

1 +
q1 log n
n

))n
cn9a

2n
0 exp(2q1)(18)

< (23(log d)3)ncn9a
2n
0 exp(2q1)

< cn10a
2n
0 exp(2q1 + 3n log log d).

Since

q1 ≥
∑

u≥l
unu ≥ nl = n

[
log d
10

]
,
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in both cases (17) and (18) we have

(19)
∏

u≥l

(
Nu + nu − 1

nu

)
≤ a2n

0 exp(2q1 + 31q1 log log d/log d).

Analogously, the number of intervals of length (16) which cover Lu is
bounded above by

14sa0 exp
(

(u+ 1)(d− 1)
d

)(
exp

(
u+ 1
d

)
− exp

(
u

d

)

+
exp(−(u+ 1)(d− 1)/d)

3sa0

)
< c11a0 exp(u).

Since
∑
u≥l usu ≤ q2, the number of ways to distribute su, u = l, l + 1, . . . ,

roots into respective intervals does not exceed

(20)
∏

u≥l
(c11a0 exp(u))su ≤ cs11a

s
0 exp(q2).

Using the inequality

s ≤ q2

l
≤ 11q2

log d
,

we further bound (20) from above by as0 exp(q2 + q2 log log d/log d). Since
2n+ s ≤ d and 2q1 + q2 ≤ d log(T/a0), combining this inequality with (19)
we estimate the number of ways to distribute roots into respective squares
and intervals by

(21) a2n+s
0 exp(2q1 + q2 + 15.5(2q1 + q2) log log d/log d)

< T d(1+15.5 log log d/log d).

5. Polynomials with large leading coefficient. In this section we are
left with the case a0 ≥ d1/5/2. We need an upper bound for the number of
polynomials corresponding to the vector (a0, q3, q4, q5, q6, n0, s0,m0, r0, n1,
s1,m1, r1, . . .). Put now

n =
∑

u≥0

nu, s =
∑

u≥0

su, m =
∑

u≥0

mu, r =
∑

u≥0

ru.

We enumerate the roots of two distinct polynomials f and g as follows. Let
the first n roots of f (and g) lie outside the unit circle in the upper halfplane,
then their n complex conjugates, then s real roots in (−∞;−1) ∪ (1;∞),
then m complex roots in the unit circle in the upper halfplane, then their
m complex conjugates, and finally r real roots in [−1; 1]. As in Section 3 we
obtain
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k

a0
≤
∣∣∣
d∑

j=1

(αkj − βkj )
∣∣∣ ≤ 2

∣∣∣
n∑

j=1

(αkj − βkj )
∣∣∣+
∣∣∣

2n+s∑

j=2n+1

(αkj − βkj )
∣∣∣

+ 2
∣∣∣

2n+s+m∑

j=2n+s+1

(αkj − βkj )
∣∣∣+
∣∣∣

d∑

j=2n+s+2m+1

(αkj − βkj )
∣∣∣.

It follows that one of the four sums is at least k/(7a0). Again the crucial
step is to estimate the number of ways to distribute n+ s+m+ r roots into
corresponding squares and intervals. Suppose first that

∣∣∣
n∑

j=1

(αkj − βkj )
∣∣∣ > k

7a0
.

As in Section 4 we cover Ku by disjoint squares with side length (15). If
each square contains the same number of αj ’s and βj ’s, 1 ≤ j ≤ n, then
the inequality opposite to the above holds. In a similar manner to that in
Section 4 we deduce the upper estimate for the number of ways to distribute
n roots into squares. Instead of (17) and (18) we have the upper bounds
cn9a

2n
0 exp(2q3 + q3(log d)−1) and cn10a

2n
0 exp(2q3 + 3n log log d) respectively.

Combining both cases we obtain the upper estimate for the number of ways
to distribute n roots:

(22) a2n
0 exp(2q3 + q3(log d)−1 + 3n log log d+ nc12).

Suppose now that

∣∣∣
2n+s∑

j=2n+1

(αkj − βkj )
∣∣∣ > k

7a0
.

The number of ways to distribute s roots is bounded from above analogously
to (20) by

(23) as0 exp(q5 + sc13).

Next we suppose that the third sum is large:

∣∣∣
2n+s+m∑

j=2n+s+1

(αkj − βkj )
∣∣∣ > k

7a0
.

Cover Mu by disjoint squares with side length 1/(7
√

2ma0). If αj and βj
belong to the same square, then

|αkj − βkj | ≤ |αj − βj |k ≤
k

7ma0
.
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Thus, if each square contains the same number of αj ’s and βj ’s, then

∣∣∣
2n+s+m∑

j=2n+s+1

(αkj − βkj )
∣∣∣ ≤ k

7a0
.

Therefore, we need an upper estimate for the number of ways to put mu

roots into respective squares. The number of squares Su which cover Mu is
bounded from above by

π

2
98m2a2

0

((
exp
(
−u
d

)
+

1
7ma0

)2

−
(

exp
(
−u+ 1

d

)
− 1

7ma0

)2)

for u + 1 ≤ d log(7ma0). This expression is less than c14ma
2
0. If however

u+ 1 > d log(7ma0), then

exp
(
−u
d

)
<

exp(1/d)
7ma0

<
1

6ma0

and Mu can be covered by 4 squares. Thus, our upper bound Su < c14ma
2
0

also holds.
If m ≤ q4(log d)−2, then analogously to (17), by (6) with bu = c14a

2
0,

Nu = Su, ru = mu, n = m we obtain the upper bound
∏

u≥0

(
Su − 1 +mu

mu

)
≤ mm

∏

u≥0

(c14a
2
0)mu ≤ cm14a

2m
0 exp(q4/log d).

If m > q4(log d)−2, then analogously to (18), by (7) with B = q4 we obtain
the upper bound
∏

u≥0

(
Su − 1 +mu

mu

)
≤
(

22
(

1 +
q4 logm
m

))m∏

u≥0

(c14a
2
0)mu

≤ (23(log d)3)mcm14a
2m
0 ≤ cm15a

2m
0 exp(3m log log d).

Combining these two upper bounds we finally estimate the number of ways
to distribute m roots by

(24) a2m
0 exp(q4(log d)−1 + 3m log log d+mc16).

Finally, suppose that
∣∣∣

d∑

j=2n+s+2m+1

(αkj − βkj )
∣∣∣ > k

7a0
.

We cover Ru by disjoint intervals of length 1/(7ra0). The number of intervals
which cover Ru is bounded above by c17a0. Hence, the number of ways to
distribute r roots is bounded above by∏

u≥0

(c17a0)ru ≤ ar0 exp(rc18).
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Combining this estimate with (22)–(24) we bound the number of polyno-
mials corresponding to the fixed vector (a0, q3, q4, q5, q6, n0, s0,m0, r0, n1, s1,
m1, r1, . . .) by the number of ways to distribute n + s + m + r roots into
respective squares and intervals:

a2n+s+2m+r
0 exp(2q3 + q5 + (q3 + q4)(log d)−1 + 3(m+ n) log log d+ c19d).

Since 2n+ s+ 2m+ r = d, 2q3 + q5 ≤ d log(T/a0) and q4 ≤ d log T , this is
less than

(25) T d exp
(

2d log T
log d

+ 2d log log d
)
.

We now use the fact that a0 is large:

T ≥ a0 ≥ d1/5/2 > d1/6.

Hence log d < 6 log T , and (25) is less than

T d(1+13 log log d/log d).

Thus, we obtain the upper bound which is less than (21). Because of (9)
and (14), we finally have

cardN(d, T ) < T d(1+16 log log d/log d).

This completes the proof of (iii).

6. The number of reciprocal polynomials. To prove (ii) notice first
that T < θ < 2, hence the polynomials lying in N(d, T ) are monic. Our
argument is based on the following result due to C. Smyth [Sm]: if the
Mahler measure of an integer polynomial f is less than θ, θ3 = θ+1, then the
polynomial is reciprocal, i.e. f(x) ≡ sgn(ad)xdf(1/x). Hence a0 = 1 = %ad,
a1 = %ad−1, a2 = %ad−2, . . . where % = sgn(ad). Thus, for two distinct monic
reciprocal polynomials f and g inequality (11) holds with an integer k in
the range 1 ≤ k ≤ d/2.

Replacing the side length of the square in (15) by

exp(−(u+ 1)(d/2− 1)/d)

7
√

2n

and the length of the interval in (16) by

exp(−(u+ 1)(d/2− 1)/d)
7s

we can argue as in Section 4. The number of squares in this case is bounded
above by c9n exp(u). The right-hand side of (19) is now exp(q1 + 31q1 ×
log log d/log d). Analogously, the number of intervals which cover Lu is now
c11 exp(u/2). Thus, the number of ways to distribute su, u = l, l + 1, . . . ,
roots into respective intervals does not exceed exp(q2/2 + q2 log log d/log d).
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Therefore, the number of ways to distribute roots into squares and in-
tervals is bounded above by

exp((2q1 + q2)/2 + 15.5(2q1 + q2) log log d/log d) < T d(0.5+15.5 log log d/log d).

Combining this inequality with (9) and (14) in the case (ii) we obtain

cardN(d, T ) < T d(1/2+16 log log d/log d).
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