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1. Introduction. In this paper, we consider the size of small solutions
of the following integral equation (1.1) in prime variables pj :

(1.1) a1p1 + a2p2 + a3p3 = b.

In particular, we estimate the numerical value of a relevant constant in the
upper bound for small prime solutions of (1.1).

Let a1, a2, a3 be any integers such that

(1.2) a1a2a3 6= 0 and (a1, a2, a3) := gcd(a1, a2, a3) = 1.

Let b be any integer satisfying

(1.3) b ≡ a1 + a2 + a3 (mod 2) and (b, ai, aj) = 1 for 1 ≤ i < j ≤ 3.

Conditions (1.3) and (1.2) are plainly necessary in our investigation, for
otherwise, the equation (1.1) will either be insolvable or be reduced to fewer
than three prime variables. The problem on bounds for small prime so-
lutions p1, p2, p3 of the equation (1.1) was first considered by A. Baker in
connection with his now well-known work [B] on the solvability of certain
diophantine inequalities involving primes. Baker’s investigation raised im-
mediately the problem of obtaining the best possible upper bound for small
prime solutions. As the culmination of a series of earlier discoveries in this
context [Li1, Li2], the following was proved [LT1, Theorem 2]:

Theorem 0. Assume the conditions (1.2) and (1.3). If not all a1, a2, a3

are of the same sign, then there is an effective absolute constant B > 0 such

that the equation (1.1) has a prime solution p1, p2, p3 satisfying

(1.4) max
1≤j≤3

pj ≤ 3|b| + max{3, |a1|, |a2|, |a3|}
B .

Obviously, B is the only relevant constant in (1.4). It is easy to see [LT2,
p. 125] that B must be larger than 1. So, if we are not concerned about
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the numerical value of B, Theorem 0 qualitatively settles Baker’s problem
on the bound for small prime solutions of the equation (1.1). Therefore, it
remains to estimate the infimum B for all possible values of the constant B
in (1.4) which is now called the Baker constant . Plainly, the determination
of B will completely settle the above-mentioned Baker problem.

Our investigation on the estimate for B is motivated not only by the
Baker problem but also by the following interesting discoveries.

It was shown in [LT1, p. 596 and LT2, §2] that Theorem 0 contains
the well-known Linnik Theorem [L] on the smallest prime in an arithmetic
progression, namely, for any positive integers l, q with l ≤ q and (l, q) =
1, the smallest prime P (l, q) in the arithmetic progression l + kq satisfies
P (l, q) < CqL where C and L are some positive absolute constants. The
infimum L for all possible values of L is called the Linnik constant . It
was shown in [LT2, §2] that B ≥ L. Many authors (see Table 1 in [H-B])
investigated the numerical bounds for L while very little has been known for
B. The first numerical result for B was obtained by Choi [Cho]: B ≤ 4190.
In the present paper we prove that B ≤ 45 in the following theorem.

Theorem 1. Assume conditions (1.2) and (1.3). If not all a1, a2, a3 are

of the same sign then there is an absolute constant C > 0 such that the

equation (1.1) has a prime solution p1, p2, p3 satisfying

max
1≤j≤3

|aj |pj ≤ Cmax{|b|, (max{|a1|, |a2|, |a3|})
45}.

That is, B ≤ 45.

Remark 1. Assuming the Generalized Riemann Hypothesis, it was
shown in [CLT] that B ≤ 4.

Remark 2. Similar to Theorem 1, we can prove that if all a1, a2, a3

are positive and satisfy (1.2) and (1.3) then there is an absolute constant
C > 0 such that the equation (1.1) is solvable if b ≥ C(max{a1, a2, a3})

45.
We prove this result simultaneously with our Theorem 1 in §7 and §8.

Our proof of the numerical result in Theorem 1 depends on an explicit
zero-free region for Dirichlet L-functions and on an explicit zero-density es-
timate near the line σ = 1 which will be given in §2 and §3 respectively.
Basically, the results in §2 are due to Heath-Brown [H-B] but with some
modifications in formulation for our use, and with a slight numerical im-
provement (see Lemma 2.1).

2. Zero-free regions for Dirichlet L-functions. The results ob-
tained in this section which we shall use in our proof of Theorem 1 are in
Proposition 2.3 (on the zero-free region), Lemma 2.5 (on two zeros) and Lem-
ma 2.6 (on the Deuring–Heilbronn phenomenon). As usual, let χ (mod q)
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and χ0 (mod q) denote a Dirichlet character and the principal character
modulo q respectively. L(s, χ) denotes a Dirichlet L-function. ε and εj de-
note small positive numbers. Roughly speaking, this section is a reworking
of [H-B, §§1–9]. So we only give the details of the computational results but
sketch the deductions. Instead of the function

∏
χ (mod q) L(s, χ), which was

considered in [H-B, (1.2)], we consider the zero-free regions of the function

(2.1) Π(s) :=
∏

q≤Q

∏∗

χ (mod q)

L(s, χ)

in the region |Im s| ≤ C and 1/2 ≤ Re s ≤ 1, where Q is a given sufficiently
large positive number, C is any positive constant, and the ∗ indicates that
the product

∏∗
is over all primitive characters χ (mod q). Similar to [H-B,

§6], we introduce the following notations. We put

(2.2) L := logQ.

Let ̺ = β + iγ denote any zero of Π(s) in the rectangle

R := {s = σ + it : 1 − (3L)−1 log logL ≤ σ ≤ 1, |t| ≤ C}.

Denote by ̺1 one of the above zeros for which β is maximal, and let χ1 be
a corresponding primitive character in (2.1) such that L(̺1, χ1) = 0. Now,
remove L(s, χ1) and L(s, χ1) from (2.1), and choose ̺2 to be one of the zeros
of Π(s)(L(s, χ1)L(s, χ1))

−1 in R, for which β is maximal. We take χ2 to be
a primitive character in (2.1) for which L(̺2, χ2) = 0. Then by arguments
similar to those in [H-B, Lemma 6.1] we see that if a primitive character χ
is different from χ1, χ1, then every zero ̺ of L(s, χ) satisfies

(2.3) Re ̺ ≤ Re ̺2 or |Im ̺| ≥ 10C.

Moreover, χ1 6= χ2, χ2. Next, we define the zero ̺′ of L(s, χ1) in R by one
of the following three mutually exclusive conditions:

(i) If ̺1 is a repeated zero, then we choose ̺′ = ̺1.

(ii) If ̺1 is simple and if χ1 is real and ̺1 is complex, then we choose
̺′ 6= ̺1, ̺1 in R such that Re ̺′ is maximal.

(iii) In the remaining cases, we choose ̺′ 6= ̺1 in R such that Re ̺′ is
maximal.

As in [H-B, (6.2)], we put

̺k := βk + iγk, βk := 1 − L−1λk, k = 1, 2,

̺′ := β′ + iγ′, β′ := 1 − L−1λ′.

We first give a slight improvement on [H-B, Lemma 9.5] for the case h = 4
there. Instead of [H-B, (9.15)], we start from the inequality

(2.4) 0 ≤ (1 + cos x)(1 + 2 cos x)2 = 5 + 8 cos x+ 4cos 2x+ cos 3x.
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Let f be the function defined as in [H-B, Condition 1, p. 280 and Condition 2,
p. 286] and let F be the Laplace transform of f , that is, for any complex z
put

(2.5) F (z) :=

∞\
0

e−ztf(t) dt.

Similar to [H-B, (9.16)], by (2.4) we get

0 ≤ 5K(β1, χ0) + 8K(β1 + iγ1, χ1) + 4K(β1 + 2iγ1, χ
2
1) +K(β1 + 3iγ1, χ

3
1),

where K(β + iγ, χ) is defined as in [H-B, p. 285]. Since h = 4, we have
χn

1 6= χ0 for n = 2, 3. Thus, by (2.3) and [H-B, Lemma 5.2] with φ = 1/4
defined as in [H-B, Lemma 2.5], we get

K(β1 + niγ1, χ
n
1 ) ≤ f(0)(1/8 + ε)L (n = 2, 3),

K(β1 + iγ1, χ1) ≤ − F (0)L + f(0)(1/8 + ε)L.

Moreover, [H-B, Lemma 5.3] yields K(β1, χ0) ≤ F (−λ1)L + εf(0)L. Gath-
ering together the above, we get

5F (−λ1) − 8F (0) + (13/8)f(0) + ε ≥ 0.

Now we use the function f specified as in [H-B, Lemmas 7.1 and 7.5] with
k = 8/5. This yields θ = 1.2161 . . . and λ−1

1 cos2 θ ≤ 13/40 + ε, whence
λ1 ≥ 0.3711. Replacing the 0.348 for the case h = 4 in [H-B, Lemma 9.5] by
0.3711, we see that the lower bound for λ1 there now becomes 0.364. Thus,
by [H-B, Lemmas 8.4, 8.8 and 9.5], we can obtain a slight improvement on
[H-B, Theorem 1] as in Lemma 2.1 below.

Lemma 2.1. For any constant C > 0, there exists a K(C) > 0 depending

on C only such that if Q ≥ K(C), then the function
∏

χ (mod q) L(s, χ) with

fixed q ≤ Q has at most one zero in the region σ ≥ 1−0.364/L, |t| ≤ C. Such

a zero, if it exists, is real and simple, and corresponds to a non-principal

real character.

Lemma 2.2. Suppose that χ1 (mod q1) and χ2 (mod q2) are distinct , non-

principal , primitive, real characters with q1, q2 ≤ Q, and that β1, β2 < 1 are

real numbers satisfying L(β1, χ1) = L(β2, χ2) = 0. Then min{β1, β2} ≤
1 − 0.4045/L.

P r o o f. Denote by χ0
[q1,q2] the principal character modulo [q1, q2]. Then

L(β1, χ1χ
0
[q1,q2]

) = L(β2, χ2χ
0
[q1,q2]) = 0. In view of χ1χ

0
[q1,q2]

6= χ2χ
0
[q1,q2]

and [q1, q2] ≤ Q2, we can deduce from [H-B, Table 6] that min{β1, β2} ≤
1 − 0.809/logQ2 ≤ 1 − 0.809/(2L), as desired.

The combination of Lemmas 2.1 and 2.2 trivially implies
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Proposition 2.3. For any constant C > 0, there exists a K(C) > 0
depending on C only such that if Q ≥ K(C), then the function Π(s) defined

by (2.1) has at most one zero in the region σ ≥ 1− 0.364/L, |t| ≤ C. Such a

zero β̃, if it exists, is real and simple, and corresponds to a non-principal ,
real , primitive character χ̃ to a modulus r̃ ≤ Q. β̃ is called the Siegel zero

or the exceptional zero.

The following is devoted to give a region in which Π(s) has at most two
zeros (see Lemma 2.5). We make use of the bounds for λ′ in [H-B, Tables 2
to 4 and Table 8]. So we only need to give lower bounds for λ2. Without loss
of generality, we may assume that λ2 ≤ λ′, for otherwise the lower bound
for λ′ can serve as that for λ2. As in [H-B, §8 and §9], we separate the
arguments into two cases according as either both χ1 and ̺1 are real or not.

Case I. χ1 and ̺1 are all real. We argue according to whether χ4
2 = χ0

or χ4
2 6= χ0.

(i) χ4
2 = χ0. We use the result (2.9) below, which is similar to [H-B,

Lemma 8.5]. To prove (2.9), we use similar arguments to those of [H-B,
Lemma 6.2]. Note that χ1χ2 and χ1χ2 are non-principal characters to the
modulus [q1, q2] ≤ Q2, and so [H-B, (6.5) and (6.6)] should be modified to
(2.6) and (2.7) below respectively:

K(β1 + iγ1 + iγ2, χ1χ2) ≤ f(0)((1/2)φ(χ1χ2) + ε) logQ2(2.6)

≤ f(0)((1/2)2φ(χ1χ2) + ε)L,

and

(2.7) K(β1 + iγ1 − iγ2, χ1χ2) ≤ f(0)((1/2) · 2φ(χ1χ2) + ε)L.

And consequently, by [H-B, (6.4) and (6.7) to (6.9)], we may modify the ψ
in [H-B, (6.10)] as

ψ = (1/2)φ(χ1) + (1/2)φ(χ2) + (1/4){2φ(χ1χ2)} + (1/4){2φ(χ1χ2)}(2.8)

≤ 1/2,

since χ1 and χ2 are of finite order and then by the definition of φ in [H-B,
Lemma 2.5], all φ of the above are 1/4. Thus, similar to [H-B, Lemma 8.5]
we have

(2.9) F (−λ2) − F (λ1 − λ2) − F (0) + (1/2 + ε)f(0) ≥ 0.

We apply (2.9) with the function f specified as in [H-B, Lemmas 7.1 and
7.5] with k = 2, that is, θ = 0.9873 . . . In order to specify f we must also
select λ there, and we make a variety of choices, depending on the size of
λ1. Let λ1 satisfy 0 ≤ λ1 ≤ b and λ = λ(b) be specified. Note that by (2.5)
the function
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F (−λ2) − F (λ1 − λ2) =

∞\
0

f(t)eλ2t(1 − e−λ1t) dt

is increasing with respect to both λ1 and λ2. If we choose λ2(b) to give

F (−λ2(b)) − F (b− λ2(b)) − F (0) + f(0)/2 = 0,

it then follows from (2.9) that λ2 ≥ λ2(b) − ε whenever 0 ≤ λ1 ≤ b for Q
large enough. Table 1 below gives values for b (as λ1), for λ(b) (as λ) and
the calculated values a little below λ2(b) (as λ2).

Table 1. λ2 for real χ1 and ̺1, χ
4
2 = χ0 (cf. Table 6 in [H-B])

λ1 λ λ2 λ1 λ λ2 λ1 λ λ2

0.003 0.83 5.61 0.128 0.693 1.83 0.30 0.62 1.02
0.0035 0.83 5.46 0.16 0.676 1.61 0.35 0.60 0.89
0.005 0.82 5.11 0.18 0.67 1.52 0.40 0.58 0.78
0.008 0.81 4.62 0.20 0.66 1.42 0.45 0.57 0.68
0.016 0.79 3.93 0.22 0.65 1.32 0.50 0.56 0.59
0.032 0.766 3.22 0.25 0.64 1.20 0.53 0.54 0.55
0.064 0.733 2.50 0.28 0.63 1.10 0.539 0.54 0.539

(ii) χ4
2 6= χ0. Then none of the characters χ2, χ1χ2, χ

2
2 or χ1χ

2
2 is equal

to χ0 or χ1. Noting that the modulus of χ1χ2 and χ1χ
2
2 is [q1, q2] ≤ Q2,

similar to the modification of ψ in (2.8), we have for any constant k ≥ 0 and
any ε > 0,

(2.10) (k2 + 1/2){F (−λ2) − F (λ1 − λ2)} − 2kF (0) + (ψ + ε)f(0) ≥ 0,

where the ψ corresponding to that in [H-B, (8.10)] is modified to be ψ =
(k2 + 8k + 2.5)/8. Now we use f in [H-B, Lemma 7.5] with θ = 1 and let
k = 0.98− 0.14λ1 . Then (2.10) yields the following Table 2 in a similar way
as we get Table 1 from (2.9).

Table 2. λ2 for real χ1 and ̺1, χ
4
2 6= χ0

(cf. Table 7 in [H-B])

λ1 λ λ2 λ1 λ λ2

0.0025 0.65 4.55 0.4 0.46 0.691
0.066 0.566 2.00 0.45 0.45 0.615
0.2 0.5 1.16 0.48 0.44 0.578
0.306 0.477 0.867 0.5 0.43 0.557
0.365 0.46 0.75 0.527 0.42 0.527

Case II. Either χ1 or ̺1 (or both) is complex. We separate the argu-
ments into three cases:

(i) χ2
1 6= χ0, χ2, χ2. Note that the modulus of χ1χ2, χ1χ2, χ

2
1χ2 and χ2

1χ2

is [q1, q2] ≤ Q2. Then similar to [H-B, Lemma 9.2] we can apply the same
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arguments as in the above Case I(i) to the first inequality in [H-B, p. 306]
with j = 2 to obtain

(k2 + 1/2){F (−λ1) − F (λ2 − λ1)} − 2kF (0) + (ψ + ε)f(0) ≥ 0

where ψ = 1
6
(k2 + 6k + 2). Now we take f in [H-B, Lemma 7.1] with θ = 1

and let k = 0.78 + 0.1λ1. With this choice, we get

Table 3. λ2 in the complex case, χ2 6= χ
2
1, χ
2
1

and χ21 6= χ0 (cf. Table 9 in [H-B])

λ1 λ2 λ λ1 λ2 λ

0.348 0.700 0.35 0.45 0.563 0.39
0.36 0.681 0.36 0.48 0.531 0.39
0.40 0.624 0.37 0.505 0.505 0.40

(ii) χ2
2 6= χ0, χ1, χ1. By reversing the roles of χ1 and χ2 in Case II(i),

we get

(2.11) (k2 + 1/2){F (−λ1) − F (0)}

−2kF (λ2 − λ1) + (k2 + 6k + 2)f(0)/6 + ε ≥ 0.

We take k = 0.94 − 0.1λ1 and choose f in [H-B, Lemma 7.1] with θ = 1.
With this choice of k and θ, from (2.11) we get the following Table 4 parallel
to [H-B, Table 10] by choosing the δ in [H-B, p. 307] to be 0.001.

Table 4. λ2 in the complex case, χ1 6= χ
2
2, χ

2
2

and χ22 6= χ0 (cf. Table 10 in [H-B])

λ1 λ2 λ λ1 λ2 λ

0.348 0.587 0.38 0.45 0.530 0.39
0.36 0.578 0.38 0.48 0.516 0.40
0.40 0.555 0.38 0.504 0.504 0.40

(iii) Both χ2
2 = χ0, χ1 or χ1 and χ2

1 = χ0, χ2 or χ2 hold. This happens
only when χ1 and χ2 have order 5 or less. To cover this situation, we can
use [H-B, Lemma 6.2] directly, with the ψ in [H-B, (6.10)] being modified
to be as (2.8). Hence we can produce the following

Table 5. λ2 in the complex case (cf.
Table 11 in [H-B])

λ1 λ2 λ λ1 λ2 λ

0.34 0.712 0.49 0.48 0.583 0.53
0.36 0.691 0.49 0.5 0.568 0.53
0.4 0.652 0.51 0.539 0.539 0.54
0.45 0.608 0.52
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Comparison of Tables 1 to 5 shows that Table 4 gives the weakest result.
Hence Table 4 applies in all cases. We summarize this as follows.

Lemma 2.4. The bounds given in Table 4 can be applied in all cases. In

particular , λ2 ≥ 0.504.

The combination of [H-B, Tables 4 and 8] and Lemma 2.4 together with
the definition of ̺1, ̺2 and ̺′ implies

Lemma 2.5. For any constant C > 0, there exists a K(C) > 0 depending

on C only such that if Q ≥ K(C), then the function Π(s) defined by (2.1)
has at most two zeros in the region σ ≥ 1− 0.504/L, |t| ≤ C. Moreover , the

bounds in Table 4 can be applied in all cases.

Lemma 2.6. If the exceptional zero β̃ in Proposition 2.3 does indeed ex-

ist , then for any constant c with 0 < c < 1 and for any small ε > 0
there is a K(c, ε) > 0 depending on c and ε only such that for any zero

̺ = β + iγ 6= β̃ (corresponding to χ (mod q)) of the function Π(s) defined

by (2.1) we have

(2.12) β ≤ 1 − min

{
c

6
,

(1 − c)(2/3 − ε)

log([r̃, q]|γ|)
log

(
(1 − c)(2/3 − ε)

(1 − β̃) log([r̃, q]|γ|)

)}

if [r̃, q]|γ| > K(c, ε). Moreover , for any positive ε there exists a constant

c(ε) > 0 depending on ε only such that

(2.13) 1 − 0.364/L ≤ β̃ ≤ 1 − c(ε)r̃−ε.

P r o o f. (2.12) is a direct consequence of [G1, Theorem 10.1]. For the
second inequality in (2.13), one can see, for example, [D, p. 127, (5)].

3. The zero-density estimates near the line σ = 1. In this sec-
tion, we give an explicit zero-density estimate for L-functions L(s, χ) near
the line Re s = 1 with |Im s| ≤ C, where C is any absolute constant. The
result is

Lemma 3.1. For any absolute constant C > 0, let α = 1 − λ/L and let

N∗(α,Q,C) be defined as in (3.1) below. Then for Q ≥ K(C) which is a

positive constant depending on C only , we have

N∗(α,Q,C) ≤ N∗
j (j = 4, 5, 6, 7, 8)

where
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8.86706

λ

(
exp(4.31403λ) −

exp(3.15402λ) − exp(2.32002λ)

0.834λ

)
:= N∗

8

if 0.504 < λ ≤ 0.696,

26.93

λ

(
exp(4.28374λ) −

exp(3.19253λ) − exp(2.42653λ)

0.766λ

)
:= N∗

7

if 0.696 < λ ≤ 1,

50.36

λ

(
exp(3.753506λ) −

exp(2.747904λ) − exp(2.160104λ)

0.58λ

)
:= N∗

6

if 1 < λ ≤ 2,

167.67

λ

(
exp(3.116796λ) −

exp(2.223794λ) − exp(1.869794λ)

0.354λ

)
:= N∗

5

if 2 < λ ≤ 6,

42.54

(
1 +

35.385

λ

)(
exp(2.87538λ) −

exp(2.07176λ) − exp(1.92136λ)

0.1504λ

)

:= N∗
4 if 6 < λ ≤ log logL.

To prove Lemma 3.1, we first give some notations. For 1 ≤ j ≤ 4, let
hj be absolute constants satisfying 1 < h1 < h2 < h3, and their exact
values will be specified later in each individual case, e.g. in (3.17), (3.26).
Put

(3.1)





zj := Qhj for 1 ≤ j ≤ 4,

α := 1 − λ/L for 0.364 ≤ λ ≤ log logL,

D := {s = σ + it : α ≤ σ < 1 − 0.364/L, |t| ≤ C},

N(χ,α,C) := number of zeros of L(s, χ) in D,

N∗(α,Q,C) :=
∑

q≤Q

∑∗

χ (mod q)

N(χ,α,C),

where
∑∗

χ (mod q) denotes the summation over all primitive characters

χ (mod q); and we use the symbols θd(q) and G(q) defined as in [LLW,
(3.2)].

We now present two preliminary lemmas.

Lemma 3.2. For any C > 0 let Q ≥ K(C) which is a positive con-

stant depending on C only. Suppose χ1 (mod q1) and χ2 (mod q2) are two

primitive characters with q1, q2 ≤ Q. Let s = σ + it with |t| ≤ C and

0 < σ ≤ 3(log logL)/L. Define E0 = 1 if χ1 = χ2 and E0 = 0 if χ1 6= χ2.

Then, if 3/4 + 2h4 + ε < h1 < h2 we have
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∑

z1<n≤z3

(∑

d|n

θd(q1)
)(∑

d|n

θd(q2)
)
χ1(n)χ2(n)n−s−1

=
E0ϕ([q1, q2])

G([q1, q2])[q1, q2]

log z3\
log z1

e−sx dx+O(L−1).

P r o o f. As [LLW, Lemma 11], the lemma can be proved by the same
arguments as in the proof of [Che, Lemma 8]. The replacement of the 3/8 in
[LLW, Lemma 11] by the present 3/4 is due to the fact that the zj = (P 2T )hj

in [LLW, (3.1)] is now replaced by the zj = Qhj defined as in (3.1).

Lemma 3.3. Let χ be a non-principal character modulo q ≤ Q, and let

n1, . . . , n5 be the number of zeros of L(s, χ) in the intersections of D (in
(3.1)) with the following regions R1, . . . , R5 respectively :

Rj : 1 − λ/L ≤ σ ≤ 1 − 0.364/L, |t− tj | ≤ τj/L,

where t1, . . . , t5 are any real numbers and τ1, . . . , τ5 are 20, 13.6, 9.1, 6.64,
1.06 respectively. Then

n1 ≤ (0.2167)(λ + 35.385) for 6 < λ ≤ log logL, n2 ≤ 6 for 2 < λ ≤ 6,

n3 ≤ 4 for 1 < λ ≤ 2, n4 ≤ 3 for 0.696 < λ ≤ 1,

n5 ≤ 1 for 0.504 < λ ≤ 0.696.

P r o o f. Note that for any real σ and t with σ > 1,

−Re(ζ ′/ζ)(σ) − Re(L′/L)(σ + it, χ) ≥ 0.

Thus from −(ζ ′/ζ)(σ) ≤ (σ − 1)−1 +O(1) we get for σ > 1,

(3.2) 0 ≤ (σ − 1)−1 − Re(L′/L)(σ + it, χ) +O(1).

Taking σ = 1 + 20/L and t = t1, by [H-B, Lemma 3.1 with φ = 1/3] and
the definition of R1, we get

1

20
+

1

6
+ ε− n1 min

0.364≤β≤λ

{
20 + β

(20 + β)2 + 400

}
≥ 0,

where β = (1 − Re ̺)L and ̺ is a zero of L(s, χ) in D ∩ R1. Hence for
6 < λ ≤ log logL,

n1 ≤

(
1

20
+

1

6
+ ε

)
max

0.364≤β≤λ

{
(20 + β)2 + 400

20 + β

}

≤

(
1

20
+

1

6
+ ε

)
max

{
20 + λ2 + 400

20 + λ
,
(20.364)2 + 400

20.364

}

≤ (0.2167)(λ + 35.385).

Similarly, taking the σ and t in (3.2) as σ = 1 + 14.84/L, 1 + 11.8/L, 1 +
9.49/L, 1 + 2.88/L, and t = t2, . . . , t5 respectively, we get by (3.2), [H-B,
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Lemma 3.1 with φ = 1/3] and the definition of R2, . . . , R5,

n2 ≤

[(
1

14.84
+

1

6
+ ε

)(
14.84 + λ+

(13.6)2

14.84 + λ

)]

≤ [6.955] = 6 for 2 < λ ≤ 6;

n3 ≤ 4 for 1 < λ ≤ 2; n4 ≤ 3 for 0.696 < λ ≤ 1;

n5 ≤ 1 for 0.504 < λ ≤ 0.696,

where [x] denotes the greatest integer not exceeding x. The proof of Lem-
ma 3.3 is complete.

We are now going to prove Lemma 3.1. Define for any complex s,

κ(s) = s−2((exp(−(1 − δ1)(log z1)s) − exp(−(log z1)s))δ3(log z3)(3.3)

− (exp(−(log z3)s) − exp(−(1 + δ3)(log z3)s))δ1(log z1)),

where δ1, δ3 are positive numbers with 0 < δ1, δ3 < 1. For a zero ̺0 ∈ D,
put

(3.4) M(̺0) :=
∑

̺(χ)

|κ(̺(χ) + ̺0 − 2α)|,

where ̺(χ) is any zero of L(s, χ) in D. Then, similar to the arguments
leading to [LLW, (3.17)], it can be derived by the use of Lemma 3.2 and
[LLW, Lemma 10, and Che, Lemma 4] that

(3.5) N∗(α,Q,C) ≤
1 + ε

2λ(h2 − h1)

(
e2h3λ −

e2h2λ − e2h1λ

2λ(h2 − h1)

)
max̺0

M(̺0)

δ1δ3h1h3h4L3
,

if one assumes that

(3.6) h1 < h2, h2 +h4 +3/8+ε < h3 and 2h4 +3/4+ε < (1−δ1)h1.

In view of the definition of D in (3.1), we have Re(̺1 + ̺2)− 2α ≥ 0 for
any ̺1, ̺2 ∈ D. Thus by (3.3),

|κ(̺1 + ̺2 − 2α)| =
∣∣∣
(1+δ3) log z3\

log z3

log z1\
(1−δ1) log z1

η\
ξ

e−(̺1+̺2−2α)x dx dξ dη
∣∣∣(3.7)

≤ 2−1L3{δ1h1(2δ3 + δ23)h2
3 − δ3h3(2δ1 − δ21)h2

1}.

For ease of notation, in due course of this section we write for any ̺(χ),
̺0 ∈ D,

̺(χ) := 1 − βχL
−1 + iγχL

−1, ̺0 := 1 − β0L
−1 + iγ0L

−1.

We separate the arguments into the following five cases (i) to (v) according
to the upper bounds for λ at 1, 2, 6, log logL and 0.696 respectively.
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(i) If 0.696 < λ ≤ 1, then by taking t4 = γ0/L in Lemma 3.3 we see that
there are at most 3 zeros in D ∩R4 (containing ̺0) and that

(3.8) |γχ − γ0| ≥ 6.64

for any ̺(χ) 6∈ R4. On the other hand, we have trivially by the definition of
κ(s) in (3.3), |κ(s)| ≤ 2(δ1h1 + δ3h3)L|s|

−2. Thus

(3.9)
∑

̺(χ)∈D−R4

|κ(̺(χ) + ̺0 − 2α)|

≤ 2(δ1h1 + δ3h3)L
3

∑

̺(χ)∈D−R4

|γχ − γ0|
−2.

Moreover, for any a 6= −βχ,

(γχ − γ0)
−2 =

(
a+ βχ

(γχ − γ0)2
+

1

a+ βχ

)
a+ βχ

(a+ βχ)2 + (γχ − γ0)2
.

Set f(x, y) = xy−2 + x−1. For fixed y, f(x, y) is increasing for x ≥ y
and decreasing for x < y. Assume a ≥ 6.64. Thus by (3.8) we obtain

max
0.364≤βχ≤λ

{
a+ βχ

(γχ − γ0)2
+

1

a+ βχ

}

≤





a+ λ

y2
+

1

a+ λ
if 6.64 ≤ y ≤ a+ 0.364,

max

{
a+ λ

y2
+

1

a+ λ
,
a+ 0.364

y2
+

1

a+ 0.364

}

if a+ 0.364 ≤ y ≤ a+ λ,
a+ 0.364

y2
+

1

a+ 0.364
if y > a+ λ,

≤





a+ λ

y2
+

1

a+ λ
if 6.64 ≤ y ≤ ((a+ 0.364)(a + λ))1/2,

a+ 0.364

y2
+

1

a+ 0.364
if y > ((a+ 0.364)(a + λ))1/2.

Hence the last summation in (3.9) is

≤ max

{
max

6.64≤y≤((a+0.364)(a+λ))1/2

{
a+ λ

y2
+

1

a+ λ

}
,(3.10)

max
y≥((a+0.364)(a+λ))1/2

{
a+ 0.364

y2
+

1

a+ 0.364

}}

×
∑

̺(χ)∈D−R4

a+ βχ

(a+ βχ)2 + (γχ − γ0)2
.

By (3.2) with σ = 1+aL−1, t = γ0L
−1, and [H-B, Lemma 3.1 with φ = 1/3],
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the last summation in (3.10) can be estimated as, for a+ λ ≥ 6.64,

(3.11) ≤
1

a
−

1

a+ λ
−

E1(a+ λ)

(a+ λ)2 + (6.64)2
+

1

6
+ ε,

where

number of zeros of L(s, χ) in D ∩R4 one two three

E1 0 1 2

Taking a = 7.136 (so a > 6.64), by (3.11) and λ ≤ 1, (3.10) can be esti-
mated as

≤

(
1

a
−

1

a+ λ
−

E1(a+ λ)

(a+ λ)2 + (6.64)2
+

1

6
+ ε

)

× max

{
a+ λ

(6.64)2
+

1

a+ λ
,

1

a+ λ
+

1

a+ 0.364

}

≤

(
1

a
−

1

a+ 1
−

E1(a+ 1)

(a+ 1)2 + (6.64)2
+

1

6
+ ε

)(
a+ 1

(6.64)2
+

1

a+ 1

)

≤ f1(E1)

where

(3.12)
E1 0 1 2

f1(E1) 0.05654 0.03386 0.011174

Now by (3.4), (3.7), (3.9) and (3.12) we can summarize that, for 0.696 <
λ ≤ 1,

max
̺0

M(̺0) ≤ max
0≤E1≤2

{((1 + E1)/2)(δ1h1(2δ3 + δ23)h2
3(3.13)

− δ3h3(2δ1 − δ21)h2
1) + 2(δ1h1 + δ3h3)f1(E1)}L

3.

Choose δ1 and δ3 satisfying the condition

(3.14) δ1h1 = δ3h3 = (4f1(E1)(1 +E1)
−1)1/2.

By (3.5), (3.13) and (3.14) we get, for 0.696 < λ ≤ 1,

(3.15) N∗(α,Q,C)

≤ max
0≤E1≤2

(1 + ε)((1 + E1)/2)

×
{δ1h1(2δ3 + δ23)h2

3 − δ3h3(2δ1 − δ21)h2
1} + 2f1(E1)(δ1h1 + δ3h3)

2λ(h2 − h1)δ1h1δ3h3h4
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×

(
e2h3λ −

e2h2λ − e2h1λ

2λ(h2 − h1)

)

≤ (1 + ε) max
0≤E1≤2

(1 + E1)(h3 − h1) + 4((1 + E1)f1(E1))
1/2

2λ(h2 − h1)h4

×

(
e2h3λ −

e2h2λ − e2h1λ

2λ(h2 − h1)

)
,

providing (3.6) with δ1h1 given as in (3.14). Let h2 − h1 = x, h4 = y. Then
the optimal choices of h’s are approximately

h1 =
3

4
+

(
4f1(E1)

1 + E1

)1/2

+ 2y + ε,

h2 = h1 + x =
3

4
+

(
4f1(E1)

1 + E1

)1/2

+ x+ 2y + ε,

h3 =
3

8
+ x+ y + h1 + ε =

3

8
+

3

4
+

(
4f1(E1)

1 +E1

)1/2

+ x+ 3y + 2ε,

h4 = y.

With these choices of h’s, the last maximum in (3.15) corresponds to E1 = 2.
Hence in view of the definition of f1(E1) in (3.12), (3.15) is

(3.16) ≤ (1 + ε)
3(h3 − h1) + 0.732361

2λ(h2 − h1)h4

(
e2h3λ −

e2h2λ − e2h1λ

2λ(h2 − h1)

)
,

with

(3.17)





h1 = 3/4 + (4(0.011174)/3)1/2 + 2y + ε,

h2 = 3/4 + (4(0.011174)/3)1/2 + x+ 2y + ε,

h3 = 3/8 + 3/4 + (4(0.011174)/3)1/2 + x+ 3y + 2ε,

h4 = y.

Substituting (3.17) into (3.16), numerical experiments show that the optimal
choices of x and y are approximately x = 0.383 and y = 0.1706. Substituting
the above choices of x and y into (3.17) and then into (3.16) we conclude
that for 0.696 < λ ≤ 1,

N∗(α,Q,C) ≤
26.93

λ

(
exp(4.28374λ) −

exp(3.19253λ) − exp(2.42653λ)

0.766λ

)
.

This is the second inequality for N∗(α,Q,C) in Lemma 3.1.

(ii) If 1 < λ ≤ 2, then by taking t3 = γ0L
−1 in Lemma 3.3 we see

that there are at most 4 zeros in D ∩ R3, and that |γχ − γ0| > 9.1 for any
̺(χ) 6∈ R3. Thus, completely similar to the arguments from (3.9) to (3.12)
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in the above case (i), we can obtain
∑

̺(χ)∈D−R3

|κ(̺(χ) + ̺0 − 2α)|

≤ 2(δ1h1 + δ3h3)L
3

×

(
1

a
−

1

a+ 2
−

E2(a+ 2)

(a+ 2)2 + (9.1)2
+

1

6
+ ε

)(
a+ 2

(9.1)2
+

1

a+ 2

)

≤ 2(δ1h1 + δ3h3)L
3f2(E2),

where

E2 0 1 2 3

f2(E2) 0.041771 0.29695 0.017619 0.005543

providing a = 9.41. Now choosing δ1 and δ3 by δ1h1 = δ3h3 = (4f2(E2)/
(1 + E2))

1/2, we can deduce, similar to (3.15) and (3.16),

(3.18) N∗(α,Q,C)

≤ (1 + ε) max
0≤E2≤3

(1 + E2)(h3 − h1) + 4((1 + E2)f2(E2))
1/2

2λ(h2 − h1)h4

×

(
e2h3λ −

e2h2λ − e2h1λ

2λ(h2 − h1)

)

≤ (1 + ε)
4(h3 − h1) + 0.595611

2λ(h2 − h1)h4

(
e2h3λ −

e2h2λ − e2h1λ

2λ(h2 − h1)

)
,

with the following approximately optimal choices of h’s:
{
h1 = 3/4 + (0.005543)1/2 + 2y + ε, h2 = h1 + x,
h3 = h1 + x+ y + 3/8 + ε, h4 = y,

and

{
x = 0.2939,
y = 0.1278.

With these choices of h1, . . . , h4, from (3.18) we derive the third inequality
for N∗(α,Q,C) in Lemma 3.1.

(iii) If 2 < λ ≤ 6, then by taking t2 = γ0L
−1 in Lemma 3.3 we see

that there are at most 6 zeros in D ∩R2, and that |γχ − γ0| > 13.6 for any
̺(χ) 6∈ R2. Hence similar to case (i) we have

∑

̺(χ)∈D−R2

|κ(̺(χ) + ̺0 − 2α)|

≤ 2(δ1h1 + δ3h3)L
3

×

(
1

a
−

1

a+ 6
−

E3(a+ 6)

(a+ 6)2 + (13.6)2
+

1

6
+ ε

)(
a+ 6

(13.6)2
+

1

a+ 6

)

≤ 2(δ1h1 + δ3h3)L
3f3(E3),
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where

E3 0 1 2 3 4 5

f3(E3) 0.029666 0.02426 0.018853 0.013447 0.00804 0.002633

providing a = 12.8938. Now choose δ1 and δ3 by δ1h1 = δ3h3 = (4f3(E3)/
(1 + E3))

1/2. Similar to (3.15) and (3.16), we can deduce for 2 < λ ≤ 6,

(3.19) N∗(α,Q,C)

≤ (1 + ε) max
0≤E3≤5

(1 + E3)(h3 − h1) + 4((1 + E3)f3(E3))
1/2

2λ(h2 − h1)h4

×

(
e2h3λ −

e2h2λ − e2h1λ

2λ(h2 − h1)

)

≤ (1 + ε)
6(h3 − h1) + 0.502761

2λ(h2 − h1)h4

(
e2h3λ −

e2h2λ − e2h1λ

2λ(h2 − h1)

)
,

with the following approximately optimal choices of h’s:
{
h1 = 3/4 + 4(0.002633)/61/2 + 2y + ε, h2 = h1 + x,
h3 = h1 + x+ y + 3/8 + ε, h4 = y,

and {
x = 0.177,
y = 0.0715.

Therefore from (3.19) we derive the next-to-last inequality for N∗(α,Q,C)
in Lemma 3.1.

(iv) If 6 < λ ≤ log logL, then similar to [LLW, §3, case (i)], by Lemma 3.3
we get

max
̺0

M(̺0)≤ (0.2167)(λ + 35.385){(1/2)δ1h1δ3h3(2h3 − 2h1 +δ1h1 +δ3h3)

+ (1/2)(π/20)2(δ1h1 + δ3h3)}L
3.

Then by (3.5),

(3.20) N∗(α,Q,C)

≤ (1 + ε)(0.2167)(λ + 35.385)

×
(2h3 − 2h1 + δ1h1 + δ3h3 + (π/20)2(1/(δ1h1) + 1/(δ3h3)))

4λ(h2 − h1)h4

×

(
e2h3λ −

e2h2λ − e2h1λ

2λ(h2 − h1)

)



Ternary linear equations 359

≤
(1 + ε)(0.2167)(λ + 35.385)(2h3 − 2h1 + π/5)

4λ(h2 − h1)h4

×

(
e2h3λ −

e2h2λ − e2h1λ

2λ(h2 − h1)

)
,

providing (3.6) with δ1h1 = δ3h3 = π/20. Let h2 − h1 = x, h4 = y. Then
the optimal choices of h’s are

{
h1 = 3/4 + π/20 + 2y + ε, h2 = h1 + x,

h3 = 3/8 + x+ y + h1 + ε, h4 = y,
with

{
x = 0.0752,

y = 0.0268.

Thus by (3.20) we derive the last inequality for N∗(α,Q,C) in Lemma 3.1.

(v) We discuss the remaining case in which 0.504 < λ ≤ 0.696. By
[H-B, Theorem 2] we know that there are at most two zeros of the function∏

χ (mod q) L(s, χ) for any fixed q ≤ Q in the given D (in (3.1)). Hence

completely similar to [LLW, §3, case(v)] with the use of [Che, Lemma 4]
instead of [G2, Lemma 9] there we can obtain

(3.21) N∗(α,Q,C) ≤
(1 + ε)M̃

2λ(h2 − h1)h4L

(
e2h3λ −

e2h2λ − e2h1λ

2λ(h2 − h1)

)
,

where

(3.22) M̃ := max
χ (mod q), q≤P

max
1≤j≤2

{
1

j

log z3\
log z1

∣∣∣
∑

1≤l≤j

e−(̺(l, χ)−α)x
∣∣∣
2

dx

}
,

and ̺(l, χ) denotes the zero of L(s, χ) in D. The h’s in (3.21) are subject
to the constraints:

(3.23) h3 > h2 + h4 + 3/8 + ε and h2 > h1 > 3/4 + 2h4 + ε.

We need an upper bound for M̃ . For any zero ̺(l, χ) of L(s, χ) in D, in
view of Re ̺(l, χ) ≥ α, we have

(3.24)

log z3\
log z1

|e−(̺(l,χ)−α)x|2 dx ≤ (h3 − h1)L.

If a given L(s, χ) has two zeros ̺(1, χ) and ̺(2, χ) in D, we write

̺(l, χ) = 1 − βl,χL
−1 + iγl,χL

−1, l = 1, 2.

Then |β1,χ − β2,χ| ≤ 0.696 − 0.364 = 0.332, and applying n5 ≤ 1 in
Lemma 3.3 we get |γ1,χ − γ2,χ| ≥ 2 · 1.06 = 2.12. Hence
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(3.25)
1

2

log z3\
log z1

∣∣∣
∑

1≤l≤2

e−(̺(l, χ)−α)x
∣∣∣
2

dx

=
L

2

h3\
h1

∣∣∣
∑

1≤l≤2

e−(λ−βl,χ+iγl,χ)x
∣∣∣
2

dx

≤
L

2
max

0≤x≤0.332
y≥2.12

h3\
h1

|1 + e−(x+iy)t|2 dt

≤
L

2
max

0≤x≤0.332
y≥2.12

h3\
h1

(1 + 2e−xt cos yt+ e−2xt) dt.

Recall (3.23); numerical experiments show that the optimal choices of h’s
are approximately

(3.26)

{
h1 = 3/4 + 2v + ε, h2 = 3/4 + u+ 2v + ε,
h3 = 3/4 + 3/8 + u+ 3v + 2ε, h4 = v,

with {
u = 0.417,
v = 0.205.

With the above choices of h1 and h3, (3.25) can be estimated as

(3.27) ≤ 1.516L,

directly by the “Mathematica software”. From (3.22) and (3.24) to (3.27)
we can summarize that

(3.28) M̃ ≤ 1.516L.

From (3.21), (3.26) and (3.28) we get the first inequality for N∗(α,Q,C) in
Lemma 3.1. The proof of Lemma 3.1 is thus complete.

4. The circle method. From now on, we let N be a sufficiently large
positive number, and let

(4.1) θ := 1/(15 − 11ε1), Q := Nθ, T := Q3, τ := N−1Q1+ε1 ,

where ε1 is a fixed sufficiently small positive number. For 1 ≤ j ≤ 3, let

(4.2) Nj := N |aj |
−1, N ′

j := N(4|aj |)
−1.

Put

(4.3) A := max{|a1|, |a2|, |a3|}.

We always assume

(4.4) A3+2ε1 ≪ Q.
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Denote by Λ(n) the von Mangoldt function, and define, for any real y,
e(y) := exp(i2πy),

(4.5) Sj(y) :=
∑

N ′

j<n≤Nj

Λ(n)e(ajny)

and

Sj(χ, y) :=
∑

N ′

j<n≤Nj

Λ(n)χ(n)e(ajny),

where χ is modulo q ≤ Q. Put

(4.6) I(b) :=
∑

(n1,n2,n3)

Λ(n1)Λ(n2)Λ(n3),

where
∑

(n1,n2,n3)
denotes the summation over all triples (n1, n2, n3) satis-

fying
∑

1≤j≤3 ajnj = b and N ′
j < nj ≤ Nj , 1 ≤ j ≤ 3. For any integers

h and q with 1 ≤ h ≤ q ≤ Q and (h, q) = 1, let m(h, q) be the interval
[(h− τ)/q, (h + τ)/q]. Let M be the union of these mutually disjoint inter-
vals and M′ be the complement of M in [τ, 1 + τ ]. From (4.5) and (4.6) we
get

(4.7) I(b) =
{ \

M

+
\

M′

}
e(−bx)

3∏

j=1

Sj(x) dx =: I1(b) + I2(b), say,

where I1(b) and I2(b) are the integrals on M and M′ respectively. For any
integer n and any character χ (mod q), denote the Gaussian sum by

G(n, χ) :=

q∑

l=1

χ(l)e

(
n

q
l

)
and let G(n, q) := G(n, χ0).

If x ∈ m(h, q), write

x = h/q + η, (h, q) = 1, |η| ≤ τq−1.

By the orthogonality relation of characters, we have [D, p. 147, (2)] for
1 ≤ j ≤ 3,

(4.8) Sj(x) = ϕ(q)−1
∑

χ (mod q)

G(ajh, χ)Sj(χ, η) +O(L2).

Here, and from now on, we put L := logN. The purpose of this section
is to give a simplified form for I1(b) (see Lemma 4.7 below). To do this, we
first give some preliminaries. Note that the following Lemmas 4.1 and 4.3
are essentially Lemmas 3.1 and 3.2 in [LT1] respectively.
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Lemma 4.1. For any real y and any χ (mod q) with q ≤ Q, let , for

1 ≤ j ≤ 3,

(4.9)





Ij(y) :=

Nj\
N ′

j

e(ajxy) dx, Ĩj(y) :=

Nj\
N ′

j

xβ̃−1e(ajxy) dx,

Ij(χ, y) :=

Nj\
N ′

j

e(ajxy)
∑′

|γ|≤T

x̺−1 dx,

and

δ′(χ) :=

{
1 if χ = χ0,
0 otherwise,

δ(χ) :=

{
1 if χ = χ̃χ0,
0 otherwise,

where β̃ is the possible Siegel zero in Proposition 2.3 and χ̃ (mod r̃) is the

corresponding character ,
∑′

|γ|≤T denotes the summation over all zeros ̺ =

β + iγ of L(s, χ) satisfying ̺ 6= β̃, |γ| ≤ T and 1/2 ≤ β ≤ 1. Then

Sj(χ, y) = δ′(χ)Ij(y) − δ(χ)Ĩj(y) − Ij(χ, y) +O((1 +N |y|)NjT
−1L2).

Lemma 4.2. Under the notations of Lemma 4.1, put

(4.10) Gj(h, q, η) :=
∑

χ (mod q)

G(ajh, χ)Ij(χ, η)

and

(4.11) Hj(h, q, η) := G(ajh, q)Ij(η) − δ(q)G(ajh, χ̃χ0)Ĩj(η) − Gj(h, q, η),

where δ(q) = 1 if r̃ | q and δ(q) = 0 otherwise. Then for any x ∈ m(h, q),

Sj(x) = ϕ(q)−1Hj(h, q, η) +O((1 +N |η|)Njq
1/2T−1L2).

P r o o f. This is a simple consequence of (4.8) and Lemma 4.1.

Lemma 4.3. Let ̺ = β+ iγ be any complex number satisfying 1/2 ≤ β ≤
1. Then for any real y we have

N\
N/4

x̺−1e(xy) dx≪





min{Nβ , |y|−β} if |γ| ≪ 1,
Nβ |γ|−1 if |y| ≤ |γ|/(4πN),
Nβ |γ|−1/2 if |γ|/(4πN) < |y| ≤ 4|γ|/(πN),
Nβ−1|y|−1 if |y| > 4|γ|/(πN).

Lemma 4.4. For any x ≥ 1 and y ≥ 2, let

N(α, x, y) :=
∑

q≤x

∑∗

χ (mod q)

∑

̺=β+iγ
|γ|≤y
β≥α

1,

where ̺ = β + iγ is any non-trivial zero of L(s, χ). Then

(4.12) N(α, x, y) ≪ (x2y)3(1−α)/(2−α) log9(x2y) for 1/2 ≤ α ≤ 4/5,
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and for any ε > 0,

(4.13) N(α, x, y) ≪ (x2y)(2+ε)(1−α) for 4/5 ≤ α ≤ 1.

P r o o f. (4.12) is [PP, Theorem 4.4], and (4.13) is [J, Theorem 1].

Lemma 4.5. Under the notations and conditions of (4.1) to (4.4), we

have for 1 ≤ j ≤ 3,

Σ1 :=
∑

q≤Q

∑∗

χ (mod q)

∑

|γ|≤T

Nβ−1
j ≪ 1.

P r o o f. We have

Σ1 = −

1\
1/2

Nα−1
j dN(α,Q, T )(4.14)

= N
−1/2
j N(1/2, Q, T ) +

{ 4/5\
1/2

+

1\
4/5

}
N(α,Q, T )Nα−1

j logNj dα.

In view of Q ≥ A3 (in (4.4)) and θ = 1/(15 − 11ε1), we have for 1 ≤ j ≤ 3,

(4.15) Nj ≥ Q15−11ε1−1/3.

By (4.12), (4.15) and T = Q3 (in (4.1)), the first term on the right of (4.14)
is ≪ Q−(1/2)(15−11ε1−1/3)Q2TL9 ≪ Q−2, and the first integral on the right
of (4.14) is

≪

4/5\
1/2

(Q2T )3(1−α)/(2−α)Nα−1
j L10 dα

≪ L10

4/5\
1/2

Q(15−11ε1−1/3−15/(2−α))(α−1) dα≪ Q−0.4.

By (4.13) and (4.15), the last integral on the right of (4.14) is

≪

1\
4/5

Q(15−11ε1−1/3)(α−1)(Q2T )(2+ε)(1−α)Ldα

≪

1\
4/5

Q(15−11ε1−1/3−5(2+ε))(α−1)Ldα≪ 1.

Combining all the above, the proof of Lemma 4.5 is complete.

Lemma 4.6. Under the conditions of Lemma 4.5, for 1 ≤ j ≤ 3 we have

S1,j :=
∑

q≤Q

∑∗

χ (mod q)

∑

|γ|≤T

( τ/q\
−τ/q

∣∣∣
Nj\
N ′

j

x̺−1e(ajxη) dx
∣∣∣
2

dη
)1/2

≪ N1/2|aj |
−1.
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P r o o f. The above integral with respect to η is

=

τ/q\
−τ/q

∣∣∣∣
N\

N/4

(
x

|aj |

)̺−1

e

(
aj

|aj |
xη

)
d

(
x

|aj |

)∣∣∣∣
2

dη

= |aj |
−2β

τ/q\
−τ/q

∣∣∣
N\

N/4

x̺−1e(xη) dx
∣∣∣
2

dη.

Hence by Lemma 4.3 the innermost sum in S1,j is

≪
∑

|γ|≤1

|aj |
−β

{ τ/q\
−τ/q

min{N2β , |η|−2β} dη
}1/2

+
∑

1≤|γ|≤T

|aj |
−β

{ \
η∈[0,τ/q]

η>4|γ|/(πN)

(Nβ−1η−1)2 dη

+
\

η∈[0,τ/q]
4|γ|/(πN)≥η>|γ|/(4πN)

(Nβ |γ|−1/2)2 dη +
\

η∈[0,τ/q]
η≤|γ|/(4πN)

(Nβ |γ|−1)2 dη
}1/2

≪ N1/2|aj |
−1

∑

|γ|≤T

Nβ−1
j ,

by noting (4.2). Thus by Lemma 4.5 we get the desired result.

The following lemma is the desired simplified form for I1(b).

Lemma 4.7. Let I1(b) be defined as in (4.7). Under the assumptions of

Lemma 4.5, we have

I1(b) =
∑

q≤Q

ϕ(q)−3

q∑′

h=1

e

(
−
b

q
h

) τ/q\
−τ/q

e(−bη)

3∏

j=1

Hj(h, q, η) dη +O(Ω1),

where
∑′q

h=1 is the summation over all 1 ≤ h ≤ q, (h, q) = 1, and

(4.16) Ω1 := N2Q2.5+ε1 |a1a2a3|
−1T−1L2.

P r o o f. Recalling the definition in (4.7) we have

(4.17) I1(b) =
∑

q≤Q

q∑′

h=1

τ/q\
−τ/q

e(−b(hq−1 + η))

3∏

j=1

Sj(hq
−1 + η) dη.

We approximate Sj(hq
−1 +η) by the formulas in Lemma 4.2. So we rewrite

Sj(hq
−1 + η) as Sj(hq

−1 + η) = Bj +O(Fj), where Bj := ϕ(q)−1Hj(h, q, η)
and Fj := (1+N |η|)Njq

1/2T−1L2. Firstly, we replace S3(hq
−1+η) in (4.17)

by B3 +O(F3). After such substitution, there is an error term in (4.17) due
to the term O(F3). In view of the definition of F3, and then by (4.1), (4.2),
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(4.5) and (4.16), the error term is ≪ N2Q1+ε1T−1|a1a2a3|
−1/2L3 ≤ Ω1.

Next, we replace Sj(hq
−1 + η) (j = 1, 2) by Bj + O(Fj). Consequently, we

have

I1(b) =
∑

q≤Q

q∑′

h=1

τ/q\
−τ/q

e(−b(hq−1 + η))ϕ(q)−1H3(h, q, η)(4.18)

× {B1B2 +O(|B1|F2 + |B2|F1 + F1F2)} dη +O(Ω1).

Denote by E1, E2 and E3 the total error induced by |B1|F2, |B2|F1 and
F1F2 in (4.18) respectively. Then they can be estimated in precisely the
same way; and the most difficult case is that for E2 (or E1). So we only
give the details of the estimate for E2 to illustrate the methods. We have

E2 ≪ N1Q
1+ε1T−1L2(4.19)

×
∑

q≤Q

q−1/2ϕ(q)−2

q∑′

h=1

τ/q\
−τ/q

|H2(h, q, η)H3(h, q, η)| dη.

From (4.11), we have for 1 ≤ j ≤ 3,

|Hj(h, q, η)| ≤ |G(ajh, q)Ij(η)| + δ(q)|G(ajh, χ̃χ0)Ĩj(η)|(4.20)

+ |Gj(h, q, η)|.

By (4.20), multiplying out |H2(h, q, η)H3(h, q, η)|, we get 9 terms. The con-
tribution of these terms to (4.19) can be estimated in the same way. So
we only give the details of the estimation of the typical terms correspond-
ing to |G2(h, q, η)G3(h, q, η)|, |

∏3
j=2G(ajh, q)Ij(η)|, δ(q)|G(a2h, q)I2(η) ×

G(a3h, χ̃χ0)Ĩ3(η)| and δ(q)|G(a2h, χ̃χ0)Ĩ2(η)G3(h, q, η)|. Denote by E21,
E22, E23 and E24 the total error to (4.19) induced by them respectively.
In view of (4.9) and (4.10), we get

E21 ≪ N1Q
1+ε1T−1L2

×
∑

r2≤Q

∑∗

χ2 (mod r2)

∑′

|γ2|≤T

∑

r3≤Q

∑∗

χ3 (mod r3)

∑′

|γ3|≤T

∑

q≤Q
[r2,r3]|q

q−1/2ϕ(q)−2

×

q∑′

h=1

|G(a2h, χ2χ0)G(a3h, χ3χ0)|

τ/q\
−τ/q

∣∣∣
3∏

j=2

Nj\
N ′

j

x̺j−1e(ajxη) dx
∣∣∣ dη.

Now apply Cauchy’s inequality to the integral with respect to η. Noting
r2, r3 ≤ q, and using the trivial bound |G(ajh, χjχ0)| ≤ ϕ(q), j = 2, 3, by
Lemma 4.6 we get

E21 ≪ N1Q
1+ε1T−1L2S1,2S1,3

∑

q≤Q

q−1/2ϕ(q)−2ϕ(q)3 ≪ Ω1.
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In view of (4.9), by Lemma 4.3, we have for 1 ≤ j ≤ 3,

τ/q\
−τ/q

|Ĩj(η)|
2 dη ≪ |aj |

−2β̃
{ N−1\

0

N2β̃ dη +

τ/q\
N−1

η−2β̃ dη
}
≪ N |aj |

−2.

Hence, similar to the estimation of E21, we have

E24 ≪ N1Q
1+ε1T−1L2S1,3

∑

q≤Q

( τ/q\
−τ/q

|Ĩ2(η)|
2 dη

)1/2

q−1/2ϕ(q) ≪ Ω1.

Similarly, E22, E23 ≪ Ω1. Hence E2 ≪ Ω1. In precisely the same way we
have E1, E3 ≪ Ω1. Then Lemma 4.7 follows from these estimates and (4.18).

5. The estimation of M1 and M3. Multiplying out the product∏3
j=1Hj(h, q, η) in Lemma 4.7, we get 27 terms (if β̃ exists). They are

grouped into the following three categories:

• J1 : the term
∏3

j=1{G(ajh, q)Ij(η)};

• J2 : 19 terms (if β̃ exists), each has at least one Gj(h, q, η) as factor;

• J3 : the 7 terms remaining (if β̃ exists).

For i = 1, 2, 3, define

Mi :=
∑

q≤Q

ϕ(q)−3

q∑′

h=1

e

(
−
b

q
h

)
(5.1)

×

τ/q\
−τ/q

e(−bη){sum of the terms in Ji} dη.

Then by Lemma 4.7 we get

(5.2) I1(b) = M1 +M2 +M3 +O(Ω1),

if one assumes (4.4). For the estimation ofM1 andM3, we need the following
notations. For any positive integer q, define

(5.3) A(q) := ϕ(q)−3

q∑′

h=1

e

(
−
b

q
h

) 3∏

j=1

G(ajh, q).

By [LT1, Lemma 4.1] A(q) is multiplicative. For any prime p, put

(5.4) s(p) := 1 +A(p).

Let r1, r2, r3 be any positive integers and denote by [r1, r2, r3] the least
common multiple of r1, r2 and r3. For any primitive characters χj (mod rj)



Ternary linear equations 367

(1 ≤ j ≤ 3) and [r1, r2, r3] | q, define

(5.5) Z(q) := Z(q;χ1, χ2, χ3) :=

q∑′

h=1

e

(
−
b

q
h

) 3∏

j=1

G(ajh, χjχ0),

where χ0 is the principal character modulo q. For abbreviation, we let
∑
∼

denote the summation over (l1, l2, l3) satisfying

1 ≤ lj ≤ r̃, (lj , r̃) = 1, 1 ≤ j ≤ 3 and

3∑

j=1

ajlj ≡ b (mod r̃).

For 1 ≤ m1 ≤ m2 ≤ . . . ≤ 3, put

G(m1,m2, . . .) :=
∑

∼

χ̃(lm1
)χ̃(lm2

) . . . ,

and

P (m1,m2, . . .) :=
\
D

(Nxm1
)β̃−1(Nxm2

)β̃−1 . . . dx1 dx2,

where

(5.6) D := {(x1, x2) : (4|aj |)
−1 ≤ xj ≤ |aj |

−1, j = 1, 2, 3},

and x3 = a−1
3 (bN−1 − a1x1 − a2x2).

Lemma 5.1. For any complex numbers ̺j with 0 < Re ̺j ≤ 1, 1 ≤ j ≤ 3,
we have

∞\
−∞

{ 3∏

j=1

Nj\
N ′

j

x̺j−1e(ajxη) dx
}
e(−bη) dη

= N2|a3|
−1
\
D

3∏

j=1

(Nxj)
̺j−1 dx1 dx2,

where D is defined as in (5.6).

P r o o f. The lemma can be proved by precisely the same way as that of
[LT1, Lemma 4.7].

Lemma 5.2. Let Z(q) and s(p) be defined as in (5.5) and (5.4) respec-

tively , and let r = [r1, r2, r3]. Then under the conditions of (1.2) and (1.3),
we have

(5.7)
∏

p

s(p) ≫ 1

and

(5.8)
∑

q≤Q
r|q

ϕ(q)−3|Z(q)| ≤ 2.140782
∏

p

s(p).
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P r o o f. (5.7) is [LT1, Lemma 4.4(2)]. We only need to prove (5.8).
Completely similar to [LT1, Lemma 4.6] we have

∑

q≤Q
r|q

ϕ(q)−3|Z(q)| ≤
∏

p|r

s(p)
∏

p∤r

(1 + |A(p)|) =
∏

p∤r

1 + |A(p)|

1 +A(p)

∏

p

s(p).

Note that (1.2) and (1.3) imply A(2) = 1. For any prime p ≥ 3, the proof of
[LT1, Lemma 4.2] shows that either |A(p)| ≤ (p − 1)−2 or A(p) > 0 under
the conditions (1.2) and (1.3). Thus

∏

p∤r

1 + |A(p)|

1 +A(p)
≤

∏

p≥3

1 + (p − 1)−2

1 − (p − 1)−2
=

∏

p≥3

(
1 +

2

p(p− 2)

)
≤ 2.140782.

The proof of Lemma 5.2 is complete.

Lemma 5.3. Let M1 be defined as in (5.1). Then

(5.9) M1 = M0 +O(Ω2),

where

(5.10) M0 := N2|a3|
−1

(∏

p

s(p)
) \

D

dx1 dx2

and

(5.11) Ω2 := N2Q−1+ε1/4|a1a2a3|
−1.

P r o o f. By the use of [LT1, Lemma 4.4(4) with B replaced by Bε] (note
that the proof in [LT1, Lemma 4.4(4)] actually allows us to replace the B
there by B1/ log log B), the lemma can be proved in the same way as [LT1,
Lemma 5.1] with a more careful estimate of bounds in terms of aj ’s rather
than B.

Lemma 5.4. Let M3 be defined as in (5.1). Then

M3 = N2|a3|
−1r̃ϕ(r̃)−3

(∏

p∤r̃

s(p)
){

−

3∑

j=1

G(j)P (j) +
∑

1≤i<j≤3

G(i, j)P (i, j)

−G(1, 2, 3)P (1, 2, 3)
}

+O(r̃Ω2 +N2Q−1−ε1).

P r o o f. The lemma can be proved in the same way as [LT1, Lemma 5.2]
with a more careful estimate of bounds in terms of aj ’s rather than B.

Lemma 5.5. If the exceptional zero β̃ defined as in Proposition 2.3 exists,
put

(5.12) ω := (1 − β̃)L.

Then M1 +M3 ≥ 20ω3M0 +O(r̃Ω2 +N2Q−1−ε1).
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P r o o f. The combination of Lemmas 5.3 and 5.4 together with (5.10)
and [LT1, (4.16)] gives

(5.13) M1 +M3

= M0 +N2|a3|
−1r̃ϕ(r̃)−3

(∏

p∤r̃

s(p)
){

−

3∑

j=1

G(j)P (j)

+
∑

1≤i<j≤3

G(i, j)P (i, j) −G(1, 2, 3)P (1, 2, 3)
}

+O(r̃Ω2 +N2Q−1−ε1)

= N2|a3|
−1r̃ϕ(r̃)−3

(∏

p∤r̃

s(p)
)∑

∼

\
D

3∏

j=1

(1 − χ̃(lj)(Nxj)
β̃−1) dx1 dx2

+O(r̃Ω2 +N2Q−1−ε1).

Since, by (4.2) and (5.6), Nxj ≥ N ′
j (1 ≤ j ≤ 3), the last summation

∑
∼

in

(5.13) is

≥
∑

∼

\
D

3∏

j=1

(1 − (Nxj)
β̃−1) dx1 dx2(5.14)

≥
(∑

∼

\
D

dx1 dx2

) 3∏

j=1

(1 −N ′
j
β̃−1

).

Furthermore, in view of (2.13) we have ω ≤ 0.364. Thus noting N ′
j ≥

4−1Q15−11ε1−1/3 we have for 1 ≤ j ≤ 3,

1 −N ′
j
β̃−1

≥ 1 − (4−1Q15−11ε1−1/3)β̃−1(5.15)

= 1 − exp{(β̃ − 1) log(4−1Q15−11ε1−1/3)}

≥ 1 − exp{(15 − 12ε1 − 1/3)(β̃ − 1)L}

≥ 1 − exp{−(15 − 12ε1 − 1/3)ω}

≥
1 − exp{−0.364(15 − 12ε1 − 1/3)}

0.364
ω ≥ 2.734ω.

Now, substituting (5.15) into (5.14), then into (5.13), and noting (5.10)
and [LT1, (4.16)], one can easily derive the desired result. The proof of
Lemma 5.5 is complete.

Lemma 5.6. If β̃ exists, we have

M1 +M3 = M0 +O(Ω2 +N2r̃−1 log3 L+N2Q−1−ε1).

P r o o f. This can be proved in the same way as [LT1, Lemma 5.5].
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6. Further estimates on triple sums

Lemma 6.1. Let ε2 be a fixed sufficiently small positive constant and

Q > K(ε2) which is a positive constant depending on ε2 only. Suppose that

the exceptional zero β̃ exists and satisfies ω ≤ ε2. Then for 1 ≤ j ≤ 3,

Σ2 :=
∑

q≤Q

∑∗

χ (mod q)

∑′

|γ|≤Q1+ε1q−1

Nβ−1
j ≪ ε

1/2
2 ω3.

P r o o f. For any zero ̺ = β + iγ of L(s, χ) with |γ| ≤ Q1+ε1q−1 and

̺ 6= β̃, by (2.12) and (5.12) we have for any parameter 0 < c < 1,

β ≤ 1 − min

{
c

6
,

(1 − c)(2/3 − ε)

log([q, r̃]Q1+ε1q−1)
log

(
(1 − c)(2/3 − ε)

(1 − β̃) log([q, r̃]Q1+ε1q−1)

)}
(6.1)

≤ 1 − min

{
c

6
,

(1 − c)(2/3 − ε)

(2 + ε1)L
log

(
(1 − c)(2/3 − ε)

(2 + ε1)ω

)}
.

In view of (2.13) and (5.12), we have for any positive ε,

(6.2) ω ≥ Q−ε,

providing that Q ≥ K(ε) which is a positive constant depending on ε only.
Hence, for any fixed sufficiently small parameter c, the second term inside
the last curly brackets in (6.1) is always smaller than the first one c/6. Thus
the above ensures

β ≤ 1 −
(1 − c)(2/3 − ε)

(2 + ε1)L
log

(
(1 − c)(2/3 − ε)

(2 + ε1)ω

)
(6.3)

≤ 1 −
1 − ε3

3L
log

(
1 − ε3

3ω

)
=: 1 − η(Q),

where ε3 = ε3(c, ε, ε1) is a positive constant depending on c, ε and ε1 only.
And ε3 becomes sufficiently small if c, ε and ε1 are chosen to be sufficiently
small. Hence by putting

(6.4) N∗(α,Q) :=
∑

q≤Q

∑∗

χ (mod q)

∑

̺=β+iγ 6=β̃
|γ|≤Q1+ε1q−1

β≥α

1,

we can write

Σ2 = −

1−η(Q)\
1/2

Nα−1
j dN∗(α,Q)(6.5)

= N
−1/2
j N∗(1/2, Q)

+
{ 4/5\

1/2

+

1−η(Q)\
4/5

}
N∗(α, Q)Nα−1

j logNj dα.
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Similar to the proof of Lemma 4.5, the sum of the first two terms on the
right hand side of (6.5) can be estimated as ≪ Q−0.4 ≤ ε2ω

3 by noting
(6.2). To estimate the last term, we first use (4.13) to bound N∗(α,Q) as
follows. Let ck = 1 − 2−k for k ≥ 0. So 2ck = 1 + ck−1 for k ≥ 1. Let k0 be
a fixed sufficiently large integer. Then by (6.4) and (4.13) we have

N∗(α,Q) ≤

k0∑

k=1

∑

Qck−1<q≤Qck

∑∗

χ (mod q)

∑′

̺=β+iγ

|γ|≤Q1−ck−1+ε1

β≥α

1

+
∑

Q
ck0 <q≤Q

∑∗

χ (mod q)

∑′

̺=β+iγ

|γ|≤Q
1−ck0

+ε1

β≥α

1

≪

k0∑

k=1

Q(1+2ck+ε1−ck−1)(2+ε)(1−α) +Q(2+1+ε1−ck0
)(2+ε)(1−α)

≪ Q(2+2ε1)(2+ε)(1−α),

providing that 2−k0 ≤ ε1 where the implied constant in the last ≪ depends
on k0. Hence by (4.15) and in view of the definition of η(Q) in (6.3), the
last integral in (6.5) can be estimated as

≪

1−η(Q)\
4/5

Q(15−11ε1−1/3−(2+2ε1)(2+ε))(α−1)Ldα

≪ exp

{
− (15 − 11ε1 − 1/3 − (2 + 2ε1)(2 + ε))

1 − ε3
3

log

(
1 − ε3

3ω

)}

≪ ω3.5 ≪ ε
1/2
2 ω3.

The proof of Lemma 6.1 is complete.

Lemma 6.2. Under the notations of Lemma 6.1, for any positive constant

C > 0 let Q > K(C, ε2) which is a positive constant depending on C and

ε2 only. If (i) β̃ does not exist or (ii) β̃ exists and satisfies ω > ε2, then we

have for 1 ≤ j ≤ 3,

Σ3 :=
∑

q≤Q

∑∗

χ (mod q)

∑′

|γ|≤C

N ′
j
β−1

≤

{
0.096 if β̃ does not exist,

0.5633ω3 if β̃ exists.

P r o o f. We first prove the lemma under the assumption that the excep-
tional zero β̃ does not exist. By Proposition 2.3 and in view of the bounds
for λ in Lemma 3.1, we can write
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Σ3 = N ′
j
−1/2

N∗(1/2, Q,C) +
{ 4/5\

1/2

+

1−L−1log logL\
4/5

+

1−6/L\
1−L−1log logL

+

1−2/L\
1−6/L

+

1−1/L\
1−2/L

+

1−0.696/L\
1−1/L

+

1−0.504/L\
1−0.696/L

+

1−0.364/L\
1−0.504/L

}
N∗(α, Q, C)N ′

j
α−1

logN ′
j dα

=:

9∑

l=1

Cl, say.

By (4.12) and (4.15) we have

C1 ≪ Q−(15−11ε1−1/3)/2+2L9C ≪ Q−5

and

C2 ≪

4/5\
1/2

L10Q(15−11ε1−1/3)(α−1)(Q2C)3(1−α)/(2−α) dα≪ Q−1.9.

By (4.13) and (4.15) we have

C3 ≪

1−L−1log logL\
4/5

LQ(15−11ε1−1/3)(α−1)(Q2C)(2+ε)(1−α) dα≪ (logL)−10.

Now we use Lemma 3.1 to estimate C4 to C8. So we use the notation
α = 1 − λ/L. In view of (4.15) and (4.2) we have

C4 ≤

log logL\
6

N∗(1 − λ/L, Q,C)Q−(15−12ε1−1/3)λ/L(L−1logN) dλ

≤ 15

log logL\
6

E(ε1, λ)N∗
4 dλ ≤ 7 · 10−29,

where E(ε1, λ) := exp(−(15 − 12ε1 − 1/3)λ). Similarly we have

C5 ≤ 8.7 · 10−9; C6 ≤ 0.0008682; C7 ≤ 0.02361; C8 ≤ 0.062157.

For C9, by Lemma 2.5 we know that if 1−0.504/L ≤ α ≤ 1−0.364/L, then
N∗(α,Q,C) ≤ 2, whence by (4.15),

C9 ≤ 2 · 15

0.504\
0.364

E(ε1, λ) dλ ≤ 0.008564.

Combining all the above, we get under the assumption that β̃ does not exist,

(6.6) Σ3 ≤ 0.096.
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Now we come to estimate Σ3 under the assumption that β̃ exists. We
separate the arguments into six cases according to the values of the upper
bounds for ω (see (5.12)) at 10−5, 0.0025, 0.066, 0.2, 0.306 and 0.364.

(i) If ω ≤ 10−5, then by noting ω ≥ ε2, for any zero ̺ = β + iγ (6= β̃)
of the function (2.1), we can show easily that the bound (6.3) holds by a
similar (but simpler) argument as for (6.3). Hence by a similar argument to

the case where β̃ does not exist and noting (4.15), we get

Σ3 ≤ (logL)−9ω3(6.7)

+

1−η(Q)\
1−L−1log logL

N∗(α,Q,C)Q(15−12ε1−1/3)(α−1) logN dα.

To estimate the integral in (6.7), we consider two cases according to η(Q) ≥
6/L or not. When η(Q) ≥ 6/L, from ((1−ε3)/(3L)) log((1−ε3)/(3ω)) ≥ 6/L
we get ω ≤ 3−1 exp(−18− ε). Thus by the last inequality in Lemma 3.1, the
integral in (6.7) can be estimated as

≤

log logL\
η(Q)L

15(42.54)(1 + 35.385/6) exp(2.87538λ)Q−(15−12ε1−1/3)λL−1

dλ

≤ 374

(
3ω

1 − ε3

)(1−ε3)(15−12ε1−1/3−2.87538)/3

≤ 374

(
3ω

1 − ε3

)3.930428

≤ 0.0006ω3.

When η(Q) < 6/L, by ((1 − ε3)/(3L)) log((1 − ε3)/(3ω)) < 6/L we get
ω > (3 + ε3)

−1 exp(−18 − ε3). Thus in view of C4 ≤ 7 · 10−29, the integral
in (6.7) is

≤
7 · 10−29

((3 + ε3)−1 exp(−18 − ε3))3
ω3(6.8)

+

1−η(Q)\
1−6/L

N∗(α,Q,C)Q(15−12ε1−1/3)(α−1) logN dα

≤ 5.36 · 10−4ω3 +

1−η(Q)\
1−6/L

N∗(α,Q,C)Q(15−12ε1−1/3)(α−1) logN dα.

By the next-to-last inequality in Lemma 3.1, the last integral in (6.8) is

≤

6\
η(Q)L

15(167.67)(2)−1 exp(3.116796λ)Q(15−12ε1−1/3)(−λ/L) dλ

≤ 109

(
3ω

1 − ε3

)3.849956

≤ 0.448ω3.
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Combining all the above, we get for ω ≤ 10−5, Σ3 ≤ 0.45ω3.
Comparison of Tables 1 and 2 in §2 shows that the bounds in Table 2

can be applied in all cases if β̃ exists. And in view of the definition of ω in
(5.12), one finds that the ω here plays the role of λ1 in Table 2. Thus we
can proceed as follows.

(ii) If 10−5 < ω ≤ 0.0025, then for any zero ̺ = β + iγ 6= β̃ of the
function (2.1) we have β ≤ 1 − 4.55/L. Using the estimates for C1 to C4 in

the case where β̃ does not exist, by Lemma 3.1, we get

Σ3 ≤ C1 + C2 + C3 + C4 + 15

6\
4.55

E(ε1, λ)N∗
5 dλ

≤ C1 + C2 + C3 + C4 + 7.1 · 10−22 ≤ 7.2 · 10−22 ≤ 10−6ω3.

(iii) If 0.0025 < ω ≤ 0.066, then for any zero ̺ = β + iγ 6= β̃ of the
function (2.1) we have β ≤ 1 − 2/L. Thus Σ3 ≤ C1 +C2 + C3 +C4 +C5 ≤
8.8 · 10−9 ≤ 0.5633ω3.

(iv) If 0.066 < ω ≤ 0.2, then β ≤ 1 − 1.16/L. Thus

Σ3 ≤

5∑

l=1

Cl + 15

2\
1.16

E(ε1, λ)N∗
6 dλ ≤ 0.000142 ≤ 0.5ω3.

(v) If 0.2 < ω ≤ 0.306, then β ≤ 1 − 0.867/L. Hence

Σ3 ≤
6∑

l=1

Cl + 15

1\
0.867

E(ε1, λ)N∗
7 dλ ≤ 0.00375 ≤ 0.5ω3.

(vi) If 0.306 < ω ≤ 0.364, then β ≤ 1 − 0.75/L. Hence

Σ3 ≤

6∑

l=1

Cl + 15

1\
0.75

E(ε1, λ)N∗
7 dλ ≤ 0.0136 ≤ 0.5ω3.

Combining all the estimates for Σ3 from the above cases (i) to (vi), we

conclude that when β̃ does indeed exist,

(6.9) Σ3 ≤ 0.5633ω3.

By (6.6) and (6.9), the proof of Lemma 6.2 is complete.

7. The estimation of M2. We first give some preliminary lemmas.

Lemma 7.1. For any absolute constant C ≥ 1, we have for 1 ≤ j ≤ 3,

S2,j :=
∑

q≤Q

∑∗

χ (mod q)

∑

C≤|γ|≤T

{ τ/q\
−τ/q

∣∣∣
Nj\
N ′

j

x̺−1e(ajxη) dx
∣∣∣
3

dη
}1/3

≪ C−1/6|aj |
−1N2/3.
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P r o o f. The integral with respect to η in the above representation is

(7.1) |aj |
−3β

τ/q\
−τ/q

∣∣∣
N\

N/4

x̺−1e(xη) dx
∣∣∣
3

dη.

Hence by Lemma 4.3, the innermost sum
∑

C≤|γ|≤T in the representation
of S2,j is

≪
∑

C≤|γ|≤T

|aj |
−β

{ \
η∈[0,τ/q]

η≤|γ|/(4πN)

(Nβ |γ|−1)3 dη

+
\

η∈[0,τ/q]
|γ|/(4πN)<η≤4|γ|/(πN)

(Nβ |γ|−1/2)3 dη +
\

η∈[0,τ/q]
η>4|γ|/(πN)

(Nβ−1η−1)3 dη
}1/3

≪
∑

C≤|γ|≤T

|aj |
−βNβ−1/3|γ|−1/6 ≪ C−1/6|aj |

−1N2/3
∑

|γ|≤T

Nβ−1
j ,

by noting (4.2). Thus by Lemma 4.5 we get the desired result.

Lemma 7.2. We have for 1 ≤ j ≤ 3,

S3,j :=
∑

q≤Q

∑∗

χ (mod q)

∑′

|γ|≤T

{ τ/q\
−τ/q

∣∣∣
Nj\
N ′

j

x̺−1e(ajxη) dx
∣∣∣
3

dη
}1/3

≪ |aj |
−1N2/3.

P r o o f. In view of Lemma 7.1, we only need to prove the lemma for
T = 1. This follows from Lemmas 4.3 and 4.5.

Lemma 7.3. For the ε2 > 0 given as in Lemma 6.1, let Q > K(ε2)

which is a positive constant depending on ε2 only. If β̃ exists and satisfies

ω ≤ ε2, then S3,j defined as in Lemma 7.2 can be estimated further as

S3,j ≪ ε
1/2
2 ω3N2/3|aj |

−1.

P r o o f. We write

S3,j =
{ ∑

q≤Q

∑∗

χ (mod q)

∑′

|γ|≤15Q1+ε1q−1

+
∑

q≤Q

∑∗

χ (mod q)

∑′

15Q1+ε1q−1<|γ|≤T

}
(7.2)

×
{ τ/q\

−τ/q

∣∣∣
Nj\
N ′

j

x̺−1e(ajxη) dx
∣∣∣
3

dη
}1/3

.

By a similar argument to the proof of Lemma 7.1, the innermost sum∑′
|γ|≤15Q1+ε1q−1 in the first multi-sum in (7.2) is

≪ |aj |
−1N2/3

∑′

|γ|≤15Q1+ε1q−1

Nβ−1
j .
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Thus by Lemma 6.1, the first multi-sum in (7.2) is ≪ ε
1/2
2 ω3|aj |

−1N2/3 as
desired. We now consider the second multi-sum in (7.2). In view of |η|≤τq−1

and τ = N−1Q1+ε1 , we always have |η| ≤ |γ|/(4πN). Thus by (7.1) and the
second inequality in Lemma 4.3, the innermost sum

∑′
15Q1+ε1q−1<|γ|≤T in

the second multi-sum in (7.2) can be estimated as

≪
∑′

15Q1+ε1q−1<|γ|≤T

|aj |
−β

{ τ/q\
−τ/q

N3β |γ|−3 dη
}1/3

≪ Q−2ε1/3|aj |
−1N2/3

∑′

15Q1+ε1q−1<|γ|≤T

Nβ−1
j .

Thus by Lemma 4.5 and in view of (6.2), the second multi-sum in (7.2)

can be bounded by ε
1/2
2 ω3|aj |

−1N2/3 again. The proof of Lemma 7.3 is
complete.

Lemma 7.4. Let M0 be defined as in (5.10). If (i) all the aj’s are positive

and b = N, or (ii) not all the aj’s are of the same sign and N ≥ 3|b|, then

M0 ≫ N2|a1a2a3|
−1

∏

p

s(p).

P r o o f. The lemma can be proved in precisely the same way as [LT1,
Lemma 7.2].

Now we come to estimate M2. We consider two cases according as the
exceptional zero β̃ exists or not.

(I) β̃ exists. Recall from (5.1) that there are 19 terms in the integrand
of M2 and they are of the following 6 types:

(i) 3 terms of the form {
∏2

j=1G(ajh, q)Ij(η)}G3(h, q, η);

(ii) 6 terms of the form δ(q)G(a1h, q)I1(η)G(a2h, χ̃χ0)Ĩ2(η)G3(h, q, η);

(iii) 3 terms of the form δ(q){
∏2

j=1G(ajh, χ̃χ0)Ĩj(η)}G3(h, q, η);

(iv) 3 terms of the form G(a1h, q)I1(η)
∏3

j=2 Gj(h, q, η);

(v) 3 terms of the form δ(q)G(a1h, χ̃χ0)Ĩ1(η)
∏3

j=2 Gj(h, q, η);

(vi) the remaining term
∏3

j=1 Gj(h, q, η).

The treatment of these six types is quite similar. We illustrate the details
with a term belonging to the fifth type, namely,

M25 :=
∑

q≤Q

ϕ(q)−3

q∑′

h=1

e

(
−
b

q
h

)

×

τ/q\
−τ/q

δ(q)G(a1h, χ̃χ0)Ĩ1(η)e(−bη)
3∏

j=2

Gj(h, q, η) dη.
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In view of (4.9), (4.10) and (5.5), the above is

=
∑

q≤Q
r̃|q

ϕ(q)−3

q∑′

h=1

e

(
−
b

q
h

)
G(a1h, χ̃χ0)(7.3)

×
∑

χ2 (mod q)

∑

χ3 (mod q)

( 3∏

j=2

G(ajh, χj)
)

×
∑′

|γ2|≤T

∑′

|γ3|≤T

τ/q\
−τ/q

e(−bη)Ĩ1(η)
( 3∏

j=2

Nj\
N ′

j

x̺j−1e(ajxη) dx
)
dη

=
∑

r2≤Q

∑∗

χ2 (mod r2)

∑′

|γ2|≤T

∑

r3≤Q

∑∗

χ3 (mod r3)

∑′

|γ3|≤T

∑

q≤Q
[r̃,r2,r3]|q

ϕ(q)−3

× Z(q; χ̃, χ2, χ3)

τ/q\
−τ/q

e(−bη)Ĩ1(η)

×
( 3∏

j=2

Nj\
N ′

j

x̺j−1e(ajxη) dx
)
dη.

Noting that [r̃, r2, r3] | q implies r2, r3 ≤ q, and applying Cauchy’s inequality,
the absolute value of the last integral with respect to η in (7.3) is

≤
{ τ/q\

−τ/q

∣∣∣
N1\
N ′

1

xβ̃−1e(a1xη) dx
∣∣∣
3

dη
}1/3

(7.4)

×

3∏

j=2

{ τ/rj\
−τ/rj

∣∣∣
Nj\
N ′

j

x̺j−1e(ajxη) dx
∣∣∣
3

dη
}1/3

.

By Lemma 4.3, the first term in the above product can be estimated easily as

(7.5) ≪ |a1|
−1N2/3.

Now we argue according to whether ω ≤ ε2 or not. If ω ≤ ε2, we sub-
stitute (7.5) into (7.4), and then into (7.3). Then using (5.8) to estimate
the sum over q in (7.3), and applying Lemma 7.3, (7.3) can be estimated
further as

(7.6) ≪ ε2N
2|a1a2a3|

−1ω6
∏

p

s(p).

If ω > ε2, we write (7.3) further as
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=
{ ∑

r2≤Q

∑∗

χ2 (mod r2)

∑′

|γ2|≤C

∑

r3≤Q

∑∗

χ3 (mod r3)

∑′

|γ3|≤C

(7.7)

+
∑

r2≤Q

∑∗

χ2 (mod r2)

∑′

|γ2|≤T

∑

r3≤Q

∑∗

χ3 (mod r3)

∑′

|γ3|≤T

at least one of |γj|≥C, j=2, 3

}

×
∑

q≤Q
[r̃,r2,r3]|q

ϕ(q)−3Z(q; χ̃, χ2, χ3)

×

τ/q\
−τ/q

e(−bη)Ĩ1(η)
( 3∏

j=2

Nj\
N ′

j

x̺j−1e(ajxη) dx
)
dη.

For the second multi-sum inside the curly brackets in (7.7), similar to the
above arguments, we substitute (7.5) into (7.4), and then into (7.7). Then
using (5.8) to estimate the sum over q, and applying Lemmas 7.1 and 7.2,
the second multi-sum can be estimated as

(7.8) ≪ N2|a1a2a3|
−1C−1/6

∏

p

s(p).

For the first multi-sum inside the curly brackets in (7.7), we first extend the
range of the integration with respect to η to (−∞,∞) and let R25 be the
total error induced in (7.7) because of the extension of range. Then

R25 ≪
∑

r2≤Q

∑∗

χ2 (mod r2)

∑′

|γ2|≤C

∑

r3≤Q

∑∗

χ3 (mod r3)

∑′

|γ3|≤C

∑

q≤Q
[r̃,r2,r3]|q

ϕ(q)−3(7.9)

× |Z(q; χ̃, χ2, χ3)|
∣∣∣

∞\
τ/q

( N1\
N ′

1

xβ̃−1e(a1xη) dx
)

×
( 3∏

j=2

Nj\
N ′

j

x̺j−1e(ajxη) dx
)
e(−bη) dη

∣∣∣.

By Cauchy’s inequality, the absolute value of the integral with respect to η
in (7.9) is

≤
{ ∞\

τ/q

∣∣∣
N1\
N ′

1

xβ̃−1e(a1xη) dx
∣∣∣
3

dη
}1/3

(7.10)

×

3∏

j=2

{ ∞\
τ/q

∣∣∣
Nj\
N ′

j

x̺j−1e(ajxη) dx
∣∣∣
3

dη
}1/3

.
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For any ̺ = β + iγ with |γ| ≤ C, we have for 1 ≤ j ≤ 3,

∞\
τ/q

∣∣∣
Nj\
N ′

j

x̺−1e(ajxη) dx
∣∣∣
3

dη = |aj |
−3β

∞\
τ/q

∣∣∣
N\

N/4

x̺−1e(xη) dx
∣∣∣
3

dη.

Since τ/q = Q1+ε/(qN) ≥ QεN−1 > 4C/(πN), by the last inequality in
Lemma 4.3, the above can be estimated further as

≪ |aj |
−3β

∞\
τ/q

(Nβ−1η−1)3 dη ≪ N2Q−2ε1 |aj |
−3N

3(β−1)
j .

Hence (7.10) is

(7.11) ≪ N2Q−2ε1 |a1a2a3|
−1N β̃−1

1 Nβ2−1
2 Nβ3−1

3 .

Now, substitute the bound (7.11) into (7.9), and then use (5.8) to estimate
the sum over q in (7.9). Then by Lemma 6.2 we get

R25 ≪ N2Q−2ε1 |a1a2a3|
−1

∏

p

s(p).

Therefore by (7.7) and (7.8) and noting Q−2ε1 ≤ C−1/6, we can summarize
that

M25 =
∑

r2≤Q

∑∗

χ2 (mod r2)

∑′

|γ2|≤C

∑

r3≤Q

∑∗

χ3 (mod r3)

∑′

|γ3|≤C

∑

q≤Q
[r̃,r2,r3]|q

ϕ(q)−3

× Z(q; χ̃, χ2, χ3)

∞\
−∞

e(−bη)
( N1\

N ′

1

xβ̃−1e(a1xη) dx
)

×
( 3∏

j=2

Nj\
N ′

j

x̺j−1e(ajxη) dx
)
dη +O

(
N2|a1a2a3|

−1C−1/6
∏

p

s(p)
)
.

Note that by (4.2) and (5.6) we have, for (x1, x2) ∈ D and j = 1, 2, 3,

Nxj ≥ N ′
j . Hence using Lemmas 5.1, 5.2, 6.2, (5.10) and (Nx1)

β̃−1 ≤ 1, we

get, when β̃ exists and satisfies ω > ε2,

|M25| ≤ N2|a3|
−1(2.140782)(0.5633ω3 )2

(∏

p

s(p)
) \

D

dx1 dx2

+O
(
N2|a1a2a3|

−1C−1/6
∏

p

s(p)
)

≤ (2.140782)(0.5633ω3 )2M0 +O
(
N2|a1a2a3|

−1C−1/6
∏

p

s(p)
)
.
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If C ≥ ε−37
2 , then by Lemma 7.4, the above O-term can be absorbed and

hence under the assumptions in Lemma 7.4,

(7.12) |M25| ≤ (2.140782 + ε4(ε2))(0.5633ω
3)2M0,

where ε4(ε2) is a positive number depending on ε2 only. And ε4 becomes
sufficiently small if ε2 is chosen to be sufficiently small. The comparison
of (7.6) and (7.12) shows that under the conditions in Lemma 7.4, the up-

per bound (7.12) for M25 always holds whenever β̃ exists. In precisely
the same way we can derive that under the conditions of Lemma 7.4 and
C ≥ ε−55

2 ,

|M21|, |M22|, |M23| ≤ (2.140782 + ε4(ε2))(0.5633ω
3)M0,

|M24| ≤ (2.140782 + ε4(ε2))(0.5633ω
3)2M0,

|M26| ≤ (2.140782 + ε4(ε2))(0.5633ω
3)3M0.

Consequently we obtain, under the assumptions of Lemma 7.4 and C ≥
ε−55
2 ,

M2 ≤ (2.140782 + ε4(ε2))(7.13)

× (12(0.5633ω3) + 6(0.5633ω3)2 + (0.5633ω3)3)M0

≤ 15ω3M0.

(II) β̃ does not exist . In this case, there are only 7 terms in the integrand
of M2 and they are of the first, fourth and sixth type in the previous case (I).
Treatment of these terms is completely the same as in case (I). With the
use of the first inequality for Σ3 in Lemma 6.2 instead of the second one,
we obtain, under the assumptions of Lemma 7.4,

|M21| ≤ (2.140782 + ε)(0.096)M0 ,

|M24| ≤ (2.140782 + ε)(0.096)2M0,

|M26| ≤ (2.140782 + ε)(0.096)3M0,

providing that the above C is large enough. Consequently,

(7.14) M2 ≤ (2.140782 + ε)(3(0.096) + 3(0.096)2 + (0.096)3)M0 ≤ 0.68M0.

From (7.13) and (7.14) one can obtain

Lemma 7.5. For any ε2 > 0 given as in Lemma 6.1, let Q > K(ε2)
which is a positive constant depending on ε2 only. Under the assumptions

of Lemma 7.4, we have

M2 ≤

{
0.68M0 if β̃ does not exist ,
15ω3M0 if β̃ exists.

Remark 3. For a positive lower bound for I(b), by (5.2), Lemma 5.3 and

Lemma 8.1 below, it is sufficient to have M2 ≤ (1 − ε)M0 when β̃ does not
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exist since then M3 = 0. By the proof of Lemma 7.5 and the first inequality
for Σ3 in Lemma 6.2, the numerical upper bound for M2 is increasing with
respect to the θ in (4.1). Hence, in view of the above upper bound 0.68M0 for
M2 in (7.14), one can expect that a larger θ > 1/(15 − 11ε1) is permitted.
But numerical experiments show that, by the present method, θ = 1/14
fails for the above purpose. Thus, to make the statements clearer, we take
θ = 1/(15 − 11ε1).

8. Proof of Theorem 1

Lemma 8.1. Let I2(b) be defined as in (4.7). Then

I2(b) ≪ N2Q−1/2|a1a2a3|
−1/2L5.

P r o o f. The lemma can be proved in precisely the same way as [LT1,
Lemma 7.1] with the coefficients aj taken into consideration.

Lemma 8.2. Let I1(b) be defined as in (4.7) and θ be given as in (4.1).
Under the assumptions of Lemma 7.4 and (4.4), we have I1(b) ≫ ω3M0.

P r o o f. If the exceptional zero β̃ does not exist, then there is no M3 in
(5.2). Thus by (5.2), (5.9) and Lemma 7.5, and then by (4.16) and (5.11)
we get

I1(b) ≥ (1 − 0.68)M0 +O(Ω1 +Ω2)

≫M0 +O(N2Q2.5+ε1 |a1a2a3|
−1T−1L2 +N2Q−1+ε1/4|a1a2a3|

−1).

In view of (5.7), Lemma 7.4 and T = Q3 (in (4.1)), the above O-term can be

absorbed into M0 and hence I1(b) ≫M0. If β̃ exists and the corresponding
r̃ ≤ Q1−ε1/3, then by (5.2), Lemma 5.5 and Lemma 7.5, and hence by (4.16)
and (5.11) we get

I1(b) ≥ 5ω3M0 +O(Ω1 + r̃Ω2 +N2Q−1−ε1)

≫ ω3M0 +O(N2Q2.5+ε1 |a1a2a3|
−1T−1L2

+Q1−ε1/3N2Q−1+ε1/4|a1a2a3|
−1 +N2Q−1−ε1).

In view of (5.7), (6.2), Lemma 7.4 and T = Q3, the above O-term can be

absorbed and then I1(b) ≫ ω3M0, providing that Q ≫ A3+2ε1 . If β̃ exists
and the corresponding r̃ > Q1−ε1/3, then by the same arguments as above
except that now we use Lemma 5.6 instead of Lemma 5.5, we get

I1(b) ≥ (1 − 15ω3)M0 +O(Ω1 +Ω2 +N2r̃−1 log3 L+N2Q−1−ε1)

≫M0 +O(N2Q2.5+ε1 |a1a2a3|
−1T−1L2

+N2Q−1+ε1/3 log3 L+N2Q−1−ε1)

≫M0,



382 M. C. Liu and T. Z. Wang

providing that Q is sufficiently large, specifically Q≫ A3+2ε1 . The proof of
Lemma 8.2 is complete.

Proof of Theorem 1. By (4.7), Lemmas 8.1, 8.2 and 7.4 and in view of
(6.2), we get

I(b) = I1(b) + I2(b) ≫ ω3N2|a1a2a3|
−1

providing that Q is sufficiently large, specifically Q ≫ A3+2ε1 , that is,
N ≫ A(3+2ε1)(15−11ε1) = A45−3ε1−22ε2

1 with ε1 small enough. By the as-
sumptions of Lemma 7.4, the proof of Theorem 1 (and of the conclusion
given in Remark 2) is complete.
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