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Bases for integer-valued polynomials in a Galois field

by

Vichian Laohakosol (Bangkok)

1. Introduction. It is well known (see e.g. Pólya and Szegő [11, Chap-
ter 2]) that

(
x
i

)
, i = 0, 1, 2, . . . , is a basis over Z for the integer-valued poly-

nomials. In 1951, Straus [12] proved that a basis over Z for the polynomials
which together with all their derivatives are rational integral at all ratio-
nal integers is given by

∏
p p

[i/p]
(
x
i

)
, i = 0, 1, 2, . . . , where the product runs

over all rational primes p. In 1955, de Bruijn [7] (see also Hall [8]) proved
that a basis over Z for the polynomials which together with all their first
order differences are rational integral at rational integers is given by `i

(
x
i

)
,

i = 0, 1, 2, . . . , where `i denotes the least common multiple of 1, 2, . . . , i and
`0 = 1.

In 1959, Carlitz [5] proved among other things that a basis over Z for the
polynomials which together with their differences up to order r are rational
integral at rational integers is given by L(r)

i

(
x
i

)
, i = 0, 1, 2, . . . , where L(r)

0 =

1 and L(r)
i denotes the least common multiple of the products s1 . . . sk where

s1, . . . , sk are positive integers subject to s1 + . . .+sk ≤ i for all k = 1, . . . , r.
Carlitz in the same paper also showed that the class of polynomials which,
together with their derivatives of all orders, are rational integral at rational
integers coincides with the class of polynomials which, together with all their
differences of all orders, are rational integral at rational integers (see also
Laohakosol and Ubolsri [9]).

In 1976, Brizolis and Straus [1] proved that a basis over Z for the doubly
integer-valued polynomials, i.e. polynomials which together with their first
derivatives take rational integral values at all rational integers, is given by

∏
p

pk(p,i)
(
x

i

)
+

i∑

j=1

a
(i)
j

(
x

i

)
, i = 0, 1, 2, . . . ,

where k(p, i) is the greatest integer k such that kpk−(k−1)pk−1 ≤ i, and a(i)
j
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are computable integers. Brizolis and Straus have remarked that there does
not exist a basis over Z for the class of doubly integer-valued polynomials
which consists of integral multiples of the polynomials

(
x
i

)
as in other cases

mentioned.
In this paper, we consider analogous problems in the polynomial ring

GF(q, x)[T ], i.e. the ring of polynomials with coefficients from the rational
function field GF(q, x). This problem was posed in Narkiewicz [10]. In Sec-
tion 2, we compile the terminology and basic properties that will be used
throughout. In Section 3, we state a lemma which will be applied later, as
well as briefly collect results about the problems we consider that are known
to us. Section 4 treats the case of linear polynomials, which is simpler and
where the desired bases can be completely constructed. Section 5 treats the
general case; as will be seen our discussion is more or less complete, save
only that bases for the cases of higher order derivatives are not explicitly
exhibited because the computation involved becomes too messy, but the
ideas used for such construction work generally. The messy shape of such
bases reflects close similarity with the classical case of doubly integer-valued
polynomials mentioned in Brizolis and Straus [1].

2. Preliminaries. The notation and auxiliary results in this section
follow closely those in Carlitz [2], [3] and will be kept throughout the paper.
Let GF[q, x] be the ring of polynomials over the Galois (finite) field GF(q)
of characteristic p with q = pn, and GF(q, x) its quotient field. For positive
integer m, let

[m] = xq
m − x, [0] = 0, Lm = [m][m− 1] . . . [1], L0 = 1,

Fm = [m][m− 1]q . . . [1]q
m−1

, F0 = 1.

It is known that Fm is the product of all monic polynomials in GF[q, x]
of degree m, and Lm is the least common multiple of all polynomials in
GF[q, x] of degree m. Define a sequence of polynomials over GF[q, x] by

ψm(T ) =
∏

degM<m

(T −M), ψ0(T ) = T,

where the product extends over all polynomials M ∈ GF[q, x], including 0,
of degree less than m. We know that ψm(T ) is a polynomial in T of degree
qm with coefficients in GF[q, x] and enjoys the following properties:

ψm(T ) = cψm(T ) (∀c ∈ GF(q)), ψm(T + U) = ψm(T ) + ψm(U),

ψm(E) = 0 for all E ∈ GF[q, x] of degree less than m,

ψm(M) = Fm for all monic M ∈ GF[q, x] of degree m.

Note that the first two properties are referred to as linear properties, which
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is defined as follows: a polynomial f(T ) is called linear if

f(T + U) = f(T ) + f(U), f(cT ) = cf(T ) (∀c ∈ GF(q)).

It has been shown that any linear polynomial in GF(q, x)[T ] of degree qm

has a unique ψ-representation of the form
∑m
i=0Aiψi(T ), Ai ∈ GF(q, x).

Write a positive integer m with respect to base q as

m = α0 + α1q + . . .+ αsq
s, αi ∈ {0, 1, . . . , q − 1}, αs 6= 0.

Define a sequence of (Carlitz) polynomials GF[q, x] by

Gm(T ) = ψα0
0 (T )ψα1

1 (T ) . . . ψαss (T ), G0(T ) = 1,

and let
gm = Fα0

0 Fα1
1 . . . Fαss , g0 = 1.

We know that Gm(T ) is a polynomial in T of degree m with coefficients
in GF[q, x], and any polynomial of degree m in GF(q, x)[T ] has a unique
G-representation of the form (see also Wagner [14], [15])

m∑

i=0

AiGi(T ), Ai ∈ GF(q, x).

Another related polynomial G′m(T ) of degree m is defined by

G′m(T ) =
s∏

i=0

G′αiqi(T ),

where

G′αqi(T ) =
{
ψαi (T ) for 0 ≤ α ≤ q − 2,
ψαi (T )− Fαi for α = q − 1.

An integer-valued polynomial is a polynomial f(T ) ∈ GF(q, x)[T ] such that
f(M) ∈ GF[q, x] for all M ∈ GF[q, x]. Denote by IVP the class of integer-
valued polynomials; by Dr, r ∈ N, respectively D∞, the class of integer-
valued polynomials which together with their derivatives up to order r,
respectively of all orders, are integer-valued, i.e. belong to GF[q, x].

Let M1, . . . ,Mr be nonzero elements of GF[q, x]. Define the zeroth dif-
ference of f by

∆0f(T ) = f(T ),
the first difference of f by

∆f(T ) =
f(T +M1)− f(T )

M1
for all choices of M1 ∈ GF[q, x],

and in general, for r ∈ N, define the rth difference of f by

∆rf(T ) =
∆r−1f(T +Mr)−∆r−1f(T )

Mr

for all choices of M1, . . . ,Mr ∈ GF[q, x].
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Denote by ∆r, r ∈ N, respectively ∆∞, the class of integer-valued poly-
nomials which together with their differences up to order r, respectively of
all orders, are integer-valued. We note in passing that the sets IVP, Dr,
D∞, ∆r, ∆∞ are all closed under addition and multiplication by elements
from GF[q, x]. Throughout, we will find it convenient to make use of the
notion of the q-indices of a nonnegative integer m. Let the base-q represen-
tation of m be m = α0 + α1q + . . . + αe(m)q

e(m) + . . . + αd(m)q
d(m), where

αi ∈ {0, . . . , q − 1}, α1 = . . . = αe(m)−1 = 0, αe(m) 6= 0, αd(m) 6= 0. Then
e(m) and d(m) are called the lower and upper q-indices, respectively, of m.
The word integral refers to being an element of GF[q, x].

3. A lemma and known results

Lemma. (a) For nonnegative integer i , we have

Dψi(T ) = (−1)i
Fi
Li

(
D :=

d

dT

)
.

(b) For a nonnegative integer i = α0 + α1q + . . .+ αsq
s, we have

D

(
Gi(T )
gi

)
=

s∑

j=0

(−1)jαjGi−qj (T )
Ljgi−qj

.

(c) For positive integers i ≥ j with base-q (= pn) representations i =
α0 + α1q + . . .+ αsq

s and j = β0 + β1q + . . .+ βsq
s, we have

(
i

j

)
≡
(
α0

β0

)(
α1

β1

)
. . .

(
αs
βs

)
(mod p),

where
(
α
0

)
is interpreted as 1.

P r o o f. For (a), see Wagner [13], and (b) is immediate from (a). For (c),
see Comtet [6, p. 9].

Results related to integer-valued polynomials GF[q, x] available to us are
as follows:

1 (Carlitz [3]). A linear polynomial f(T ) =
∑m
i=0Aiψi(T ) is integer-

valued if and only if AiFi ∈ GF[q, x], i.e. ψi(T )/Fi form a basis over GF[q, x]
for linear integer-valued polynomials.

2 (Wagner [16]). A linear integer-valued polynomial

f(T ) =
m∑

i=0

Aiψi(T )
Fi

∈ ∆(T )⇔ Li |Ai,

i.e. Liψi/Fi form a basis over GF[q, x] for ∆1.
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3 (Carlitz [3]). A polynomial f(T ) =
∑m
i=0AiGi(T ) is integer-valued if

and only if Aigi ∈ GF[q, x], i.e. Gi(T )/gi form a basis over GF[q, x] for
IVP.

4 (Carlitz [4]). A linear polynomial f(T ) of degree qm is integer-valued
if and only if f(xj) ∈ GF[q, x] for all j ∈ {1, . . . ,m}.

5 (Carlitz [4]). A polynomial f(T ) of degree less than qm is integer-valued
if and only if f(M) ∈ GF[q, x] for all M ∈ GF[q, x] of degree less than m.

6 (Wagner [17]). Let f(T ) =
∑m
i=0

AiGi(T )
gi

∈ IVP. Then

(6.1) f ∈ ∆1 ⇔ Le∗(j) |Aj (∀j ≥ 1), where e∗(j) = max{e(i) : 1 ≤ i ≤ j},
e(i) = max{k : qk | i}.

(6.2) f ∈ ∆r ⇔ L
(r)
j |Aj (∀j ≥ 1), where

L
(r)
j = lcm{L(s)

j : 1 ≤ s ≤ r},
L

(r)
j = lcm{Le(i1) . . . Le(ir) : i1, . . . , ir > 0, i1+. . .+ir ≤ j,

j!/(i1! . . . ir!(j − i1 − . . .− ir)!) is prime to p}.
In passing, let us mention two interesting results which can be proved

directly:

(i) Liψi(T )/TFi ∈ IVP.
(ii) The set {Le(i)Gi(T )/Tgi : i = 1, 2, . . .} forms a basis over GF[q, x]

for IVP.

4. The linear case. As mentioned earlier, Wagner [16] proved

Proposition 1. The set {Liψi(T )/Fi : i = 0, 1, 2, . . .} forms a basis for
linear polynomials belonging to ∆1 over GF[q, x].

Since ∆2(Liψi(T )/Fi) = 0, an immediate consequence of Proposition 1
is

Corollary 1. Every linear polynomial belonging to ∆1 also belongs to
∆r for all r ≥ 2.

For the case of derivatives, we now prove the following result.

Theorem 1. The set{
ψ0(T )
F0

, (−1)i
(
ψi−1(T )
Fi−1

+
ψi(T )
F qi−1

)
: i = 1, 2, . . .

}

forms a basis for linear polynomials belonging to D1 over GF[q, x].

P r o o f. We first show that each basis element has integral derivative.
This is evident because D(ψ0(T )/F0) = 1/L0 = 1 and D(ψi−1(T )/Fi−1 +
ψi(T )/F qi−1) = 0, by part (a) of the Lemma.
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Next, let f(T ) =
∑m
i=0Aiψi(T )/Fi ∈ D1. To complete the proof, we

show that f(T ) can be written in the exhibited basis. Since

Df(T ) =
m∑

i=0

(−1)iAi
Li

∈ IVP,

multiplying by Lm−1, we deduce that (−1)mAm/[m] is integral, i.e.

Am = (−1)m[m]am for some am ∈ GF[q, x].

Thus

Df(T ) =
m−2∑

i=0

(−1)iAi
Li

+
(−1)m−1Am−1 + am

Lm−1
.

Multiplying by Lm−2, we deduce that ((−1)m−1Am−1 + am)/[m− 1] is in-
tegral, i.e.

Am−1 = (−1)mam + (−1)m−1[m− 1]am−1 for some am−1 ∈ GF[q, x].

Continuing in this manner, we have

Ai = (−1)i+1ai+1 + (−1)i[i]ai (i = 0, 1, . . . ,m),

where a0, a1, . . . , am, am+1 = 0 are all in GF[q, x]. Thus

f(T ) =
m∑

i=0

((−1)i+1ai+1 + (−1)i[i]ai)
ψi(T )
Fi

=
a0ψ0(T )
F0

+
m∑

i=1

(−1)iai

(
ψi−1(T )
Fi−1

+
ψi(T )
F qi−1

)
,

which completes the proof of Theorem 1.

Since

D2
(
ψ0(T )
F0

)
= D2

(
ψi+1(T )
F qi

+
ψi(T )
Fi

)
= 0,

we have

Corollary 2. Every linear polynomial in D1 also belongs to Dr(T ) for
all r ≥ 2.

Remarks. It will be shown later that, generally, for each finite positive
integer r, we have ∆r ⊂ Dr but ∆∞ = D∞. Generally, however, ∆r 6= Dr

as shown by the following example in the case r = 1. Let

f(T ) =
ψ0(T )
F0

+
(
ψ1(T )
F q0

+
ψ0(T )
F0

)
+
(
ψ2(T )
F q1

+
ψ1(T )
F1

)

=
2ψ0(T )
F0

+ (1 + [1])
ψ1(T )
F1

+ [2]
ψ2(T )
F2

.
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Clearly, f ∈ D1, but f 6∈ ∆1 for L1 = [1] - (1 + [1]), and L2 = [2][1] - [2].

5. The general case

Definition. Let k and r be positive integers. Define

L
(1)
e(k) = lcm

{
Le(k−j) : j ∈ Z, 0 ≤ j < k,

(
k
j

) 6≡ 0 (mod p)
}

(note L(1)
e(k) = Ld(k)),

L
(2)
e(k) = lcm

{
Le(k−j1)Le(j1−j2) : j1, j2 ∈ Z, 0 ≤ j2 < j1 < k,

(
k
j1

)(
j1
j2

) 6≡ 0 (mod p)
}
,

L
(r)
e(k) = lcm

{
Le(k−j1)Le(j1−j2) . . . Le(jr−1−jr) : j1, . . . , jr ∈ Z,

0 ≤ jr < jr−1 < . . . < j1 < k,
(
k
j1

)(
j1
j2

)
. . .
(
jr−1
jr

) 6≡ 0 (mod p)
}
, . . . ,

L
(∞)
e(k) = lcm

{
Le(k−j1)Le(j1−j2) . . . : j1, j2, . . . ∈ Z, 0 ≤ . . . < j2 < j1 < k,

(
k
j1

)(
j1
j2

)
. . . 6≡ 0 (mod p)

}
,

L
∗(r)
e(k) = lcm{L(1)

e(k), . . . , L
(r)
e(k)}, L

∗(∞)
e(k) = lcm{L(1)

e(k), L
(2)
e(k), . . . , L

(∞)
e(k)}.

As mentioned earlier, Wagner [17] proved the following two results using
slightly different notations.

Proposition 2. The set {1, Ld(i)Gi(T )/gi : i = 1, 2, . . .} forms a basis
for ∆1 over GF[q, x].

Proposition 3. The set {1, L∗(r)e(i)Gi(T )/gi : i = 1, 2, . . .} forms a basis
for ∆r over GF[q, x].

An immediate consequence of Proposition 3 is

Corollary 3. The set {1, L∗(∞)
e(i) Gi(T )/gi : i = 1, 2, . . .} forms a basis

for ∆∞ over GF[q, x].

For the case of derivatives, we prove the following results.

Theorem 2. The set{
1, (−1)j

(
[j]Gi+qj (T )

α
(i+qj)
j gi+qj

+
Gi+qj−1(T )δ(i, qj − qj−1 − 1)

α
(i+qj−1)
j−1 gi+qj−1

)
:

j = 0, 1, 2, . . . ; i = 0, 1, . . . , qj+1 − qj − 1
}

where α(k)
j denotes the jth digit in the base-q representation of k, i.e.

k = α
(k)
0 + α

(k)
1 q + . . .+ α

(k)
d(k)q

d(k),
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and

δ(i, qj − qj−1 − 1) =
{

1 if i = 0, 1, . . . , qj − qj−1 − 1,
0 if i = qj − qj−1, . . . , qj+1 − qj − 1

forms a basis for D1 over GF[q, x], provided those terms with α
(k)
j ≡ 0

(mod p) in the denominators are interpreted as 0.

P r o o f. Let f(T ) =
∑m
i=0AiGi(T )/gi ∈ IVP. By part (b) of our Lemma,

Df(T ) =
m∑

i=1

Ai

d(i)∑

j=0

(−1)jα(i)
j Gi−qj (T )

Ljgi−qj

=
m−1∑

i=0

{ d(m−i)∑

j=0

(−1)jα(i+qj)
j Ai+qj

Lj

}
Gi(T )
gi

=
m−1∑

i=0

F (d(m− i))Gi(T )
gi

,

where

F (d(m− i)) =
d(m−i)∑

i=0

(−1)jα(i+qj)
j Ai+qj

Lj
,

and d(i) denotes the upper q-index of i. Therefore,

Df ∈ IVP⇒ F (d(m− i)) ∈ GF[q, x] (i = 0, . . . ,m− 1).

Suppose that f ∈ D1, and put c = d(m − i), for short. Multiplying
F (c) = F (d(m− i)) ∈ GF[q, x] by Lc−1, we deduce that

(−1)cα(i+qc)
c Ai+qc = [c]ai+qc for some ai+qc ∈ GF[q, x];

if α(i+qc)
c ≡ 0 (mod p), take ai+qc = 0. Multiplying by Lc−2 to get

F (c) = F (c− 2) +
(−1)c−1α

(i+qc−1)
c−1 Ai+qc−1 + ai+qc

Lc−1
∈ GF[q, x],

we deduce that

(−1)c−1α
(i+qc−1)
c−1 Ai+qc−1 =[c−1]ai+qc−1−ai+qc for some ai+qc−1 ∈GF[q, x].

Continuing in this manner, we arrive at

(−1)jα(i+qj)
j Ai+qj = [j]ai+qj − ai+qj+1

(i = 0, . . . ,m− 1; j = 0, . . . , d(m− i)),
where all ai+qj ∈ GF[q, x], ai+qd(m)+1 = 0, and ai+qj = ai+qj+1/[j] if

α
(i+qj)
j = 0. By adding appropriate zero coefficients at the end if neces-
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sary, we can write

f(T ) = A0 +
d(m)∑

j=0

qj+1−qj−1∑

i=0

Ai+qjGi+qj (T )
gi+qj

.

Direct substitution yields, provided terms with the α’s ≡ 0 (mod p) are
taken as 0,

f(T ) = A0 +
d(m)∑

j=0

qj+1−qj−1∑

i=0

(−1)j
[j]ai+qj − ai+qj+1

α
(i+qj)
j

· Gi+qj (T )
gi+qj

.

Now

d(m)∑

j=0

qj+1−qj−1∑

i=0

(−1)j+1ai+qj+1Gi+qj (T )

α
(i+qj)
j gi+qj

=
d(m)∑

j=0

qj−qj−1−1∑

i=0

(−1)jai+qjGi+qj−1(T )

α
(i+qj−1)
j−1 gi+qj−1

,

where we have made use of the convention that Gi+q−1 = 0, ai+qd(m)+1 = 0.
Hence, every f ∈ D1 can be expressed in the required basis.

On the other hand, suppose we are given an integer-valued polynomial
written in this basis, called Bij for short, over GF[q, x], in the form

f(T ) = A0 +
∑

i,j

Bijai+qj .

Retreating the steps above, we can write f in the form

f(T ) = A0 +
∑

i,j

Ai+qjGi+qj (T )
gi+qj

∈ IVP,

where (−1)jα(i+qj)
j Ai+qj = [j]ai+qj − ai+qj+1 , and

Df(T ) =
m−1∑

i=0

{ d(m−i)∑

j=0

[j]ai+qj − ai+qj+1

Lj

}
Gi(T )
gi

=
m−1∑

i=0

ai+1Gi(T )
gi

∈ IVP,

where we have made used of the convention that ai+qd(m−i)+1 = 0.

Remarks. As witnessed by Theorem 2, and the remarks after Corol-
lary 2, no basis for Dr is of simple form, yet repeated use of the arguments
as in Theorem 2 can clearly be applied to obtain bases for all Dr, r ≥ 1. We
are content here to derive one more basis, that of D2.
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Theorem 3. The set{
1,
(

[j]Gi+qj (T )

α
(i+qj)
j gi+qj

+
δ(i, qj − qj−1 − 1)Gi+qj−1(T )

α
(i+qj−1)
j−1 gi+qj−1

)
[j]

α
(i−1+qj)
j

−
(

[j − 1]Gi+qj−1(T )

α
(i+qj−1)
j−1 gi+qj−1

+
δ(i, qj−1 − qj−2 − 1)Gi+qj−2(T )

α
(i+qj−2)
j−2 gi+qj−2

)
δ(i, qj − qj−1 − 1)

α
(i−1+qj−1)
j−1

for j = 0, 1, 2, . . . ; i = 0, 1, . . . , qj+1 − qj − 1
}
,

where the α’s and δ’s are as defined in Theorem 2, forms a basis for D2 over
GF[q, x], provided that those terms with α’s ≡ 0 (mod p) in the denomina-
tors are interpreted as 0.

Remark. In the proof that follows, we proceed as if all the α’s 6≡ 0
(mod p); necessary adjustments for the other case are easily taken care of
as described in the proof of Theorem 2.

P r o o f (of Theorem 3). Let

f(T ) =
m∑

i=0

AiGi(T )/gi ∈ IVP.

From the proof of Theorem 2, we have

f ∈ D1 ⇔ (−1)jα(i+qj)
j Ai+qj = [j]ai+qj − ai+qj+1

(i = 0, 1, . . . ,m− 1; j = 0, 1, . . . , d(m− i))
where all ai+qj ∈ GF[q, x], ai+qd(m−i)+1 = 0, and f ∈ IVP

⇔ Df(T ) =
m−1∑

i=0

ai+1Gi(T )
gi

∈ IVP and f ∈ IVP

⇔ f(T ) = A0 +
d(m)∑

j=0

qj+1−qj−1∑

i=0

(−1)j
{

[j]Gi+qj (T )

α
(i+qj)
j gi+qj

+
δ(i, qj − qj−1 − 1)Gi+qj−1(T )

α
(i+qj−1)
j−1 gi+qj−1

}
ai+qj .

Repeated use of these facts implies that

f ∈ D2 ⇔ f ∈ D1 and Df ∈ D1

⇔ f ∈ D1 and (−1)jα(i+qj)
j ai+1+qj = [j]bi+qj − bi+qj+1

(i = 0, 1, . . . ,m− 2; j = 0, 1, . . . , d(m− 1− i)),
where all bi+qj ∈ GF[q, x], bi+qd(m−i)+1 = 0
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⇔ f(T ) = A0 +
d(m)∑

j=0

qj+1−qj−1∑

i=0

(−1)j
{

[j]Gi+qj (T )

α
(i+qj)
j gi+qj

+
δ(i, qj − qj−1 − 1)Gi+qj−1(T )

α
(i+qj−1)
j−1 gi+qj−1

}{
[j]bi−1+qj − bi−1+qj+1

(−1)jα(i−1+qj)
j

}

= A0 +
d(m)∑

j=0

qj+1−qj−1∑

i=0

Eij [j]bi−1+qj

α
(i−1+qj)
j

−
d(m)∑

j=0

qj−qj−1−1∑

i=0

Ei,j−1bi−1+qj

α
(i−1+qj−1)
j−1

= A0 +
d(m)∑

j=0

qj+1−qj−1∑

i=0

{
Eij [j]

α
(i−1+qj)
j

− Ei,j−1δ(i, qj − qj−1 − 1)

α
(i−1+qj−1)
j−1

}
bi−1+qj

where

Eij =
[j]Gi+qj (T )

α
(i+qj)
j gi+qj

+
δ(i, qj − qj−1 − 1)Gi+qj−1(T )

α
(i+qj−1)
j−1 gi+qj−1

,

Eij := 0 if j < 0, and bi+qd(m−i)+1 = 0. The theorem thus follows.

Since Dr has no bases of simple form, it may be of interest to obtain
equivalent results involving divisibility by Li in the spirit of Proposition 3.
Let f(T ) =

∑m
i=0AiGi(T )/gi ∈ IVP. Then

Df(T ) =
m−1∑

i=0

{ d(m−i)∑

j=0

(−1)jα(i+qj)
j Ai+qj

Lj

}
Gi(T )
gi

and so

Df ∈ IVP⇔ A′(i) :=
d(m−i)∑

j=0

(−1)jα(i+qj)
j Ai+qj

Lj
∈ GF[q, x]

(i = 0, 1, . . . ,m− 1).

Similarly, we have

D2f(T ) =
m−2∑

i2=0

{ d(m−1−i2)∑

j2=0

(−1)j2α(i2+qj2 )
j2

A′(i2 + qj2)

Lj2

}
Gi2(T )
gi2

,

and so for i2 = 0, 1, . . . ,m− 2, we have

D2f ∈ IVP⇔ A′′(i2) :=
d(m−1−i2)∑

j2=0

(−1)j2α(i2+qj2 )
j2

A′(i2 + qj2)

Lj2
∈ GF[q, x]
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=
d(m−1−i2)∑

j2=0

d(m−i2−qj2 )∑

j1=0

(−1)j2+j1α
(i2+qj2 )
j2

α
(i2+qj2+qj1 )
j1

Ai2+qj2+qj1

Lj2Lj1

∈ GF[q, x].

Arguing as above, and noting that since GF[q, x] is of characteristic p, it
follows that Dpf = 0 for all f ∈ GF(q, x)[T ], we have in general

Theorem 4. Let r ∈ N, r < p, and let f(T ) =
∑m
i=0AiGi(T )/gi ∈ IVP.

Then
Drf ∈ IVP⇔ A(r)(ir) ∈ GF[q, x],

where

A(r)(ir) =
d(m−r+1−ir)∑

jr=0

d(m−r+2−ir−qjr )∑

jr−1=0

. . .

. . .

d(m−1−ir−qjr−...−qj3 )∑

j2=0

d(m−ir−qjr−...−qj2 )∑

j1=0

(−1)jr+...+j1

× α(ir+qjr )
jr

α
(ir+qjr+qjr−1 )
jr−1

. . . α
(ir+qjr+...+qj1 )
1

× Air+qjr+...+qj1

LjrLjr−1 . . . Lj1
(ir = 0, 1, . . . ,m− r).

Our last theorem confirms that the cases of differences and derivatives
of infinite order are of special character.

Theorem 5. (i) For a positive integer r, we have ∆r ⊂ Dr, and the
inclusion can be strict.

(ii) ∆∞ = D∞.

P r o o f. To prove (i), it is enough to consider the case r < p. Let f(T ) =∑m
i=0AiGi(T )/gi ∈ ∆r. By Proposition 3, L∗(r)e(i) |Ai for all i. Now by part

(c) of the Lemma, we get

(1)

(
ir + qjr + . . .+ qj1

ir + qjr + . . .+ qj2

)
≡ α(ir+qjr+...+qj1 )

j1
(mod p),

...(
ir + qjr

ir

)
≡ α(ir+qjr )

jr
(mod p).

By (1) and the shape of A(r)(ir) in Theorem 4, we see that

Le(K−J1)Le(J1−J2) . . . Le(Jr−1−Jr)A
(r)(ir), where

K = ir + qjr + . . .+ qj1 , J1 = ir + qjr + . . .+ qj2 , . . . , Jr = ir,
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belongs to GF[q, x], and so Drf ∈ IVP for all r. Thus f ∈ Dr, yielding ∆r ⊂
Dr. That, generally, ∆r 6= Dr follows from the remarks after Corollary 2.

To prove (ii), by Corollary 3 we have

f ∈ ∆∞ ⇔ L
∗(∞)
e(i) |Ai for all i,

where we use the convention that L∗(∞)
e(0) = 1. By the same arguments as

above, we thus get A(r)(ir) ∈ GF[q, x] for each positive integer r. This
implies that ∆∞ ⊂ D∞.

Finally, to show that D∞ ⊂ ∆∞, take any f(T ) =
∑m
i=0AiGi(T )/gi ∈

D∞. Since Dpf = 0, we have

∆f(T ) =
f(T +M)− f(T )

M
=

p−1∑

i=1

M i−1Dif(T )
i!

∈ IVP,

i.e.

(2) f ∈ D∞ ⇒ ∆f ∈ IVP, and so f ∈ ∆.
In general,

Dj(∆f(T )) = ∆(Djf(T )) =
Djf(T +M)−Djf(T )

M

=





p−1−j∑

i=1

M i−1Di+jf(T )
i!

∈ IVP if j ≤ p− 1,

0 if j ≥ p,
and so

f ∈ D∞ ⇒ ∆f ∈ Dj for each positive integer j(3)

⇒ ∆f ∈ D∞
⇒ f ∈ ∆2 by (2).

Repeated applications of (2) and (3) yield that f ∈ ∆∞, and so D∞ ⊂ ∆∞.

Theorem 5 and Corollary 3 give

Corollary 4. The set {1, L∗(∞)
e(i) Gi(T )/gi : i = 1, 2, . . .} forms a basis

for D∞ over GF[q, x].
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