Asymptotic density of $A \subset \mathbb{N}$ and density of the ratio set $R(A)$

by
Оto Strauch (Bratislava) and János T. Tóth (Nitra)
Dedicated to the memory of Professor Paul Erdős

1. Introduction. Denote by \mathbb{N} the set of all positive integers and if a subset $A \subset \mathbb{N}$ is given, define the ratio set by

$$
R(A)=\{a / b: a, b \in A\}
$$

The lower and upper asymptotic density of A, denoted by $\underline{d}(A)$ and $\bar{d}(A)$ respectively, are defined as

$$
\underline{d}(A)=\liminf _{x \rightarrow \infty} \frac{A(x)}{x}, \quad \bar{d}(A)=\limsup _{x \rightarrow \infty} \frac{A(x)}{x}
$$

where $A(x)=\#\{a \leq x: a \in A\}$.
In the present paper we are concerned with certain relations between the asymptotic densities of a set A as well as with density of $R(A)$ in $[0, \infty)$. T. Šalát [6] showed that $\underline{d}(A)=\bar{d}(A)>0$ or $\bar{d}(A)=1$ implies that $R(A)$ is everywhere dense in $[0, \infty)$ and for every sufficiently small $\varepsilon>0$ there exists a subset $A \subset \mathbb{N}$ such that $\bar{d}(A)=1-\varepsilon$ and $R(A)$ is not everywhere dense in $[0, \infty)$. He gave an example of $A \subset \mathbb{N}$ for which $\underline{d}(A)=1 / 4$ and $R(A) \cap(5 / 4,8 / 5)=\emptyset$.

We prove that $1 / 2$ is the lower bound of γ 's for which $\underline{d}(A) \geq \gamma$ implies that $R(A)$ is dense in $[0, \infty)$ (Theorem 1). The proof is based on the estimate

$$
\underline{d}(A) \leq \frac{\alpha}{\beta} \min (1-\bar{d}(A), \bar{d}(A))
$$

where the interval $(\alpha, \beta) \subset[0, \infty)$ is disjoint from $R(A)$ (Theorem 2). To complete our proof we construct an $A \subset \mathbb{N}$ for which the complement of the closure of $R(A)$ is formed by infinitely many pairwise disjoint open intervals

[^0]$\left(\alpha_{n}, \beta_{n}\right)$ and $\underline{d}(A) \rightarrow 1 / 2-0$ as a limit over some parameters (Example 1). On the other hand, we prove that for every given upper and lower asymptotic density there exists an $A \subset \mathbb{N}$ possessing these densities and having $R(A)$ everywhere dense (Theorem 3). As an application we give a new class of sets $A \subset \mathbb{N}$ having dense ratio set $R(A)$ (Theorem 4). We also prove that the complement of the set $R(A)^{l}$ of all limit points of $R(A)$ is either empty or contains infinitely many open intervals assuming $\underline{d}(A)>0$ (Theorem 5). We generalize our results for any open set X disjoint from the set $R(A)^{d}$ of all accumulation points of $R(A)$ (Theorem 6). The paper concludes with some remarks.

Throughout the paper, without loss of generality, we will use only intervals (α, β) contained in $[0,1]$.

2. Main results

Theorem 1. For every $A \subset \mathbb{N}$, if the lower asymptotic density $\underline{d}(A) \geq$ $1 / 2$ then the ratio set $R(A)$ is everywhere dense in $[0, \infty)$. Conversely, if $0 \leq \gamma<1 / 2$ then there exists an $A \subset \mathbb{N}$ such that $\underline{d}(A)=\gamma$ and $R(A)$ is not everywhere dense in $[0, \infty)$.

The proof immediately follows from the following theorem and example.
Theorem 2. Let $A \subset \mathbb{N}$ and the interval $(\alpha, \beta), 0 \leq \alpha<\beta \leq 1$, be such that $(\alpha, \beta) \cap R(A)=\emptyset$. Then

$$
\begin{equation*}
\underline{d}(A) \leq \frac{\alpha}{\beta} \min (1-\bar{d}(A), \bar{d}(A)) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{d}(A) \leq 1-(\beta-\alpha) . \tag{2}
\end{equation*}
$$

Proof of (1). Let $A \subset \mathbb{N}$ be listed in strictly increasing order as $a_{1}<$ $a_{2}<\ldots<a_{n}<\ldots$ If $(\alpha, \beta) \cap R(A)=\emptyset$, then the intervals

$$
\left(\alpha a_{n}, \beta a_{n}\right), \quad n=1,2, \ldots,
$$

cannot intersect A but they may have mutually nonempty intersections. We can select pairwise disjoint subintervals

$$
\begin{align*}
& \left(\alpha a_{[\theta n]}, \alpha a_{[\theta n]}+\alpha\right),\left(\alpha a_{[\theta n]+1}, \alpha a_{[\theta n]+1}+\alpha\right), \ldots, \tag{3}\\
& \left(\alpha a_{n-1}, \alpha a_{n-1}+\alpha\right),\left(\alpha a_{n}, \beta a_{n}\right)
\end{align*}
$$

for some $0 \leq \theta \leq 1$ (here we put $a_{[\theta n]}=0$ if $[\theta n]=0$). Define $B=\mathbb{N}-A$ and $B(x)=\#\{b \leq x: b \in B\}$. Counting the number of integer points belonging to (3) we obtain

$$
B\left(\beta a_{n}\right) \geq(n-[\theta n])(\alpha-1)+\left((\beta-\alpha) a_{n}-1\right)+B\left(\alpha a_{[\theta n]}\right)
$$

for all sufficiently large n. To eliminate 1 in $\alpha-1$ we replace n with $n k$ and α with $k \alpha$. Then (3) transforms into pairwise disjoint subintervals of the
form

$$
\begin{align*}
\left(\alpha a_{[\theta n] k}, \alpha a_{[\theta n] k}+k \alpha\right), & \left(\alpha a_{([\theta n]+1) k}, \alpha a_{([\theta n]+1) k}+k \alpha\right), \ldots, \tag{4}\\
& \left(\alpha a_{(n-1) k}, \alpha a_{(n-1) k}+k \alpha\right),\left(\alpha a_{n k}, \beta a_{n k}\right) .
\end{align*}
$$

Thus, we have
$\frac{B\left(\beta a_{n k}\right)}{\beta a_{n k}} \geq \frac{(n-[\theta n])(k \alpha-1)}{\beta a_{n k}}+\frac{\left((\beta-\alpha) a_{n k}-1\right)}{\beta a_{n k}}+\frac{B\left(\alpha a_{[\theta n] k}\right)}{\alpha a_{[\theta n] k}} \cdot \frac{\alpha}{\beta} \cdot \frac{a_{[\theta n] k}}{a_{n k}}$.
To compute the limsup of the left and right hand sides, respectively, use the fact that
(i) $\lim \sup _{n \rightarrow \infty} B\left(\beta a_{n k}\right) /\left(\beta a_{n k}\right) \leq \bar{d}(B)=1-\underline{d}(A)$,
(ii) $\lim \sup _{n \rightarrow \infty} n k / a_{n k}=\bar{d}(A)$,
(iii) $\liminf _{n \rightarrow \infty} B\left(\alpha a_{[\theta n] k}\right) /\left(\alpha a_{[\theta n] k}\right) \geq \underline{d}(B)=1-\bar{d}(A)$, and
(iv) by selecting indices n for which $\lim _{n \rightarrow \infty} n k / a_{n k}=\bar{d}(A)$ we have (assuming $\bar{d}(A)>0$)

$$
\liminf _{n \rightarrow \infty} \frac{a_{[\theta n] k}}{a_{n k}}=\liminf _{n \rightarrow \infty} \frac{a_{[\theta n] k}}{[\theta n] k} \lim _{n \rightarrow \infty} \frac{[\theta n] k}{a_{n k}} \geq \frac{1}{\bar{d}(A)} \bar{d}(A) \theta .
$$

Thus, letting $k \rightarrow \infty$ we get

$$
1-\underline{d}(A) \geq(1-\theta) \frac{\alpha}{\beta} \bar{d}(A)+\frac{\beta-\alpha}{\beta}+(1-\bar{d}(A)) \frac{\alpha}{\beta} \theta .
$$

Computing the maximum of the right hand side for $0 \leq \theta \leq 1$ yields

$$
1-\underline{d}(A) \geq \frac{\beta-\alpha}{\beta}+\frac{\alpha}{\beta} \max (\bar{d}(A), 1-\bar{d}(A)),
$$

which justifies (1).
Proof of (2). Every infinite set $A \subset \mathbb{N}$ with infinite complement $\mathbb{N}-A$ can be expressed as the set of the integer points lying in the intervals

$$
\begin{equation*}
\left[b_{1}, c_{1}\right],\left[b_{2}, c_{2}\right], \ldots,\left[b_{n}, c_{n}\right], \ldots \tag{5}
\end{equation*}
$$

whose endpoints form two integer sequences ordered as

$$
b_{1} \leq c_{1}<b_{2} \leq c_{2}<\ldots<b_{n} \leq c_{n}<\ldots
$$

Clearly

$$
\begin{align*}
& \underline{d}(A)=\liminf _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{i=1}^{n-1}\left(c_{i}-b_{i}+1\right) \tag{6}\\
& \bar{d}(A)=\limsup _{n \rightarrow \infty} \frac{1}{c_{n}} \sum_{i=1}^{n}\left(c_{i}-b_{i}+1\right) \tag{7}
\end{align*}
$$

The points of $A \cap\left[1, c_{n}\right]$ divided by $i, i \in\left[b_{n}, c_{n}\right]$, form a subset $R_{n} \subset R(A)$; we obtain the intervals

$$
\left[\frac{b_{1}}{i}, \frac{c_{1}}{i}\right],\left[\frac{b_{2}}{i}, \frac{c_{2}}{i}\right], \ldots,\left[\frac{b_{n-1}}{i}, \frac{c_{n-1}}{i}\right],\left[\frac{b_{n}}{i}, \frac{c_{n}}{i}\right]
$$

which have the following property: the distance of any two neighbouring points of R_{n} lying in $\left[b_{n-k} / i, c_{n-k} / i\right]$ is less than $1 / b_{n}$ and the same holds for the union

$$
\bigcup_{i=b_{n}}^{c_{n}}\left[\frac{b_{n-k}}{i}, \frac{c_{n-k}}{i}\right]=\left[\frac{b_{n-k}}{c_{n}}, \frac{c_{n-k}}{b_{n}}\right] .
$$

Thus, for sufficiently large n, every interval $(\alpha, \beta) \subset[0,1]$ satisfying $(\alpha, \beta) \cap$ $R(A)=\emptyset$ must lie in the complement of $\left[b_{n-k} / c_{n}, c_{n-k} / b_{n}\right], k=0,1, \ldots$, $n-1$, which is formed by the pairwise disjoint intervals

$$
\begin{equation*}
\left(\frac{c_{n-k}}{b_{n}}, \frac{b_{n-k+1}}{c_{n}}\right), \quad k=1, \ldots, n-1 \tag{8}
\end{equation*}
$$

some of which may be empty. Hence, a necessary condition for $(\alpha, \beta) \cap$ $R(A)=\emptyset$ is the existence of an integer sequence $k_{n}, k_{n}<n$, such that

$$
\begin{equation*}
(\alpha, \beta) \subset\left(\frac{c_{n-k_{n}}}{b_{n}}, \frac{b_{n-k_{n}+1}}{c_{n}}\right) \tag{9}
\end{equation*}
$$

for all sufficiently large n. This also gives

$$
\frac{b_{n-k_{n}+1}}{c_{n}}-\frac{c_{n-k_{n}}}{c_{n}} \geq \beta-\alpha
$$

Now we can express the upper asymptotic density as

$$
\begin{equation*}
\bar{d}(A)=\limsup _{n \rightarrow \infty}\left(\frac{c_{n}-b_{1}}{c_{n}}+\frac{n}{c_{n}}-\left(\frac{b_{2}-c_{1}}{c_{n}}+\frac{b_{3}-c_{2}}{c_{n}}+\ldots+\frac{b_{n}-c_{n-1}}{c_{n}}\right)\right) \tag{10}
\end{equation*}
$$

whence

$$
\begin{equation*}
\bar{d}(A)-\bar{d}(C) \leq 1-(\beta-\alpha) \tag{11}
\end{equation*}
$$

where C is the range of c_{n}.
For sufficiency of (9) we need the set $R(A)^{l}$ of all limit points of $R(A)$ (cf. Section 4). By the above reasoning we see that $(\alpha, \beta) \cap R(A)^{l}=\emptyset$ if and only if there exists $k_{n}<n$ satisfying (9) for all sufficiently large n. Thus, inequality (11) holds for (α, β) satisfying $(\alpha, \beta) \cap R(A)^{l}=\emptyset$ as well.

Now, for a positive integer k, transform

$$
\left[b_{n}, c_{n}\right] \rightarrow\left[k b_{n}, k c_{n}+k-1\right]
$$

and denote by A_{k} the set of all integer points lying in $\left[k b_{n}, k c_{n}+k-1\right]$, $n=1,2, \ldots$ Similarly, C_{k} is the set of all $k c_{n}+k-1$. Evidently

$$
\bar{d}\left(A_{k}\right)=\bar{d}(A), \quad \bar{d}\left(C_{k}\right)=\bar{d}(C) / k, \quad R\left(A_{k}\right)^{l}=R(A)^{l}
$$

which gives $\bar{d}(A)-\bar{d}(C) / k \leq 1-(\beta-\alpha)$ and (2) follows.

Using (2) and the part $\underline{d}(A) \leq(\alpha / \beta)(1-\bar{d}(A))$ of (1) we have
Corollary. For every subset $A \subset \mathbb{N}$, if $\underline{d}(A)+\bar{d}(A) \geq 1$ then $R(A)$ is everywhere dense in $[0, \infty)$.

To complete our proof of Theorem 1 consider
Example 1. Let γ, δ and a be given positive real numbers satisfying $\gamma<\delta$ and $a>1$. Let A be the set of all integer points lying in the intervals

$$
(\gamma, \delta),(\gamma a, \delta a),\left(\gamma a^{2}, \delta a^{2}\right), \ldots,\left(\gamma a^{n}, \delta a^{n}\right), \ldots
$$

For this A we see from (5) of A that $b_{n}=\left[\gamma a^{n}\right]+1, c_{n}=\left[\delta a^{n}\right]$ and in order that $c_{n}<b_{n+1}$ we need $\delta / \gamma<a$. In this case, for the intervals in (8) we have

$$
\left(\frac{\delta}{\gamma a^{k}}, \frac{\gamma}{\delta a^{k-1}}\right) \subset\left(\frac{c_{n-k}}{b_{n}}, \frac{b_{n-k+1}}{c_{n}}\right), \quad k=1, \ldots, n-1 ;
$$

further, $c_{n-k} / b_{n} \rightarrow \delta /\left(\gamma a^{k}\right), b_{n-k+1} / c_{n} \rightarrow \gamma /\left(\delta a^{k-1}\right)$ as $n \rightarrow \infty$. Consequently, the closure of $R(A)$ is $R(A)^{l}$. Thus, $[0,1]-\overline{R(A)}=\bigcup_{i=1}^{\infty}\left(\alpha_{i}, \beta_{i}\right)$, where $\left(\alpha_{i}, \beta_{i}\right)=\left(\alpha_{1} / a^{i-1}, \beta_{1} / a^{i-1}\right)$ and

$$
\left(\alpha_{1}, \beta_{1}\right)=\left(\frac{\delta}{\gamma a}, \frac{\gamma}{\delta}\right) .
$$

This implies that

$$
[0,1]-\overline{R(A)} \neq \emptyset \Leftrightarrow \delta / \gamma<\sqrt{a} .
$$

By (6) and (7) we have

$$
\underline{d}(A)=\frac{\delta-\gamma}{\gamma} \cdot \frac{1}{a-1}, \quad \bar{d}(A)=\frac{\delta-\gamma}{\delta} \cdot \frac{a}{a-1} .
$$

We can also see that for such A the ratio set $R(A)$ is everywhere dense in $[0, \infty)$ if and only if $\underline{d}(A)+\bar{d}(A) \geq 1$.

Now, if $\delta / \gamma \rightarrow \sqrt{a}$ then $\underline{d}(A) \rightarrow 1 /(\sqrt{a}+1)$ and if $\sqrt{a} \rightarrow 1+0$ then $\underline{d}(A) \rightarrow 1 / 2-0$. This completes the proof of Theorem 1 .

Note that since $\underline{d}(A) /\left(\left(\alpha_{1} / \beta_{1}\right) \bar{d}(A)\right) \rightarrow 1$ as $\gamma / \delta \rightarrow 1$ and $\bar{d}(A) /(1-$ $\left.\left(\beta_{1}-\alpha_{1}\right)\right) \rightarrow 1$ as $a \rightarrow \infty$, we cannot extend (1) and (2) to

$$
\underline{d}(A) \leq c(\alpha / \beta) \min (1-\bar{d}(A), \bar{d}(A)) \text { and } \bar{d}(A) \leq c(1-(\beta-\alpha))
$$

for some positive constant $c<1$.
In the sequel we demonstrate that (1) and (2) are necessary but not sufficient conditions for $(\alpha, \beta) \cap R(A)=\emptyset$.

Theorem 3. For every pair $\left(\gamma, \gamma^{\prime}\right)$ satisfying $0 \leq \gamma \leq \gamma^{\prime} \leq 1$ there exists an $A \subset \mathbb{N}$ such that $\underline{d}(A)=\gamma, \bar{d}(A)=\gamma^{\prime}$ and the ratio set $R(A)$ is everywhere dense in $[0, \infty)$.

Proof. For any infinite set $B \subset \mathbb{N}$ and $\lambda \geq 1$ define $[\lambda B]$ as

$$
[\lambda B]=\{[\lambda a]: a \in B\} .
$$

Clearly,
(i) either both $R(B)$ and $R([\lambda B])$ are everywhere dense in $[0, \infty)$ or neither is;
(ii) $\underline{d}([\lambda B])=\underline{d}(B) / \lambda, \bar{d}([\lambda B])=\bar{d}(B) / \lambda$.

If $\gamma^{\prime}>0$, put $\lambda=1 / \gamma^{\prime}$ and then use the well-known fact that for every pair (δ, δ^{\prime}) satisfying $0 \leq \delta \leq \delta^{\prime} \leq 1$ there exists $B \subset \mathbb{N}$ such that $\underline{d}(B)=\delta$ and $\bar{d}(B)=\delta^{\prime}$. Applying this for $\left(\delta, \delta^{\prime}\right)=\left(\lambda \gamma, \lambda \gamma^{\prime}\right)$, bearing in mind that $\lambda \gamma^{\prime}=1$ and using $[6$, Th. 1] we find that $R(B)$ is dense in $[0, \infty)$. Accordingly, $A=[\lambda B]$ is the desired set.

If $\gamma^{\prime}=0$ we can put $A=\mathbb{P}$, the set of all primes, since by A. Schinzel (cf. [7, p. 155]) $R(\mathbb{P})$ is everywhere dense in $[0, \infty)$.
3. Applications. Applying Theorem 1 we give some new classes of $A \subset \mathbb{N}$ having dense $R(A)$.

Theorem 4. Let $f(t), t \geq 1$, be a strictly increasing continuous function with inverse function $f^{-1}(t)$. Assume that
(i) $\lim _{t \rightarrow \infty} f(t)=\infty$,
(ii) $\lim _{n \rightarrow \infty}\left(f^{-1}(n+1)-f^{-1}(n)\right)=\infty$,
(iii) $\lim _{n \rightarrow \infty} \frac{f^{-1}(n+x)-f^{-1}(n)}{f^{-1}(n+1)-f^{-1}(n)}=\psi(x)$ exists for every $x \in[0,1]$,
and for $x \in[0,1]$ put
(iv) $\liminf _{n \rightarrow \infty} f^{-1}(n) / f^{-1}(n+x)=\chi(x)$,
(v) $A_{x}=\{n \in \mathbb{N}:\{f(n)\} \in[0, x)\}$, where $\{f(n)\}$ is the fractional part of $f(n)$.

If $\psi(x)+1-\chi(x)(1-\psi(x)) \geq 1$, then $R\left(A_{x}\right)$ is everywhere dense in $[0, \infty)$.

Proof. Observe that $\underline{d}\left(A_{x}\right)$ and $\bar{d}\left(A_{x}\right)$ have the same meaning as the lower and upper distribution functions of $f(n) \bmod 1$ (cf. [5, Def. 7.1, p. 53]), hence the theorem follows from [5, Th. 7.7, p. 58] and our Corollary.

Applying Theorem 4 to $f(t)=\log t$ we deduce that $x \geq 1 / 2$ implies the density of $R\left(A_{x}\right)$. Since in this case the set A_{x} has the form described in Example 1 with $\gamma=1, \delta=e^{x}$ and $a=e$, it follows that $x \geq 1 / 2$ is also necessary for the density of $R\left(A_{x}\right)$ to hold.

For another application of Theorem 1 we make use of [4]. Let $a>1$ be an integer and \mathcal{A} consist of all $A \subset \mathbb{N}$ containing no 3-term progressions of the form $k, k q, k q^{2}$, where $k \in \mathbb{N}$ and $q \in\left\{a, a^{2}, a^{3}, a^{4}\right\}$. It is proved in [4, Ex. 2] that $\sup _{A \in \mathcal{A}} \underline{d}(A) \geq\left(1-a^{-1}\right)\left(1+a^{-1}+a^{-3}+a^{-4}\right)\left(a^{9} /\left(a^{9}-1\right)\right)$,
which, together with our Theorem 1, implies that $R(A)$ is everywhere dense in $[0, \infty)$ for some $A \in \mathcal{A}$.
4. Complement of the limit points of the ratio set. As before, assume that $A \subset \mathbb{N}$ is ordered into the sequence $a_{1}<a_{2}<\ldots$ and consider the ratio set $R(A)$ as a double sequence $a_{m} / a_{n}, m, n=1,2, \ldots$ We introduce two further sets:
(i) $R(A)^{l}$ is the set of all limit points $x=\lim _{i \rightarrow \infty} a_{m_{i}} / a_{n_{i}}$ of $R(A)$.
(ii) $R(A)^{d}$ is the set of all accumulation points of $R(A)$, i.e. the points x which can be expressed as a limit $x=\lim _{i \rightarrow \infty} a_{m_{i}} / a_{n_{i}}$ of a one-to-one sequence $a_{m_{i}} / a_{n_{i}}$.

Clearly, $R(A)^{l}$ and $R(A)^{d}$ are closed. It is shown in [1] that for every system of pairwise disjoint open intervals $\left(\alpha_{i}, \beta_{i}\right), i \in \mathcal{I}$, there exists $A \subset \mathbb{N}$ such that $[0,1]-R(A)^{d}=\bigcup_{i \in \mathcal{I}}\left(\alpha_{i}, \beta_{i}\right)$ and the same proof applies to $R(A)^{l}$. To extend the above result of [1] we prove

Theorem 5. If $\underline{d}(A)>0$ and $[0,1]-R(A)^{l} \neq \emptyset$, then

$$
[0,1]-R(A)^{l}=\bigcup_{i=1}^{\infty}\left(\alpha_{i}, \beta_{i}\right),
$$

where $\alpha_{i}<\beta_{i}$ and $\left(\alpha_{i}, \beta_{i}\right) \cap\left(\alpha_{j}, \beta_{j}\right)=\emptyset$ for $i \neq j$.
Proof. We divide the proof into three steps.

1. Let $\gamma>0$ be a limit point of the form

$$
\begin{equation*}
\gamma=\lim _{n \rightarrow \infty} a_{g(n)} / a_{n} \tag{12}
\end{equation*}
$$

where $g(n)$ is a suitable integer sequence. Then

$$
\begin{equation*}
(\alpha, \beta) \cap R(A)^{l}=\emptyset \Rightarrow(\gamma \alpha, \gamma \beta) \cap R(A)^{l}=\emptyset=(\alpha / \gamma, \beta / \gamma) \cap R(A)^{l} . \tag{13}
\end{equation*}
$$

Indeed, assuming $\gamma \alpha<\delta<\gamma \beta$ and

$$
\delta=\lim _{i \rightarrow \infty} a_{m_{i}} / a_{n_{i}}
$$

we have

$$
\frac{\delta}{\gamma}=\frac{\lim _{i \rightarrow \infty} a_{m_{i}} / a_{n_{i}}}{\lim _{i \rightarrow \infty} a_{g\left(n_{i}\right)} / a_{n_{i}}}=\lim _{i \rightarrow \infty} \frac{a_{m_{i}}}{a_{g\left(n_{i}\right)}},
$$

which is a contradiction. Repeating (13) yields $\left(\gamma^{k} \alpha, \gamma^{k} \beta\right) \cap R(A)^{l}=\emptyset$ for all $k \in \mathbb{Z}$.
2. Using all points $\gamma, \delta, \eta, \ldots$ of the form (12) we can define a group

$$
G(A)=\left\{\gamma^{i} \delta^{j} \eta^{k} \ldots: i, j, k, \ldots \in \mathbb{Z}\right\}
$$

Let $[0,1]-R(A)^{l}=\bigcup_{i \in \mathcal{I}}\left(\alpha_{i}, \beta_{i}\right)$. Applying (13) for $t \in G(A) \cap[0,1]$ and $i \in$ \mathcal{I}, we get some $j, k \in \mathcal{I}$ such that $\left(t \alpha_{i}, t \beta_{i}\right) \subset\left(\alpha_{j}, \beta_{j}\right)$ and $\left(t^{-1} \alpha_{j}, t^{-1} \beta_{j}\right) \subset$
$\left(\alpha_{k}, \beta_{k}\right)$. This implies $i=k$ and

$$
\left(t \alpha_{i}, t \beta_{i}\right)=\left(\alpha_{j}, \beta_{j}\right) .
$$

For a fixed $\left(\alpha_{i_{0}}, \beta_{i_{0}}\right)$, the intervals $\left(t \alpha_{i_{0}}, t \beta_{i_{0}}\right), t \in G(A) \cap(0,1)$, are nonoverlapping, which implies that \mathcal{I} is infinite. Moreover, $G(A)$ must be discrete and thus cyclic.
3. Assuming $\underline{d}(A)>0$, we prove that $G(A) \cap(0,1)$ is nonempty. Let $n / a_{n}>\theta>0$ for all sufficiently large n. For any u, v satisfying $0<u<v<\theta$ we have

$$
\frac{a_{[u n]}}{a_{n}} \geq \frac{[u n]}{a_{n}}>u \theta, \quad \frac{a_{[v n]}}{a_{n}} \leq \frac{a_{[v n]}}{n}=\frac{a_{[v n]}}{v n} v<\frac{v}{\theta}
$$

for all sufficiently large n. Thus, we obtain

$$
\frac{a_{i}}{a_{n}} \in\left(u \theta, \frac{v}{\theta}\right) \quad \text { for } i \in[[u n],[v n]],
$$

which implies the existence of $t \in G(A)$ satisfying $t \in[u \theta, v / \theta] \subset(0,1)$.
Note that as the proof of (2) shows, $t \in G(A) \cap[0,1]$ if and only if there exists $k_{n}<n$ such that $t \in\left[b_{n-k_{n}} / b_{n}, c_{n-k_{n}} / c_{n}\right]$ for all sufficiently large n.

In Example 1 the group $G(A)$ is generated by $1 / a$ and the complement of $R(A)^{l}$ has a simple structure. For general A the complement of $R(A)^{l}$ may be more complicated.

Example 2. In this example we abbreviate $(\gamma a, \delta a)$ as $(\gamma, \delta) a$. Assume that

$$
0<\gamma_{1}<\delta_{1}<\gamma_{2}<\delta_{2}<a \gamma_{1}<a \delta_{1} \text { and } a>1
$$

and let A be the set of all integer points lying in the pairwise disjoint open intervals
$\left(\gamma_{1}, \delta_{1}\right),\left(\gamma_{2}, \delta_{2}\right),\left(\gamma_{1}, \delta_{1}\right) a,\left(\gamma_{2}, \delta_{2}\right) a, \ldots,\left(\gamma_{1}, \delta_{1}\right) a^{n},\left(\gamma_{2}, \delta_{2}\right) a^{n},\left(\gamma_{1}, \delta_{1}\right) a^{n+1}, \ldots$
Then, in (5) for this A we get two types of intervals $\left[b_{n}, c_{n}\right]$, which give (asymptotically) two types of intervals in (8) and which form two sequences of pairwise disjoint open intervals

$$
I_{2} a^{i-1}, I_{1} a^{i-1}, \quad i=1,2, \ldots, \quad \text { and } J_{2} a^{i-1}, J_{1} a^{i-1}, \quad i=1,2, \ldots,
$$

where
$I_{2}=\left(\frac{\delta_{2}}{\gamma_{2} a}, \frac{\gamma_{1}}{\delta_{2}}\right), \quad I_{1}=\left(\frac{\delta_{1}}{\gamma_{2}}, \frac{\gamma_{2}}{\delta_{2}}\right), \quad J_{2}=\left(\frac{\delta_{1}}{\gamma_{1} a}, \frac{\gamma_{2}}{\delta_{1} a}\right), \quad J_{1}=\left(\frac{\delta_{2}}{\gamma_{1} a}, \frac{\gamma_{1}}{\delta_{1}}\right)$.
Moreover, there are inclusions between the intervals in (8) and the above intervals, respectively. This guarantees $\overline{R(A)}=R(A)^{l}$ as well as

$$
[0,1]-\overline{R(A)}=\bigcup_{i=1}^{\infty}\left(\left(I_{2} \cup I_{1}\right) \cap\left(J_{2} \cup J_{1}\right)\right) a^{i-1} .
$$

The intersection $\left(I_{2} \cup I_{1}\right) \cap\left(J_{2} \cup J_{1}\right)$ consists of at most three pairwise disjoint open intervals $\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{1}^{\prime}, \beta_{1}^{\prime}\right)$ and $\left(\alpha_{1}^{\prime \prime}, \beta_{1}^{\prime \prime}\right)$.

In all cases the group $G(A)$ is cyclic with generator $1 / a$ or $1 / \sqrt{a}$ depending on $\left(\gamma_{2}, \delta_{2}\right)=\left(\gamma_{1}, \delta_{1}\right) \sqrt{a}$.

Applying (6) and (7) we have

$$
\begin{aligned}
& \underline{d}(A)=\min \left(\frac{\left(\delta_{1}-\gamma_{1}\right)+\left(\delta_{2}-\gamma_{2}\right)}{\gamma_{1}} \cdot \frac{1}{a-1},\right. \\
& \left.\frac{1}{\gamma_{2}}\left(\left(\delta_{1}-\gamma_{1}\right) \frac{a}{a-1}+\left(\delta_{2}-\gamma_{2}\right) \frac{1}{a-1}\right)\right), \\
& \bar{d}(A)=\max \left(\frac{\left(\delta_{1}-\gamma_{1}\right)+\left(\delta_{2}-\gamma_{2}\right)}{\delta_{2}} \cdot \frac{a}{a-1},\right. \\
& \left.\frac{1}{\delta_{1}}\left(\left(\delta_{1}-\gamma_{1}\right) \frac{a}{a-1}+\left(\delta_{2}-\gamma_{2}\right) \frac{1}{a-1}\right)\right) .
\end{aligned}
$$

For example, putting $\gamma_{1}=1, \delta_{1}=2, \gamma_{2}=5$ and $a=40$, we have

$$
\left(\alpha_{1}, \beta_{1}\right)=(2 / 5,1 / 2), \quad\left(\alpha_{1}^{\prime}, \beta_{1}^{\prime}\right)=(6 / 40,1 / 6), \quad\left(\alpha_{1}^{\prime \prime}, \beta_{1}^{\prime \prime}\right)=(2 / 40,5 / 80)
$$

Further, $\underline{d}(A)=2 / 39, \bar{d}(A)=41 / 78,|[0,1]-\overline{R(A)}|=31 / 234$ and $G(A)$ is generated by $1 / 40$.
5. Extension of Theorem 2. In this part we extend (1) and (2) to intervals $(\alpha, \beta) \subset[0,1]$ satisfying

$$
(\alpha, \beta) \cap R(A)^{d}=\emptyset,
$$

which does not follow from Theorem 2 directly. Clearly, if $(\alpha, \beta) \cap R(A)^{d}=\emptyset$ then for every $\varepsilon>0$ there exist finitely many pairwise disjoint open intervals $\left(\alpha_{i}, \beta_{i}\right), i=1, \ldots, s$, such that
(i) $\bigcup_{i=1}^{s}\left(\alpha_{i}, \beta_{i}\right) \subset(\alpha, \beta)$,
(ii) $\beta-\alpha-\sum_{i=1}^{s}\left(\beta_{i}-\alpha_{i}\right)<\varepsilon$,
(iii) $\forall(1 \leq i \leq s)\left(\alpha_{i}, \beta_{i}\right) \cap R(A)=\emptyset$.

So, Theorem 2 only implies

$$
\begin{equation*}
\underline{d}(A) \leq \min _{1 \leq i \leq s} \frac{\alpha_{i}}{\beta_{i}} \min (1-\bar{d}(A), \bar{d}(A)) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{d}(A) \leq \min _{1 \leq i \leq s}\left(1-\left(\beta_{i}-\alpha_{i}\right)\right) . \tag{15}
\end{equation*}
$$

Finally, in what follows we will replace the open interval (α, β) with an open set $X \subset[0,1]$ and prove estimates better than (14) and (15). Here $|X|$ denotes the Lebesgue measure of X.

Theorem 6. Let X be an open set in $[0,1]$ and write $g(x)=|X \cap[0, x)|$. If $X \cap R(A)^{d}=\emptyset$, then

$$
\begin{equation*}
\underline{d}(A) \leq \frac{x}{y} \min (1-\bar{d}(A), \bar{d}(A))+\frac{(y-g(y))-(x-g(x))}{y} \tag{16}
\end{equation*}
$$

for every x, y satisfying
(i) $0 \leq x<y \leq 1$,
(ii) there exist two sequences x_{k} and $\delta_{k}>0$ such that $\left(x_{k}, x_{k}+\delta_{k}\right) \cap$ $R(A)^{d}=\emptyset$ for every k and $x_{k} \rightarrow x$ as $k \rightarrow \infty$.

Moreover

$$
\begin{equation*}
\bar{d}(A) \leq 1-|X| \tag{17}
\end{equation*}
$$

Proof. The proof is similar to the proof of Theorem 2. Instead of (3) we start with the following pairwise disjoint intervals:

$$
\begin{align*}
& \left(x a_{[\theta n]}, x a_{[\theta n]}+x\right),\left(x a_{[\theta n]+1}, x a_{[\theta n]+1}+x\right), \ldots, \tag{18}\\
& \quad\left(x a_{n-1}, x a_{n-1}+x\right),\left(x a_{n}, y a_{n}\right) .
\end{align*}
$$

First assume that
$(\text { ii })^{\prime}(x, x+\delta) \cap R(A)=\emptyset$ for some $\delta>0$.
Then for sufficiently large i, the interval $\left(x a_{i}, x a_{i}+x\right)$ cannot intersect A, since $\left(x a_{i}, x a_{i}+\delta a_{i}\right) \cap A=\emptyset$. Moreover, for all sufficiently small $\varepsilon>0$, the set $X \cap(x, y)$ can be approximated by a finite sequence of pairwise disjoint open intervals $\left(\alpha_{i}, \beta_{i}\right), i=1, \ldots, s$, such that $\bigcup_{i=1}^{s}\left(\alpha_{i}, \beta_{i}\right) \subset X \cap(x, y), \mid X \cap$ $(x, y)-\bigcup_{i=1}^{s}\left(\alpha_{i}, \beta_{i}\right) \mid<\varepsilon$ and $\bigcup_{i=1}^{s}\left(\alpha_{i}, \beta_{i}\right) \cap R(A)=\emptyset$. Hence, the number of terms of $B=\mathbb{N}-A$ lying in $\left(x a_{n}, y a_{n}\right)$ is greater than $a_{n}(g(y)-g(x)-\varepsilon)-s$ and we have

$$
B\left(y a_{n}\right) \geq(n-[\theta n])(x-1)+\left(a_{n}(g(y)-g(x)-\varepsilon)-s\right)+B\left(x a_{[\theta n]}\right)
$$

Replacing n by $n k$ and x by $x k$ and letting $k \rightarrow \infty$ we find (16).
In the general case, since $g(x)$ is continuous, (ii) ${ }^{\prime}$ can be replaced by (ii).
To prove (17) note only that (10) can be replaced by

$$
\frac{b_{2}-c_{1}}{c_{n}}+\frac{b_{3}-c_{2}}{c_{n}}+\ldots+\frac{b_{n}-c_{n-1}}{c_{n}} \geq \sum_{i=1}^{s}\left(\beta_{i}-\alpha_{i}\right)
$$

Observe that in Example 1 we have $\alpha_{i} / \beta_{i}=\delta^{2} /\left(\gamma^{2} a\right)$ and the minimum of the right hand side of (16) is the same as in (14) and (1). In Example 2,
for $x=\alpha^{\prime \prime}$ and $y=\beta^{\prime}$, the right hand side of (16) equals $0.229 \ldots$; further, the right hand side of (14) is $0.379 \ldots$

6. Concluding remarks

1. The results of T. Šalát mentioned in the introduction can be proved directly by using (1) and (2):
(i) Assume $(\alpha, \beta) \cap R(A)=\emptyset$. If $0<d(A)=\underline{d}(A)=\bar{d}(A)<1 / 2$ then by (1) we have $d(A) \leq \frac{\alpha}{\beta} d(A)$ which is a contradiction. If $d(A) \geq 1 / 2$, then in view of (1) we have $d(A) \leq \frac{\alpha}{\beta}(1-d(A)) \leq \frac{\alpha}{\beta} \frac{1}{2}<\frac{1}{2}$ which also gives a contradiction. Thus (cf. [6, Th. 4]) $d(A)>0$ implies that $R(A)$ is everywhere dense.
(ii) Assuming $\bar{d}(A)=1,(2)$ implies a contradiction $1 \leq 1-(\beta-\alpha)$; thus (cf. [6, Th. 1]) $\bar{d}(A)=1$ implies that $R(A)$ is everywhere dense.
2. It is proved in [3, Th. 2] that if $\mathbb{N}=A \cup B$, then at least one of $R(A)$ or $R(B)$ is everywhere dense in $[0, \infty)$. This can also be proved by using our basic relations (1) and (2).

Assume that $\mathbb{N}=A \cup B, A \cap B=\emptyset,(\alpha, \beta) \cap R(A)=\emptyset$ and $\left(\alpha^{\prime}, \beta^{\prime}\right) \cap$ $R(B)=\emptyset$. Since $\underline{d}(A)=1-\bar{d}(B)$ and $\bar{d}(A)=1-\underline{d}(B)$, applying (1) and (2) we get
(i) $(\beta-\alpha) \leq \underline{d}(B)$,
(ii) $\underline{d}(B) \leq \frac{\alpha^{\prime}}{\beta^{\prime}}(1-\bar{d}(B))$,
(iii) $1-\bar{d}(B) \leq \frac{\alpha}{\beta} \underline{d}(B)$.

Starting with (i) and then repeatedly applying (ii) and (iii) we get $\beta-\alpha=0$.
3. A related question is studied in [2].

References

[1] J. Bukor and J. T. Tóth, On accumulation points of ratio sets of positive integers, Amer. Math. Monthly 103 (1996), 502-504.
[2] J. Bukor, P. Erdős, T. Šalát and J. T. Tóth, Ratio sets of sets of positive numbers and a class of decomposition of the set \mathbb{N}, Math. Slovaca 47 (1997), 517-526.
[3] J. Bukor, T. Šalát and J. T. Tóth, Remarks on R-density of sets of numbers, Tatra Mt. Math. Publ. 11 (1997), 159-165.
[4] W. Klotz, Generalization of some theorems on sets of multiplies and primitive sequences, Acta Arith. 32 (1977), 15-26.
[5] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.
[6] T. Šalát, On ratio sets of sets of natural numbers, Acta Arith. 15 (1969), 273-278; Corrigendum, ibid. 16 (1969), 103.
[7] W. Sierpiński, Elementary Theory of Numbers, PWN, Warszawa, 1964.

Mathematical Institute of the Slovak Academy of Sciences Štefánikova 49
SK-814 73 Bratislava, Slovakia
E-mail: strauch@mau.savba.sk

Department of Mathematics of the Faculty of Natural Sciences Constantine the Philosopher University in Nitra

Tr. A. Hlinku 1
SK-949 74 Nitra, Slovakia
E-mail: toth@unitra.sk

Received on 27.1.1998
and in revised form on 31.7.1998

[^0]: 1991 Mathematics Subject Classification: Primary 11B05.
 Key words and phrases: positive integers, subset, ratio set, asymptotic density.
 This research was supported by the Slovak Academy of Sciences Grant 5123.

