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1. Introduction. Let P =
{
p1, p2, . . .

}
be a set of numbers satisfying

the following three conditions:

1 < p1, pk ≤ pk+1, lim
k→∞

pk =∞.
Let N be the set of numbers which are finite products of elements of P .
Following A. Beurling [1], we call P a set of generalized primes (g-primes)
andN a set of generalized integers (g-integers). We denote by P (x) andN(x)
the counting functions of the sets P and N . Two interesting problems arise.
First, we have the Inverse Problem: given the knowledge of the distribution
of the set N of g-integers, obtain information about the distribution of the
set P of g-primes. The classical Prime Number Theorem is an example of
an inverse problem. See also the above cited reference to Beurling [1], as
well as H. G. Diamond [2], where the Prime Number Theorem is proved in
the setting of the Theory of Generalized Numbers. We also have the Direct
Problem: given the knowledge of the distribution of the elements in P , obtain
information about the distribution of those of N . The Direct Problem has
been studied by (among others) P. Malliavin [4] and H. G. Diamond [3]. We
now summarize their results.

Assume that the distribution of the primes is given by

(1) P (x) = Li(x) +O(xe−
√

log x).

We are interested in estimating N(x). P. Malliavin [4] proved that

N(x) = cx+O(x exp{−θ(log x)0.2})
for some positive constants c and θ. If we let

A = l.u.b.{a : N(x) = cx+O(x exp{−θ(log x)a})},
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then the following estimates are true:

A ≥ 0.2 (Malliavin, 1961),

A ≥ 0.333 . . . (Diamond, 1970).

In this article we construct a generalized number system to prove that
A ≤ 0.5. That is, we prove the following

Theorem. There exists a continuous distribution P (x) of prime numbers
for which (1) holds and furthermore

(2) N(x) = cx+Ω(xe−θ
√

log x)

for some positive constants c and θ.

The words “continuous distribution” in the theorem deserve an expla-
nation. They are to mean that there exists a measure dP (see (4) below)
whose integral

Tx
1 dP is a continuous function in the interval (1,∞). We use

this measure as input in the exponential formula

(3) dN = edP = δ + dP +
dP ∗ dP

2!
+

(
dP
)∗3

3!
+ . . . ,

where δ is the Dirac measure placed at the point 1 and ∗ is the multiplicative
(Dirichlet) convolution for measures; the measure dP ∗ dP assigns to each
Borel set E the numerical value\ \

st∈E
dP (s) · dP (t).

Moreover, the “set of integers” N is given by N(x) =
Tx
1 e

dP . We will also
make use of the zeta function of this “set of integers” as given by

ζ(s) =
∞\
1

x−s dN(x) =
∞\
1

x−sedP = exp
{∞\

1

x−s dP (x)
}
.

Finally, we point out that the exponential formula (3) gives the counting
measure for the set of ordinary integers when we take dP to be the measure
dΠ where

Π(x) = π(x) + 1
2π(x1/2) + 1

3π(x1/3) + . . . ,

and π(x) is the number of ordinary primes not greater than x. For a more
detailed treatment of these notions see Diamond [3].

2. The example. We start by letting

(4) P (x) =
x\
1

1− t−k
log t

γ(t) dt,
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where

(5) γ(t) = 1−
∑
n>n0

αn
cos(bn log t)

tan
, t ≥ 1.

We think of k, n0, {αn}, {an} and {bn} as parameters to be chosen. The
following constants serve our purposes (however, we will carry out some of
our calculations for an arbitrary choice of these parameters):

k = 4, n0 = 3,

bn = exp{(log xn)1/2}, an = 1/log bn = 1/
√

log xn,

x1 = e10, xn+1 = exp{(log xn)2},
Tn = exp{(log xn)3/4}, αn = 2/n2.

We also define α =
∑
n>n0

αn, and for n > n0 we let α−n = αn, a−n = an
and b−n = −bn. We make constant use of this notation.

In order that we may consider P (x) to be a counting function, it is
necessary that it be non-decreasing. This is a consequence of the following
easy lemma.

Lemma 1. With γ as in (5), we have γ(t) ≥ 0.

3. Estimation of P (x). Now we show that (1) holds. In fact we have a
slightly better estimate for P (x).

Proposition 2. If P (x) is given by (4) and k > 1, then

P (x) = Li(x) +O(xe−2
√

log x).

P r o o f. We have

P (x) =
x\
1

1− t−k
log t

(
1−

∑
n>n0

αn
cos(bn log t)

tan

)
dt

=
x\
e

1− t−k
log t

dt−
∑
n>n0

αn

x\
e

1− t−k
log t

· cos(bn log t)
tan

dt+O(1)

=
x\
e

dt

log t
−
∑
n>n0

αn

x\
e

cos(bn log t)
tan log t

dt+O(1),

because k > 1. Now we show that

∑
n>n0

αn

x\
e

cos(bn log t)
tan log t

dt = O(xe−2
√

log x).
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To this end, notice that

∣∣∣∣
x\
e

cos(bn log t)
tan log t

dt

∣∣∣∣ =
∣∣∣∣

log x\
1

cos(bnt)
t

et(1−an) dt

∣∣∣∣

=
∣∣∣∣
[

sin(bnt)
bnt

et(1−an)
]log x

1

− 1
bn

log x\
1

sin(bnt)
et(1−an)

t

(
1− an − 1

t

)
dt

∣∣∣∣

≤ 2
x1−an

bn log x
+

1
bn

log x\
1

et(1−an)

t
dt.

To estimate the last integral we notice that et(1−an)/t reaches a minimum
value at t = 1/(1− an) → 1 as n → ∞. After attaining its minimum the
integrand increases to infinity, thus, the largest value of the integrand is
achieved when t = log x. Hence

∣∣∣∣
x\
e

cos(bn log t)
tan log t

dt

∣∣∣∣ ≤ 2
x1−an

bn log x
+

1
bn
· x

1−an

log x
log x ≤ 3

x1−an

bn
.

By the definition of an and bn we have

x1−an

bn
= x exp

{
− log x√

log xn
−
√

log xn

}
.

Let A2 = log x and B2 = log xn. From (A − B)2 ≥ 0, we deduce that
−A2/B −B ≤ −2A. Hence

x1−an

bn
= x exp

{
− A2

B
−B

}
≤ xe−2A = xe−2

√
log x.

Therefore

∑
n>n0

αn

∣∣∣∣
x\
e

cos(bn log t)
tan log t

dt

∣∣∣∣ ≤
∑
n>n0

3αnxe−2
√

log x = 3αxe−2
√

log x.

This proves Proposition 2.

4. Estimation of N(x). We now define our zeta function for s = σ+ it
with σ > 1 as

(6) ζ(s) =
∞\
1

x−sdN(x) = exp
{∞\

1

x−sdP (x)
}
.
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By inverting the first equation in (6) we get

N(x) =
1

2πi

b+i∞\
b−i∞

ζ(s)
xs

s
ds, b > 1.

Furthermore, if

M(x) =
x\
1

N(t) dt,

then

(7) M(x) =
1

2πi

b+i∞\
b−i∞

ζ(s)
xs+1

s(s+ 1)
ds, b > 1.

To prove that (2) is true it suffices to show that for some θ∗ < θ,

(8) M(x) =
c

2
x2 +Ω(x2e−θ

∗√log x).

Indeed, if (2) is not true then

N(x) = cx+ o(xe−θ
√

log x),
so that

M(x) =
x\
1

{ct+ o(t e−θ
√

log t)} dt =
c

2
x2 + o(x2e−θ

∗√log x).

This is a contradiction.
We will prove that (8) is true for θ∗ = 3 + ε and hence that (2) holds for

θ > 3.
The next proposition is important for our purposes because it expresses

our zeta function as defined in (6) as an infinite product, from which we can
read off its singularities. As a matter of fact, we have chosen the parameters
{an} and {bn} in such a way as to give us a distribution of the singularities
of ζ(s) in the complex plane, from which we can deduce the oscillation
statement (8). In order to state it recall that for n > n0, we have a−n = an,
b−n = −bn and α−n = αn.

Proposition 3. Consider the zeta function

ζ(s) = exp
{∞\

1

x−s dP (x)
}
,

where dP is given by (4) above. Then, for <(s) > 1,

(9) ζ(s) =
s+ k − 1
s− 1

∏

|n|>n0

(
1− k

s− 1 + an − ibn + k

)αn/2
.

Lemma 4. If we define γ(t) by (5) and

γN (t) = 1−
∑

n0<n≤N
αn

cos(bn log t)
tan

, t ≥ 1,
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then γN (t) converges uniformly to γ(t) for t ≥ 1 and in fact |γ(t) − γN (t)|
≤ 2/N .

P r o o f (of Proposition 3). Notice first that
cos(b log t)

ta
=

1
2ta

(eib log t + e−ib log t) =
1
2

(t−a+ib + t−a−ib).

Hence
cos(b log t)

ta
· 1− t−k

log t
dt =

1
2

(t−a−ib + t−a+ib)
1− t−k

log t
dt.

Thus, for <(s) > 1, we have

− d

ds

∞\
1

t−s
cos(b log t)

ta
· 1− t−k

log t
dt

=
1
2

∞\
1

(t−s−a−ib + t−s−a+ib − t−s−a−ib−k − t−s−a+ib−k) dt

=
d

ds
log
[(

1− k

s− 1 + a+ ib+ k

)1/2(
1− k

s− 1 + a− ib+ k

)1/2]
.

Therefore, we have

−
∞\
1

t−s
cos(b log t)

ta
· 1− t−k

log t
dt

= log
{(

1− k

s− 1 + a+ ib+ k

)1/2(
1− k

s− 1 + a− ib+ k

)1/2}
+ Const.

By taking the limit as <(s) tends to infinity we see that the constant of
integration is zero.

Similarly, we have
∞\
1

t−s
1− t−k

log t
dt = log

s+ k − 1
s− 1

.

Thus, from the definition of γN , we get
∞\
1

t−s
1− t−k

log t
γN (t) dt

= log
(
s+ k − 1
s− 1

)
+

∑

n0<|n|≤N
αn log

(
1− k

s− 1 + an − ibn + k

)1/2

= log
{
s+ k − 1
s− 1

∏

n0<|n|≤N

(
1− k

s− 1 + an − ibn + k

)αn/2}
.

Taking the limit as N →∞ yields the assertion.
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The infinite product representation of ζ(s) given in (9) holds not only
in the half plane <(s) > 1, but in a larger region. To show this, we prove
the following proposition, which will also give us a useful upper bound for
|ζ(s)| in the extended domain of definition.

Proposition 5. If s = σ + it is such that σ > −k + 2, α =
∑
n>n0

αn,
and if

ϕ(s) =
∏

|n|>n0

(
1− k

s− 1 + an − ibn + k

)αn/2

then

|ϕ(s)| ≤ (k + 1)eα.

P r o o f. Let s = σ + it be given. Since bn = exp{√log xn} we have

bn+1 − bn = exp{
√

log xn+1} − exp{
√

log xn}
= exp{log xn} − exp{

√
log xn} ≥ xn −√xn ≥ 4k

for all n, since xn ≥ x1 = e10 and k < 5000. Therefore the interval
(t− 2k, t + 2k) contains at most one element of {bn}. Denote this element
(if it exists!) by bn(t). We now write

|ϕ(s)|

=
∣∣∣∣1−

k

s− 1 + an(t) − ibn(t) + k

∣∣∣∣
αn(t)/2 ∏

|n|>n0
n6=n(t)

∣∣∣∣1−
k

s− 1 + an − ibn + k

∣∣∣∣
αn/2

.

Since an > 0, we have σ − 1 + an + k > σ − 1 + k > 1 and hence
∣∣∣∣1−

k

s− 1 + an(t) − ibn(t) + k

∣∣∣∣
αn(t)/2

≤
∣∣∣∣1 +

k

σ − 1 + k

∣∣∣∣
αn(t)/2

≤ 1 + k.

On the other hand, when n 6= n(t),
∣∣∣∣1−

k

s− 1 + an − ibn + k

∣∣∣∣
αn/2

= exp
{
αn
2

log
∣∣∣∣1−

k

s− 1 + an − ibn + k

∣∣∣∣
}

= exp
{
αn
2
< log

(
1− k

s− 1 + an − ibn + k

)}

= exp
{
αn
2
<
(
− z − z2

2
− z3

3
− . . .

)}
,
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where

|z| =
∣∣∣∣

k

s− 1 + an − ibn + k

∣∣∣∣ ≤
k

|=(s)− bn| =
k

|t− bn| ≤
k

2k
=

1
2
.

Therefore

|ϕ(s)| ≤ (k + 1)
∏

|n|>n0
n6=n(t)

exp
{
αn
2

(
|z|+ |z|

2

2
+
|z|3
3

+ . . .

)}

≤ (k + 1) exp
{

1
4

∑

|n|>n0

αn

(
1 +

1
2

+
1
4

+ . . .

)}

= (k + 1) exp
{

1
2

∑

|n|>n0

αn

}
= (k + 1)eα

as claimed.

For the particular case k = 4, n0 = 3, and αn = 2n−2 we have

|ϕ(s)| ≤ 5 exp
{

2
∑
n>3

1
n2

}
< 9 if σ > −2.

Let Dζ be the region defined by

Dζ = {s = σ + it ∈ C : σ > −k + 2,

s 6= ξ(1− an + ibn) + (1− ξ)(1− an + ibn − k)

for any 0 ≤ ξ ≤ 1, |n| ≥ n0}.
By a theorem of Weierstrass on the uniform convergence of analytic

functions, we know that ϕ(s) is analytic on Dζ . The equation

ζ(s) =
s+ k − 1
s− 1

ϕ(s), σ > 1,

gives us an analytic continuation of ζ(s) to Dζ with s = 1 removed, where
ζ(s) has a simple pole. Notice that, since the zeros of ϕ(s) are of fractional
order, we avoid problems of multiple-valuedness by restricting the domain
of definition of ζ(s) to Dζ .

Corollary 6. For s ∈ Dζ such that |s− 1| > 1 we have |ζ(s)| ≤ 45.

P r o o f. We have

|ζ(s)| =
∣∣∣∣
s+ k − 1
s− 1

ϕ(s)
∣∣∣∣ ≤ 9

∣∣∣∣1 +
k

s− 1

∣∣∣∣ ≤ 9
(

1 +
4

|s− 1|
)
.

Our next step is to estimate M(x) (cf. (7)) where

(10) x = xn

(
1 +

θ1

log xn

)
, |θ1| < 1.
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Remark. It would be more accurate to write wn, for example, in place
of x. We prefer to write x in order to keep our formulas simple. We will
choose θ1 (and hence x) in such a way that M(x) equals the main term cx,
plus a large “error term”.

b10

n

C
n-1

C -n+1

C

-K+2

C

Γ1
Γ2

Γ
3

4

Γ5Γ

n

-n

1-iT

1+iT

-3/2

1- a    +ibn

Fig. 1

We deform the vertical path of integration in the inversion formula (7)
from the path <(s) = b > 1 to a path Γ1 ∪ Γ2 ∪ Γ ∗3 ∪ Γ4 ∪ Γ5 ⊂ Dζ (see
Figure 1). Here Γ1 joins b− i∞ to b− iTn, where Tn = exp{(log xn)3/4}. The
points b− iTn to −3/2 + iTn are joined by Γ2. The segments Γ5 and Γ4 are
symmetric to Γ1 and Γ2 with respect to the horizontal axis. We denote by Γ ∗3
a comb formed by horizontal loops Cm, n0 < |m| ≤ n, each going around
the singular point 1 − am + ibm. The collection of vertical line segments
joining one loop to the next one is denoted by Γ3. The points on Γ3 have
real part equal to −3/2. Furthermore, each Cm is made up of two horizontal
line segments joined at the right hand side by a small circle with center at
1− am + ibm. The two horizontal line segments of Cm are extended to the
left until they meet Γ3.

Now we write

M(x) = I1 + . . .+ I5 + J−n + . . .+ J+n + {residues at s = 0, 1}
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where

Im =
1

2πi

\
Γm

ζ(s)
xs+1

s(s+ 1)
ds, m = 1, . . . , 5,

Jm =
1

2πi

\
Cm

ζ(s)
xs+1

s(s+ 1)
ds, n0 < |m| ≤ n.

Here, as above, Cm is the mth horizontal loop with imaginary part equal
to bm.

Consider first the integral I3. As a matter of fact, in this case we do
not have just one integral but many of them. This is because the vertical
segment Γ3 is broken at each horizontal loop Cm. However, on each vertical
component of Γ3 the integrand is bounded by the same constant: 45. Thus,
since <(s) = −3/2 on Γ3, we have

|I3| ≤ 1
2π

∞\
−∞

45
x−3/2+1

|(−3/2 + it)(1/2 + it)| dt ≤
8√
x

∞\
0

dt

1/4 + t2

≤ 8√
x

{ 1/2\
0

4 dt+
∞\
1/2

dt

t2

}
=

8√
x

(
2 +

1
1/2

)
=

32√
x
.

Let b = 1 + 1/log xn. Then |I2| and |I4| are both less than 58(x/Tn)2.
Indeed, each is at most

1
2π

1+(log xn)−1\
−3/2

45
x2+(log xn)−1

T 2
n

dσ

≤ 8
T 2
n

x2+(log xn)−1
1+1/10\
−3/2

dσ

≤ 21
(
x

Tn

)2

exp
{

1
log xn

log
(
xn

(
1 +

θ1

log xn

))}

≤ 21
(
x

Tn

)2

exp
{

1 +
(

1
log xn

)2}
≤ 58

(
x

Tn

)2

.

Now we consider the integrals I1 and I5: each of |I1| and |I5| is at most

1
2π

∞\
Tn

45
x2+(log xn)−1

t2
dt ≤ 8x2 exp

{
1 +

(
1

log xn

)2} 1
Tn

≤ 8
x2

Tn
e1.01 ≤ 22

x2

Tn
.
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From the above estimates we get

(11) M(x) = kϕ(1) 1
2x

2 + (1− k)ϕ(0)x+
n∑

m=−n
Jm +O(x2/Tn),

where the O-constant is less than 2(58 + 22) + 32 = 192 (because 1/
√
x ≤

x2/Tn). Let us examine the expression

x2/Tn = x2 exp{−(log xn)3/4}.
We want to write x in place of xn in the above expression. To do this notice
first that, since x1 ≥ e10, we have xn+1 = xlog xn

n ≥ x10
n so that

xn ≥ x10
n−1 ≥ x102

n−2 ≥ . . . ≥ x10n−1

n−(n−1) ≥ e10n .

Thus we get log xn ≥ 10n and hence n ≤ log log xn.

Lemma 7. If xn is as in (10) then |log x− log xn| ≤ 2/10n.

P r o o f. We have

log x = log
[
xn

(
1 +

θ1

log xn

)]
, |θ1| < 1,

= log xn + log
(

1 +
θ1

log xn

)
.

Thus

|log x− log xn| ≤ |θ1|
log xn

(
1 +

|θ1|
log xn

+
( |θ1|

log xn

)2

+ . . .

)

≤ 1
log xn

(
1 +

1
10

+
(

1
10

)2

+ . . .

)
≤ 2

log xn
≤ 2

10n
.

By the mean value theorem of differential calculus, there is a number ξn
between x and xn such that

|(log x)3/4 − (log xn)3/4| = 3
4

(
1

log ξn

)1/4

|log x− log xn| ≤ 2
10n

.

Hence

x2/Tn ≤ x2 exp{−(log x)3/4 + 2/10n}
≤ x2 exp{−(log x)3/4 + 2/10} ≤ 2x2e−(log x)3/4

.

From this and from equation (11) we get

(12) M(x) = kϕ(1) 1
2x

2 +
n∑

m=−n
Jm +O(x2e−(log x)3/4

),

where the implied O-constant is less than 2 ·192+ |1−k|ϕ(0) ≤ 384+3 ·45 =
519.
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Now we show that all the terms in the sum (12) other than J−n and Jn
can be put into the error term.

Proposition 8. |∑n0<|m|≤n−1 Jm| ≤ 120x2e−(log x)3/4
.

P r o o f. It is easy to see that the contribution to the integral Jm due to
the loop circle centered at 1− am + ibm tends to zero as the radius tends to
zero. Hence we can write

|Jm| =
∣∣∣∣

1
2πi

\
Cm

ζ(s)
xs+1

s(s+ 1)
ds

∣∣∣∣

≤ 1
π

1−am\
−3/2

45
x2−am

b2m
dσ ≤ 15

b2m
x2e−am log x.

But if |m| ≤ n− 1 then

e−am log x ≤ e−an−1 log x

= exp
{
− log x

(log xn)1/4

}
≤ exp

{− log xn + 2/10n

(log xn)1/4

}

≤ exp{−(log xn)3/4 + 2/10n} ≤ exp{−(log x)3/4 + 4/10n}
≤ exp{−(log x)3/4 + 4/10} ≤ 2e−(log x)3/4

.

Hence ∣∣∣
∑

n0<|m|≤n−1

Jm

∣∣∣ ≤ 30x2 e−(log x)3/4 ∑

|m|>n0

1
b2m

.

We finish the proof by noting that the last sum is finite:
∑

|m|>n0

1
b2m
≤

∑

|m|>n0

e−
√

log xm ≤ 2
∑
m>n0

e−10m/2 ≤ 2
∑
m>n0

e−m ≤ 4.

Therefore we now see that

(13) M(x) = kϕ(1) 1
2x

2 + (J−n + Jn) +O(x2e−(log x)3/4
),

where the implied O-constant is less than 519 + 120 = 639.
It remains to study the expression J−n + Jn.

Denote by J ′n and J ′′n the integrals along the line segments C ′n and C ′′n
lying respectively above and below the branch cut Cn so that Jn = J ′n+J ′′n .
Now, if we write

s = 1− an + ibn + teiθ, −π ≤ θ < π,

then the line segment C ′′n is obtained by letting θ = −π and t run from 0 to
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1− an + 3/2. In this way we obtain C ′′n with its direction reversed:

−C ′′n :





θ = −π,
s = 1− an + ibn − t,
ds = −dt,
0 ≤ t ≤ 1− an + 3/2.

Hence

(14) J ′′n

=
−1
2πi

{ (log x)−1/4\
0

+
1−an+3/2\
(log x)−1/4

} ζ(1− an + ibn − t)x2−an+ibn−t

(1− an + ibn − t)(2− an + ibn − t) (−dt)

=
1

2πi

(log x)−1/4\
0

ζ(1− an + ibn − t)x2−an+ibn−t

(1− an + ibn − t)(2− an + ibn − t) dt+O(x2e−(log x)3/4
),

with the O-constant less than 1. Indeed, since b2n ≥ 10,

∣∣∣∣
1

2πi

1−an+3/2\
(log x)−1/4

. . . dt

∣∣∣∣ ≤
1

2π
· 45
b2n
x2−(log x)−1/4

(1− an + 3/2− (log x)−1/4)

≤ 5
4π
· 45
b2n
x2 exp

{
− log x

(log x)1/4

}
≤ x2e−(log x)3/4

.

Let us rewrite the integrand in expression (14):

ζ(s)
s(s+ 1)

=
s+ k − 1

s(s− 1)(s+ 1)

∏

|m|>n0

(
1− k

s− 1 + am − ibm + k

)αm/2

=
(

1− k

s− 1 + an − ibn + k

)αn/2 s+ k − 1
s(s− 1)(s+ 1)

×
∏

|m|>n0
m 6=n

(
1− k

s− 1 + am − ibm + k

)αm/2

= (s− 1 + an − ibn)αn/2

×

(s+ k − 1)
∏

|m|>n0
m 6=n

(
1− k

s− 1 + am − ibm + k

)αm/2

s(s− 1)(s+ 1)(s− 1 + an − ibn + k)αn/2

= (s− 1 + an − ibn)αn/2fn(s),
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where fn is an analytic function at s = 1 − an + ibn with a power series
expansion having a radius of convergence greater than one:

fn(s) =
∞∑

j=0

an,j(s− 1 + an − ibn)j .

The integrand in (14) can now be written as

x2−an+ibn−t(te−iπ)αn/2fn(1− an + ibn − t)

= x2−an+ibn
∞∑

j=0

an,jx
−ttj+αn/2e−πi(j+αn/2).

Thus, writing E in place of O(x2e−(log x)3/4
), we have

J ′′n =
1

2πi

(log x)−1/4\
0

x2−an+ibn
∞∑

j=0

an,jx
−ttj+αn/2e−πi(j+αn/2) dt+ E

=
1

2πi
x2−an+ibn

∞∑

j=0

an,je
−πi(j+αn/2)

(log x)−1/4\
0

x−ttj+αn/2 dt+ E

=
1

2πi
x2−an+ibne−πiαn/2

∞∑

j=0

(−1)j an,j

(log x)−1/4\
0

x−ttj+αn/2 dt+ E

=
1

2πi
x2−an+ibne−πiαn/2

(
1

log x

)αn/2+1

×
∞∑

j=0

an,j

( −1
log x

)j (log x)3/4\
0

e−ttj+αn/2 dt+ E

=
1

2πi
x2−an+ibne−πiαn/2

(
1

log x

)αn/2+1

×
(log x)3/4\

0

e−ttαn/2
∞∑

j=0

an,j

( −t
log x

)j
dt+ E

=
1

2πi
x2−an+ibne−πiαn/2

(
1

log x

)αn/2+1

Sn +O(x2e−(log x)3/4
)

with

Sn =
(log x)3/4\

0

e−ttαn/2fn

(
1− an + ibn − t

log x

)
dt.
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In a similar fashion we obtain

J ′n =
−1
2πi

x2−an+ibneπiαn/2
(

1
log x

)αn/2+1

Sn +O(x2e−(log x)3/4
).

We therefore have

Jn = J ′n + J ′′n(15)

= − sin π
2αn

π
x2−an+ibn

(
1

log x

)αn/2+1

Sn +O(x2e−(log x)3/4
),

with the O-constant not greater than 10.
When we calculate J−n we obtain the complex conjugate of Jn (this is

because b−n = −bn). Therefore

Jn + J−n = Jn + Jn = 2<(Jn).

Our next step is to estimate the integral Sn appearing in (15). First we
obtain lower and upper bounds for

(16) fn(s) =
s+ 3

s(s− 1)(s+ 1)
·

∏
|m|>n0
m 6=n

(
1− k

s− 1 + am − ibm + k

)αm/2

(s− 1 + an − ibn + k)αn/2

when |s− 1 + an − ibn| ≤ 1.
For the upper bound we notice that

|s| > bn − 1.

Thus ∣∣∣∣
s+ 3

s(s− 1)(s+ 1)

∣∣∣∣ ≤
bn + 6

(bn − 2)3 ≤
2bn

(bn/2)3 =
16
b2n
.

Also

|s− 1 + an − ibn + k|αn/2 > (k − |s− 1 + an − ibn|)αn/2 ≥ 3αn/2 ≥ 1.

Now we want to estimate from above the product appearing in the defi-
nition of fn (equation (16)). As in the proof of Proposition 5 we have

∣∣∣∣1−
k

s− 1 + am − ibm + k

∣∣∣∣ ≤ 1 +
k

|=(s)− bm| ≤ 1 +
k

2k
=

3
2
.

Thus the product in (16) is less than

∏

|m|>n0
m 6=n

(
3
2

)αn/2
≤

∏

|m|>n0

(
3
2

)1/m2

≤
(

3
2

)2
∑∞
j=1 1/j2

< 4.

Thus we have proved



136 E. P. Balanzario

Proposition 9. For |s− (1− an + ibn)| ≤ 1,

|fn(s)| ≤ 64/b2n.

This and Cauchy’s inequalities give the following

Corollary 10. For all j = 1, 2, . . . ,

|an,j | ≤ 64/b2n.

Now for the lower bound:

|s| ≤ |s− 1 + an − ibn|+ |1− an + ibn| ≤ 1 + 1 + |an|+ |bn| ≤ 3 + bn.

Thus∣∣∣∣
s+ 3

s(s− 1)(s+ 1)

∣∣∣∣ ≥
|s+ 3|

(bn + 4)3 ≥
|s| − 3

(bn + 4)3 ≥
bn − 1− 3
(bn + 4)3 ≥

1
2bn

(2bn)3 =
1

16b2n
.

Each term in the infinite product in (16) is∣∣∣∣1−
k

s− 1 + am − ibm + k

∣∣∣∣ ≥ 1− k

|s− 1 + am − ibm + k| ≥ 1− k

2k
=

1
2
.

Therefore
∏

|m|>n0
m 6=n

(
1− k

s− 1 + am − ibm + k

)αn/2

≥
∏

|m|>0

(
1
2

)1/m2

=
(

1
2

)2
∑∞
m=1 1/m2

=
(

1
2

)π2/3

>
1
10
.

Thus we have

Proposition 11. For |s− (1− an + ibn)| ≤ 1 we have

|fn(s)| ≥ 1
16b2n

· 1
5
· 1

10
=

1
800b2n

.

With all these inequalities we can estimate the integral for Sn, the func-
tion occurring in (15), as follows:

Sn =
(log x)3/4\

0

e−ttαn/2fn

(
1− an + ibn − t

log x

)
dt

=
(log x)3/4\

0

e−ttαn/2
∞∑

j=0

an,j

( −t
log x

)j
dt

= an,0

(log x)3/4\
0

e−ttαn/2 dt+
∞∑

j=1

an,j

(log x)3/4\
0

e−ttαn/2
( −t

log x

)j
dt.
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For the second term we get, by Corollary 10,

∣∣∣∣
∞∑

j=1

an,j

(log x)3/4\
0

e−ttαn/2
( −t

log x

)j
dt

∣∣∣∣ ≤
∞∑

j=1

64
b2n

(
1

log x

)j/4∞\
0

e−ttαn/2 dt

≤
(

1
log x

)1/4 64
b2n

∞∑

j=0

(
10
98

)j/4

≤ 148
(

1
log x

)1/4 1
b2n
.

Now, since
∞\

(log x)3/4

e−ttαn/2 dt ≤
∞\

(log x)3/4

e−tt dt ≤ 2 log x e−(log x)3/4
,

the integral Sn in (15) is

(17) Sn = an,0
(
Γ
(

1
2αn + 1

)
+ θ2 log x e−(log x)3/4)

+
θ3

b2n(log x)1/4
,

where |θ2| ≤ 2 and |θ3| ≤ 148. Since an,0 = fn(1−an+ibn), from Proposition
11 and from Γ

(
1
2αn + 1

)
> 0.8 we find that the modulus of Sn is greater

than

(18)
1

800b2n
(0.8− 2 log x e−(log x)3/4

)− 148
b2n(log x)1/4

=
1

800b2n

(
0.8− 2 log x e−(log x)3/4 − 118400

(log x)1/4

)
≥ e−2(log xn)1/2

1600

for x ≥ X1, i.e., if x is sufficiently large.
We will use this lower bound for the integral Sn appearing in equation

(15). Now consider the other factor in that equation,

sin π
2αn

π
x2−an

(
1

log x

)αn/2+1

≥ αn
π
x2e−(log xn)1/2 1

2(log x)2

≥ x2

π
e−(log xn)1/2 1

2(log x)2(log log xn)2 .

From the above and equation (15),

|Jn| ≥ x2

π1600
· e
−3(log xn)1/2

4(log x)4 ≥ 10−5

(log x)4 e
−3(log x)1/2

if x ≥ X1.

We would like Jn+J−n = 2<(Jn) to be large. We already know that |Jn|
is large, but still it can be that <(Jn) = 0, say. Let us recall here equation
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(15):

Jn = − sin π
2αn

π
x2−an+ibn

(
1

log x

)αn/2+1

Sn +O(x2e−(log x)3/4
),

where x = xn(1 + θ1/log xn), |θ1| < 1. Now express this equation as

A :=
Jn

x2−an = Bxibn + C,

where B and C have obvious definitions. Dividing by |B| we get

<
(
A− C
|B|

)
= <(exp{ibn log x+ i argB}) = cos(bn log x+ argB)

= cos
(
bn

(
log xn + log

(
1 +

θ1

log xn

))
+ argB

)

= cos
(
{bn log xn + argB}+ bn log

(
1 +

θ1

log xn

))
.

Notice that argB is a function of θ1. This is because x is a function of θ1

and Sn is a function of x. Hence we have

argB = argSn + π.

The main term on the right hand side of (17) is independent of θ1. Since
the other two terms are much smaller, we see that as θ1 runs from −1 to
+1, the argument of Sn (and hence of B) undergoes a change not greater
than 2π.

Therefore, as θ1 runs from −1 to +1, the argument of the above cosine
runs through an interval centered somewhere in

(bn log xn − 2π, bn log xn + 2π)

and having a length greater than

bn log
(

1 +
1

log xn

)
= bn

1+(log xn)−1\
1

dt

t
≥ bn

(
1

1 + (log xn)−1

)(
1

log xn

)

≥ bn 10
11
· 1

log xn
=

10
11
· e
√

log xn

log xn
→∞ as n→∞.

Therefore, when n is large we can choose values, θ1(+) and θ1(−), of θ1

such that

<
(
A− C
|B|

)
= +1 and <

(
A− C
|B|

)
= −1.

In the first case we get

<
(

Jn
x2−an

)
= <(A) = |B|+ <(C),
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or, what is the same,

<(Jn) = |B|x2−an + <(C)x2−an(19)

≥ |Jn| − |C|x2−an + <(C)x2−an

= |Jn|+O(x2e−(log x)3/4
)

≥ 10−5

2(log x)4 e
−3(log x)1/2

if x ≥ X1 and θ1 = θ1(+).

In a similar fashion we obtain

(20) <(Jn) ≤ − 10−5

2(log x)4 e
−3(log x)1/2

if x ≥ X1 and θ1 = θ1(−).

Notice that the inequalities (19) and (20) hold when

x ≥ X1, x = xn

(
1 +

θ1

log xn

)
, xn = exp{102n−1}, θ1 = θ1(±).

These inequalities and the equation

(13) M(x) = 2ϕ(1)x2 + 2<(Jn) +O(x2e−(log x)3/4
)

imply relation (8); in fact we have proved the following stronger statement:

M(x) = 2ϕ(1)x2 +Ω±(x2e−(3+ε)(log x)1/2
) ∀ε > 0.
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UNAM-Morelia
Nicolás Romero 150 Centro
58000 Morelia, Michoacán
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