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1. Introduction. In combinatorics, for a finite sequence

(1) {Ai}is,

of sets, a sequence

(2) {aitiy

of elements is called a system of distinct representatives (abbreviated to

SDR) of (1) if a; € Ay,...,a, € A, and a; # a; forall 1 <i < j<n. A
celebrated theorem of P. Hall [H| says that (1) has an SDR if and only if

(3) U

> |I] forall I C{l,...,n}.

iel
Clearly (1) has an SDR provided that |A;] > i for all ¢ = 1,...,n, in
particular an SDR of (1) exists if |[A;1| = ... = |A,| > nor 0 < |[A;] < ...

<A,
Let G be an additive abelian group and Aq,..., A, its subsets. We as-
sociate any SDR (2) of (1) with the sum ) ', a; and set

4)  S{A}L) = S(A1,- -, An)
={a1+...+ap: {a;};; forms an SDR of {A;}},}.

Of course, S(A1,...,A,) # 0 if and only if (3) holds. A fascinating and
challenging problem is to give a sharp lower bound for |S({A4;} ;)| and
determine when the bound can be reached.

Let p be a prime. In 1964 P. Erdds and H. Heilbronn (cf. [EH] and [G])
conjectured that for each nonempty subset A of Z, = Z/pZ there are at
least min{p, 2|A| — 3} elements of Z, that can be written as the sum of
two distinct elements of A. With the help of Grassmann spaces this was
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confirmed by J. A. Dias da Silva and Y. O. Hamidoune [DH] in 1994, in fact
they proved the following generalization for n-fold sums: If A C Z,, then

(5) (04| > min{p,n|A] — n? + 1}

where n"A denotes the set of sums of n distinct elements of A, i.e. 4 =
S(A,..., A) with A repeated n times on the right hand side. In 1995 and
1996, N. Alon, M. B. Nathanson and I. Z. Ruzsa [ANR1, ANR2]| introduced
an ingenious polynomial method and obtained the following result by con-
tradiction: Let F' be any field of characteristic p and A4, ..., A, its subsets
with 0 < [A1] < ... < |A,| < co. Then

(6) S(Ay,... A )y>mm{p,ZyA (”“)H}

providing N < p where N = >""" | |A;| — n(n + 1)/2. We mention that (6)
also holds in the case N > p. In fact, let s be the smallest positive integer
with >°7_ (J4;| —i) > N — p and choose A} C A;,..., Al C A, so that
|All =i fori < s, Al = A; for i > s, and

Al =5 =1+ (4] =) = (N —p) < |4, - L.
i=1
Then [A}| < ... <|AL|, N =31 |A} —n(n+1)/2=p—1 and so
(A1 4| > [S(4;, .. 4| > N' 1= p= min{p, N},

Alon, Nathanson and Ruzsa [ANR2] posed the question when the lower
bound in (6) can be reached and considered it to be interesting.

In view of the fundamental theorem on finitely generated abelian groups
(cf. [J]), if a finite addition theorem holds in Z then it holds in any torsion-
free abelian groups. So, without any loss of generality, we may work within Z.

For a finite subset A of Z, in 1995 Nathanson [N] showed the inequality
[n"A| > n|A| — n? + 1 and proved that if equality holds then A must be
an arithmetic progression providing 2 < n < |A| — 2. The same result was
independently obtained by Y. Bilu [B].

Let Ay,..., A, be finite subsets of Z with 0 < |A;| < ... < |A,|. Take
a sufficiently large prime p greater than Y . | |A;| — n(n + 1)/2 and the
largest element of S(A1,...,A,). Applying the Alon-Nathanson-Ruzsa re-
sult stated above, we have the inequality
(1) |S(A,...,A |>Z|A|—L1)+1:Z(|Aiy—i)+1.

i=1

In this paper we will make a new approach to sums of distinct repre-
sentatives. The method allows us to give a somewhat constructive proof of
(7) provided that Ay,..., A, are finite nonempty subsets of Z with distinct
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cardinalities. Furthermore we are able to make key progress in the equality
case.
Let us first look at two examples.

EXAMPLE 1. Let a € Z and d € Z\ {0}. Let k >n > 1, A= {a+jd:
j=0,1,...,k—1}, and Ay,..., A, be subsets of A with |A;| =k —n+i for
every i = 1,...,n. Obviously S(4;,...,4,) Cn"A. If S C A and |S| = n,
then for each i = 1,...,n at least i elements of S lie in A; since |S \ 4;| <
|A\ A;| = n — i, therefore we can write S in the form {as,...,a,} where
a; € Ay,...,a, € Ay SonA C S(Ay,...,An). Let X ={j1i+...+jn:0<
J1 < ... < jn < k}. Foreach j =0,1,...,n(k —n), there exist 0 < u < n
and 0 < v < k — n such that j = u(k — n) + v, hence

n

n(n2_1)+j:Z(i—1)+u(k—n)+v
= Y (i-D+mn-u—-1+v)+ Y (k—n+i-1)
0<i<n—u n—u<i<n

belongs to X. Thus {n(n —1)/2+j:0<j <n(k—n)} C X. Apparently
the least and the largest elements of X are 0+1+4...+(n—1) =n(n—1)/2
and (k—n)+...+(k—1)=n(n—1)/24 n(k — n) respectively. So, by the
above

S(A1,..., Ay) = n'A = {Za—i—j, 0§j1<...<jn<k}
=1

={na+azd:ze X}

:{na+<n(n2_1)+j)d:0éjén(k—n)}

n(n+1)
2

and hence

1S(A1,. . A)| = [n"A] = n(JA] —n) +1 =) |A;] - + 1.
i=1

EXAMPLE 2 (cf. [N]). Let ag,a1,a2,a3 € Z, ag < a1 < ag < az and
ag — az = a; — ag (but ay — a; may be different from a; — ap). Let A3 =
{ag,a1,a2} and Az = {ag, a1, az,as}. Then

S(Al,Ag) = {ao + a1, ag +as, ag +as = ay; + az, a1 +az, as +a3}.
Note that in this example [A;1] = 3 < |As] = 4 < [S(41,42)] =5 =
|A1] + |A2] —2(2+1)/2+ 1.

Now we introduce some notations to be used throughout the paper. For a

subset A of Z, — A refers to {—a : a € A}, min A and max A denote the least
and the largest elements of A respectively. If there exist a € Z, d € Z \ {0}
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and a positive integer k such that
A={a+jd:0<j <k},
then we call A an arithmetic progression (for short, AP).

In this paper, by a novel method we obtain the following

THEOREM. Let Aj,..., A, be subsets of Z with 0 < |A1| < ... <
|Ay| < 0o. Then inequality (7) holds. Moreover, in the equality case we have
U, A=A, foreverym e M ={1 <j<n:|Aj]>|A4;]+1}U{n},
and A, forms an AP unlessn =1 or|A;] < 3.

The result of Nathanson and Bilu stated above actually follows from the
Theorem. For i = 1,...,n let A; C A and |4;| = |A| — (n — 7). Obviously
0 < |A1 < ... <|A,| < oo. It follows from Example 1 and the Theorem
that

1
M| = |S(Ar,. .., A \>Z|A|—L) 1=nlA] —n? +1.

When |n"A| = n|A| —n? + 1, we have
n+1)
1S(A1,..., A |—Z|A| +1

hence by the Theorem if 2 < n < ]A\ — 3 (i.e., n > 2 and |A;| > 4) then
A=A, is an AP.

In the next section we shall provide two lemmas. The proof of the The-
orem will be given in Section 3.

2. Auxiliary results

LEMMA 1. Let G be an additive abelian group, and Aq,..., A, its fi-

nite subsets. Let r € {1,...,n} and suppose that {a;}izr forms an SDR of
{Ai}i;ﬁr. Then

(i) There exists a J C {1,...,n} containing r such that if J C I C
{1,...,n} then

sO(UAs) € satien, {ien\{iaeJa}=7\{r)

j€J j€J
and hence
(U]~ U]
jeJ JjeJ

where for any subset A of G we let

(8) SﬁI)(A):{Zai:areA\{ai:iel\{r}}}.

iel
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(i) Let k. = |A.| < ... < ky, = |A,|. For any J described in (i) and

I C{1,...,n} containing J, we have
9) ’SﬁU(UAj)’zkr—rJrl,
jeJ

and equality holds if and only if there exists an | € {r,...,n} for which
J={1.... 0}, U  Aj = A and ky =k, + (1 — 7).

Proof. (i) Let J be the class of those J C {1,...,n} containing r
such that if J C I C {1,...,n} then for each j € J there exists a one-
to-one mapping o7 : I\ {r} — I\ {j} for which a; € A, ;) for all
i € I\ {r}. Obviously J is nonempty (for, {r} belongs to J) and finite.
Let J be any maximal set in J with respect to the semiorder C, and let
JCIC{l,...,n}.

Set A=J;c;A;. Apparently J' = {r}U{i € I\ {r}: a; € A} contains
J. Let JCI'" C{l,...,n}. Since J € J and J C I, for j € J there is
a one-to-one mapping op; : I' \ {r} — I"\ {j} such that a; € A, , (;
for all i € I\ {r}. For j/ € J'\ J, there is a j € J with a;; € A;. Since
J e Jand I" = I'\ {j'} O J, there also exists a one-to-one mapping
oprjt I"\{r} — I"\{j} such that a; € A, ,, ;) for i € I"\{r}. Obviously
by letting j € I’ \ {r} correspond to j € I' \ {j'} we can extend o7~ ; to a
one-to-one mapping oy : I’ \ {r} — I \ {j'} for which a; € 4, , ;) for
all i € I'"\ {r}. Thus J' € J. As J C J" and J is a maximal set in J, we
must have J' = J, ie., {i € I\{r}:a; € U;c; 4;} = J\ {r}.

If j € Jand z; € Aj\{a; : 1 € I\ {r}}, then z; + 37, p\ (@ €
S({As}ier) because a; € Ay, @ for i € T\ {r}. So S(A) C S ({As}ier)-
Note that

1S0(A)] = [A\{ai i € I\ {r}} = |A| = [{i € I\ {r} : a; € 4}
= [A[ = [T\ {r}| = [A] = [J] + 1.
This proves part (i).

(ii) Let J be as described in (i), A = J;c;4; and J C T C {1,...,n}.
If |J| < r, then

’A‘ - "]’ > ’Ar’ - ’J| > kr -

When |J| > r, clearly max J > r and kyax g —kr = >
max J — 7, therefore

Al = |J| > |[Amax g| — |J| = kr + max J —r — |J| > k, —r,
and |A| — |J| = k, —r if and only if
A= Amnaxts Ekmaxs =k, +maxJ —r, maxJ =|J|,

(ki—Fki—1) >

r<i<max J
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ie.,

J:{l,...,|J‘}, A:A|J|, liler+|J|_T.
This together with the equality |S£I) (A)] = |A] = |J| + 1 yields the second
part.

LEMMA 2. Let A and B be finite subsets of Z with4 < k = |A| <1 =|B],
A C B, min A = min B, max A # max B and |S(A,B)|=k+1—2. Then B
is an AP.

Proof. Let A ={ay,...,ax} and B = {by,...,b;} where a1 < ... < ay
and by < ... < 4. Put C = {a1 +bo,...,a1 + b_1,a1 + by, ..., a +bl}.
Clearly C C S(A,B) and |C| =k+1—2. As |S(A,B)| =k+1-2, S(A, B)
coincides with C. Since A C B and ay # by, for i = 2,..., k we may suppose
that a; = by(;y where i < f(i) < I. Because

S(A,B) 2 {a1 +b; :2<j < f(i)}U{ai +b;: 5 # f(i)}
U{aj—l—bl:i<j§k‘},
we have
k+1-2=|S(A,B)>(f(i))=2)+ -1+ (k—i)=k+1+ f(i) —i—3,
ie. a; € {b;,bi11}. Observe that az < ap < b;_;. Since
a1+ b1 <as+b_q1<az+b_1<az+by,
as +b_1 =a1+0b and a3z + b;_1 = as + by, it follows that
ag—alzbl—blflzag—ag.

If aq 7éb2, then as = b3, az = by, bo — b1 < as — by = a3 —as, a1 + b3 <
by + az < ag+ by = ay + by; this contradicts the fact as + by € S(A, B) = C.
So as = by. As as + b1 € C we must have ay + b;_1 = ay + b;, similarly
as +b_o=ay+b_1,...,a2 + bz = a; + by. Thus

bl—bl_lz...:b4—b3:a2—a1:b2—b1:ag—bg.

If ag # b3, then ag = by and hence by = by —as+by = bs, which is impossible.
So a3 = by and B forms an AP.

3. Proof of Theorem. The case n = 1 is trivial. Below we let n > 2
and assume the statement holds for smaller values of n.
Put k; = |A;|fori=1,....,n.Seta=min{J | 4;, [={1<i<n:ac€
A;},r=minl and t = max [. For i € I let
s {Ai\{a} if i #£r,
E {a} ifi =,
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and for i € [ = {1,...,n}\ I put

A/: Az\{al} 1fr<z<tandz§ZM,
v A; otherwise,
where a; is an arbitrary element of A;. Apparently all the A are finite,
nonempty and contained in Z, also |S(A7,...,A4,)| = [S({A4}ixr)|. Let
ki = |Aj| fori=1,...,n. Observe that kf <k if 1 <i<j<mandi,j#r.
By the induction hypothesis,
—1)(n—1+1)
SUAY ) =Yk - 1> 0.
ECRIED I U
Suppose that max S({A;}izr) = >, a; where {aj}ix is an SDR of
{A!}i%r. By Lemma 1 there exists a J C {1,...,n} containing r for which
IN{ry ={i#r:a;€ A}, 5.(A) CSH{ANL), [SH(A)| Z ke —r+1,
where A = (J;; A; and S,.(4) = {377, a} : ap € A\{a] : i # r}}. As
S(Ay,...,An) 2 S(AL,..., AL)US,.(A) and
max S(A},...,Al) =a+ Za; = min S, (4),
i#ET

we have
IS(A1,..., Ap)| > [S(AL, ..., AL +[S-(A)] -1

n(n —1)

ZZkQ—THHkT—rH)_l
1ET
-1
ZZki—(t—T)—TZ(TlQ)+1+kr—T
iET
- 1
:Zki_n(n;_)—i-n—t—l-l
i=1
>Zn:k‘— nntl)
=1 Z 2
From now on we assume that
- n(n+1)
(10) |S(A17...,An):;ki—2+1.
The above deduction yields
n(n—1)
(11) [SHADier)| =D ki — (¢ —7) = —— *t1L

iET
(12) r<i<t=igINM,



166 H. Q. Cao and Z. W. Sun

(13) 1S (A)| = kr — 7+ 1,
(14) t=n.

By (13) and Lemma 1 there is an [ € {r,...,n} for which J = {1,...,1},
Ué.:l A=A, k=k.+(l—r)and

(15) {1,...,0\{r}=J\{r}={i#r:a, € A=A}

(14) indicates that a € A,,. Let b = max | J-_; A4;. Clearly a # b, for otherwise
each A; contains exactly one element, which contradicts the inequality ky <
kn. As —b = min|J;_,(—4;) and |S(—A;,...,—A,)] = |S(4y,..., A,)| =
Yo =Ail = n(n +1)/2 + 1, similarly we have —b € —A,,. So b € A}, =
A, \ {a}. Choose the smallest s < n such that b € A;.

Let m € M. We now show that U;il A; = A, i.e. A,, contains both
U?il,i;ﬁr A; and A,.

If m = r, then r € M, hence |l = r = m and A,, = ;4 2
Uzil,i;ér A;

Since A, = A; for all i < r, by (11), (12) and the induction hypothesis,
if m <r then J~, 4; = U?il,i;ﬁr A, =A,,.

Assume r < n. Clearly b € {a; : i # r} (otherwise >, aj+0b €
S({A}};z,) would be greater than . a; = maxS({A}}ix-)). Suppose
that b = a); where j # 7. In view of (15), b € A; if and only if j <. Since
b=aj € A C Aj, wehave j > s. If | =5, thenbe A, s <j<1=s,
s=j#r.

Now suppose that r < m < n. If m <t = n, then m € I by (12), and

a1 — Ky = (Bmyr — 1) = (kpy, — 1) > 1. By (11), (12) and the induction
hypothesis (i~ ;.. A} = A}, If 1 <4 < r, then A; = A} C A, C A;
if r <i < mandie€l, then A, = A, U{a} C A}, U{a} = A,; if
r <i < mbuti ¢ I, then |A;| > k. +1 > 2 and hence for any given
x; € A; by taking a; € A; different from z; at the beginning we find that
x; € Ai\{a;}=A, C A CA,. So U;ZL#T A; CA,,.

Since s is the smallest index such that —Ag contains min|J;_,(—A4;) =
—b, by analogy U;n:L#S(—Ai) C —A,,. Thus, if r ;é s then —A, C —A,,,
ie. A, C A,,. If r = s, then by the above | # s = r, also [ < m since
ki = ky + 1 — 7, therefore A, C (J._; Aj = A C Ayy,. So U LA = A,

Now let us check that A, is an AP except the case k1 < 3

If r =1 then min{k} : i # r} = k), > ko — 1 > kq, and if r > 1 then
min{k] : i # r} =k} = k1. So min{k] : i # r} > ki. Below we assume that
ki > 4.

Suppose n > 2. By (11), (12) and the induction hypothesis, if 7 < n then
Al = A, \ {a} is an AP. Similarly, if s < n then —A,, \ {—b} is an AP and
hence so is A, \ {b}. Thus, if r < n and s < n then 4,, = {a} U (4, \{a}) =
(A, \ {b}) U{b} forms an AP. (Note that |A,| =k, > k1 > 4.)
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Now consider the case r = s = 1 < n = 2. By the above [ = 2 (since
l#s=1)and ko = k1 +1. Let a = by < ... < bg, = b be all the elements of
Ay If1 <@ < j < ko, then either b; or bj belongs to A; because |42\ 4| =1,
therefore b; + b; € S(A1, Az). So

5(A1,Az) 2 S(A2\ {b}, A2)
OC = {bl +bo, ..., b1 +bk2,l)2 —|—bk2,...,bk2_1 +bk2}
As |S(A1,A2)’ =ki +ky—2=2ky—3 = |C|, we have S(Al,AQ) =C =
S(AQ\{b}, AQ) Clearly ’Ag\{b}‘ = ]{72—1 = kl Z 4, mln(Ag\{b}) = min Ag
and max(As \ {b}) # max As. Applying Lemma 2 we find that A, = A,
forms an AP.

With respect to the case r = n we make the following remarks:

(i) Since A, = Uj_, Aj, we have A,,_1 C A,. If n > 2, then by (11), (12)
and the induction hypothesis A7, = JI'~,' A} forms an AP, i.e. [J/ A; =
A, _1 is an AP. Set

A, ={r€A,:x<maxA, 1} and Al ={r€A,:minA, <z}
Whether n = 2 or n > 2 we always have |J]_; "A;=A,_1 C A, N AF and
hence |A;, N Af| > ky—1 > k1 > 4. Among Al,... A,_1,A;, the index r~
of the first one containing min(U?:_l1 A;UA; ) = a is identical with r while
the index s~ of the first one containing max(U?;ll A;UA;) =maxA,_; is
less than n. Similarly, among Aq,..., A,_1, A}, the index r* of the first one
containing min(U?z_l1 A; UA}) = min A, _1 is less than n while the index
sT of the first one containing max(|J/—,' A; U A}) = b is equal to s.

(ii) Suppose that A, # A,,_1. Then |A; | > kn,—1 > ... > k1. According
to the previous reasoning,

1
1S(A1, ..., Ay, A |>Zk+\Ay—M+1>o.

Observe that
max S(A1,...,Ap_1,A4,) <maxS(A},..., A, ;) + max A,
<maxS({a&},...,{a%,l},An\A;),
and that |S({a}},...,{al,_1}, A \ 4,)| = |An \ 4,,|. So
[S(A1, ..., An)| > !5(141’--- A1, A+ 1S{ar}, - {ag 1}, An \ AL

>Zk + 14, y—MJrlJr(kn—yAﬂ)

:Zkz‘—nn2)+1.
i=1
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Since (10) holds, we must have

(n—l—l)

(16) 1S(Ar,..., A1, A |—Zk:+|A\ +1.

(iii) By analogy, when —A} = {—z € —A4,, : —x < max(—A,_1)} #
—A,_1 (ie. A # A, 1), we have

(17) |S(A17"'5An—1>A7T)| = |S(_A17 "a_An 17_A+)|

_Zk A - ("“) .y

Assume that s < r = n. Then both 7+ and s™ = s are less than n.
If Af # A,_1, then (17) holds and hence A} forms an AP by previous
arguments. If n > 2, then A} is an AP anyway and so is A, \ {b} by
the above, therefore A,, forms an AP. If n = 2, then s = 1, min(—A4;) =
min(—Asy), max(—A4;) # max(—Ag) (since r = 2), and |S(—A;, —A4s)| =
|S(A1, Ag)| = k1 + ko — 2, hence —As is an AP by Lemma 2, thus A,, = A,
forms an AP.

In the case r < s = n, by applying the above result to the subsets
—Ay,...,—A, instead of Ay, ..., A,, we see that —A,, forms an AP, i.e., A,
is an AP.

Finally, we handle the remaining case r = s = n. Since r* < sT =s=n
and s~ < r~ =r = n, by the above A} forms an AP if A} # A,,_;, and
A, forms an AP if A, # A,_;. Providing n > 2, both A and A, are
APs, therefore A, forms an AP. When n = 2, if A, = Ay is not an AP,
then A5 or A;‘ coincides with A;, hence min A; = min A, = min A, and
max A; # max Ay (since s = 2), or min(—A;) = min(—AJ) = min(—A4s,)
and max(—A;) # max(—Asy) (since r = 2), thus Ay forms an AP by Lemma
2, which leads a contradiction. So, whether n > 2 or n = 2, A,, always forms
an AP.

The induction step is now completed and the proof of the Theorem is
finished.
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