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1. Introduction. In combinatorics, for a finite sequence

(1) {Ai}ni=1

of sets, a sequence

(2) {ai}ni=1

of elements is called a system of distinct representatives (abbreviated to
SDR) of (1) if a1 ∈ A1, . . . , an ∈ An and ai 6= aj for all 1 ≤ i < j ≤ n. A
celebrated theorem of P. Hall [H] says that (1) has an SDR if and only if

(3)
∣∣∣
⋃

i∈I
Ai

∣∣∣ ≥ |I| for all I ⊆ {1, . . . , n}.

Clearly (1) has an SDR provided that |Ai| ≥ i for all i = 1, . . . , n, in
particular an SDR of (1) exists if |A1| = . . . = |An| ≥ n or 0 < |A1| < . . .
< |An|.

Let G be an additive abelian group and A1, . . . , An its subsets. We as-
sociate any SDR (2) of (1) with the sum

∑n
i=1 ai and set

S({Ai}ni=1) = S(A1, . . . , An)(4)

= {a1 + . . .+ an : {ai}ni=1 forms an SDR of {Ai}ni=1}.
Of course, S(A1, . . . , An) 6= ∅ if and only if (3) holds. A fascinating and
challenging problem is to give a sharp lower bound for |S({Ai}ni=1)| and
determine when the bound can be reached.

Let p be a prime. In 1964 P. Erdős and H. Heilbronn (cf. [EH] and [G])
conjectured that for each nonempty subset A of Zp = Z/pZ there are at
least min{p, 2|A| − 3} elements of Zp that can be written as the sum of
two distinct elements of A. With the help of Grassmann spaces this was
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confirmed by J. A. Dias da Silva and Y. O. Hamidoune [DH] in 1994, in fact
they proved the following generalization for n-fold sums: If A ⊆ Zp then

(5) |n∧A| ≥ min{p, n|A| − n2 + 1}
where n∧A denotes the set of sums of n distinct elements of A, i.e. n∧A =
S(A, . . . , A) with A repeated n times on the right hand side. In 1995 and
1996, N. Alon, M. B. Nathanson and I. Z. Ruzsa [ANR1, ANR2] introduced
an ingenious polynomial method and obtained the following result by con-
tradiction: Let F be any field of characteristic p and A1, . . . , An its subsets
with 0 < |A1| < . . . < |An| <∞. Then

(6) |S(A1, . . . , An)| ≥ min
{
p,

n∑

i=1

|Ai| − n(n+ 1)
2

+ 1
}

providing N < p where N =
∑n
i=1 |Ai| − n(n + 1)/2. We mention that (6)

also holds in the case N ≥ p. In fact, let s be the smallest positive integer
with

∑s
i=1(|Ai| − i) > N − p and choose A′1 ⊆ A1, . . . , A

′
n ⊆ An so that

|A′i| = i for i < s, A′i = Ai for i > s, and

|A′s| = s− 1 +
s∑

i=1

(|Ai| − i)− (N − p) ≤ |As| − 1.

Then |A′1| < . . . < |A′n|, N ′ =
∑n
i=1 |A′i| − n(n+ 1)/2 = p− 1 and so

|S(A1, . . . , An)| ≥ |S(A′1, . . . , A
′
n)| ≥ N ′ + 1 = p = min{p,N}.

Alon, Nathanson and Ruzsa [ANR2] posed the question when the lower
bound in (6) can be reached and considered it to be interesting.

In view of the fundamental theorem on finitely generated abelian groups
(cf. [J]), if a finite addition theorem holds in Z then it holds in any torsion-
free abelian groups. So, without any loss of generality, we may work within Z.

For a finite subset A of Z, in 1995 Nathanson [N] showed the inequality
|n∧A| ≥ n|A| − n2 + 1 and proved that if equality holds then A must be
an arithmetic progression providing 2 ≤ n < |A| − 2. The same result was
independently obtained by Y. Bilu [B].

Let A1, . . . , An be finite subsets of Z with 0 < |A1| < . . . < |An|. Take
a sufficiently large prime p greater than

∑n
i=1 |Ai| − n(n + 1)/2 and the

largest element of S(A1, . . . , An). Applying the Alon–Nathanson–Ruzsa re-
sult stated above, we have the inequality

(7) |S(A1, . . . , An)| ≥
n∑

i=1

|Ai| − n(n+ 1)
2

+ 1 =
n∑

i=1

(|Ai| − i) + 1.

In this paper we will make a new approach to sums of distinct repre-
sentatives. The method allows us to give a somewhat constructive proof of
(7) provided that A1, . . . , An are finite nonempty subsets of Z with distinct
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cardinalities. Furthermore we are able to make key progress in the equality
case.

Let us first look at two examples.

Example 1. Let a ∈ Z and d ∈ Z \ {0}. Let k ≥ n ≥ 1, A = {a + jd :
j = 0, 1, . . . , k−1}, and A1, . . . , An be subsets of A with |Ai| = k−n+ i for
every i = 1, . . . , n. Obviously S(A1, . . . , An) ⊆ n∧A. If S ⊆ A and |S| = n,
then for each i = 1, . . . , n at least i elements of S lie in Ai since |S \ Ai| ≤
|A \ Ai| = n − i, therefore we can write S in the form {a1, . . . , an} where
a1 ∈ A1, . . . , an ∈ An. So n∧A ⊆ S(A1, . . . , An). Let X = {j1 + . . .+jn : 0 ≤
j1 < . . . < jn < k}. For each j = 0, 1, . . . , n(k − n), there exist 0 ≤ u < n
and 0 ≤ v ≤ k − n such that j = u(k − n) + v, hence

n(n− 1)
2

+ j =
n∑

i=1

(i− 1) + u(k − n) + v

=
∑

0<i<n−u
(i− 1) + (n− u− 1 + v) +

∑

n−u<i≤n
(k − n+ i− 1)

belongs to X. Thus {n(n − 1)/2 + j : 0 ≤ j ≤ n(k − n)} ⊆ X. Apparently
the least and the largest elements of X are 0+1+ . . .+(n−1) = n(n−1)/2
and (k− n) + . . .+ (k− 1) = n(n− 1)/2 + n(k− n) respectively. So, by the
above

S(A1, . . . , An) = n∧A =
{ n∑

i=1

(a+ jid) : 0 ≤ j1 < . . . < jn < k
}

= {na+ xd : x ∈ X}

=
{
na+

(
n(n− 1)

2
+ j

)
d : 0 ≤ j ≤ n(k − n)

}

and hence

|S(A1, . . . , An)| = |n∧A| = n(|A| − n) + 1 =
n∑

i=1

|Ai| − n(n+ 1)
2

+ 1.

Example 2 (cf. [N]). Let a0, a1, a2, a3 ∈ Z, a0 < a1 < a2 < a3 and
a3 − a2 = a1 − a0 (but a2 − a1 may be different from a1 − a0). Let A1 =
{a0, a1, a2} and A2 = {a0, a1, a2, a3}. Then

S(A1, A2) = {a0 + a1, a0 + a2, a0 + a3 = a1 + a2, a1 + a3, a2 + a3}.
Note that in this example |A1| = 3 < |A2| = 4 < |S(A1, A2)| = 5 =
|A1|+ |A2| − 2(2 + 1)/2 + 1.

Now we introduce some notations to be used throughout the paper. For a
subset A of Z, −A refers to {−a : a ∈ A}, minA and maxA denote the least
and the largest elements of A respectively. If there exist a ∈ Z, d ∈ Z \ {0}



162 H. Q. Cao and Z. W. Sun

and a positive integer k such that

A = {a+ jd : 0 ≤ j < k},
then we call A an arithmetic progression (for short, AP).

In this paper, by a novel method we obtain the following

Theorem. Let A1, . . . , An be subsets of Z with 0 < |A1| < . . . <
|An| <∞. Then inequality (7) holds. Moreover , in the equality case we have⋃m
i=1Ai = Am for every m ∈ M = {1 ≤ j < n : |Aj+1| > |Aj | + 1} ∪ {n},

and An forms an AP unless n = 1 or |A1| ≤ 3.

The result of Nathanson and Bilu stated above actually follows from the
Theorem. For i = 1, . . . , n let Ai ⊆ A and |Ai| = |A| − (n − i). Obviously
0 < |A1| < . . . < |An| < ∞. It follows from Example 1 and the Theorem
that

|n∧A| = |S(A1, . . . , An)| ≥
n∑

i=1

|Ai| − n(n+ 1)
2

+ 1 = n|A| − n2 + 1.

When |n∧A| = n|A| − n2 + 1, we have

|S(A1, . . . , An)| =
n∑

i=1

|Ai| − n(n+ 1)
2

+ 1,

hence by the Theorem if 2 ≤ n ≤ |A| − 3 (i.e., n ≥ 2 and |A1| ≥ 4) then
A = An is an AP.

In the next section we shall provide two lemmas. The proof of the The-
orem will be given in Section 3.

2. Auxiliary results

Lemma 1. Let G be an additive abelian group, and A1, . . . , An its fi-
nite subsets. Let r ∈ {1, . . . , n} and suppose that {ai}i 6=r forms an SDR of
{Ai}i6=r. Then

(i) There exists a J ⊆ {1, . . . , n} containing r such that if J ⊆ I ⊆
{1, . . . , n} then

S(I)
r

( ⋃

j∈J
Aj

)
⊆ S({Ai}i∈I),

{
i ∈ I \ {r} : ai ∈

⋃

j∈J
Aj

}
= J \ {r}

and hence ∣∣∣S(I)
r

( ⋃

j∈J
Aj

)∣∣∣ =
∣∣∣
⋃

j∈J
Aj

∣∣∣− |J |+ 1,

where for any subset A of G we let

(8) S(I)
r (A) =

{∑

i∈I
ai : ar ∈ A \ {ai : i ∈ I \ {r}}

}
.
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(ii) Let kr = |Ar| < . . . < kn = |An|. For any J described in (i) and
I ⊆ {1, . . . , n} containing J , we have

(9)
∣∣∣S(I)
r

( ⋃

j∈J
Aj

)∣∣∣ ≥ kr − r + 1,

and equality holds if and only if there exists an l ∈ {r, . . . , n} for which
J = {1, . . . , l}, ⋃lj=1Aj = Al and kl = kr + (l − r).

P r o o f. (i) Let J be the class of those J ⊆ {1, . . . , n} containing r
such that if J ⊆ I ⊆ {1, . . . , n} then for each j ∈ J there exists a one-
to-one mapping σI,j : I \ {r} → I \ {j} for which ai ∈ AσI,j(i) for all
i ∈ I \ {r}. Obviously J is nonempty (for, {r} belongs to J ) and finite.
Let J be any maximal set in J with respect to the semiorder ⊆, and let
J ⊆ I ⊆ {1, . . . , n}.

Set A =
⋃
j∈J Aj . Apparently J ′ = {r} ∪ {i ∈ I \ {r} : ai ∈ A} contains

J . Let J ′ ⊆ I ′ ⊆ {1, . . . , n}. Since J ∈ J and J ⊆ I ′, for j ∈ J there is
a one-to-one mapping σI′,j : I ′ \ {r} → I ′ \ {j} such that ai ∈ AσI′,j(i)
for all i ∈ I ′ \ {r}. For j′ ∈ J ′ \ J , there is a j ∈ J with aj′ ∈ Aj . Since
J ∈ J and I ′′ = I ′ \ {j′} ⊇ J , there also exists a one-to-one mapping
σI′′,j : I ′′ \{r} → I ′′ \{j} such that ai ∈ AσI′′,j(i) for i ∈ I ′′ \{r}. Obviously
by letting j′ ∈ I ′ \ {r} correspond to j ∈ I ′ \ {j′} we can extend σI′′,j to a
one-to-one mapping σI′,j′ : I ′ \ {r} → I ′ \ {j′} for which ai ∈ AσI′,j′ (i) for
all i ∈ I ′ \ {r}. Thus J ′ ∈ J . As J ⊆ J ′ and J is a maximal set in J , we
must have J ′ = J , i.e., {i ∈ I \ {r} : ai ∈

⋃
j∈J Aj} = J \ {r}.

If j ∈ J and xj ∈ Aj \ {ai : i ∈ I \ {r}}, then xj +
∑
i∈I\{r} ai ∈

S({Ai}i∈I) because ai ∈ AσI,j(i) for i ∈ I \ {r}. So S(I)
r (A) ⊆ S ({Ai}i∈I).

Note that

|S(I)
r (A)| = |A \ {ai : i ∈ I \ {r}}| = |A| − |{i ∈ I \ {r} : ai ∈ A}|

= |A| − |J \ {r}| = |A| − |J |+ 1.

This proves part (i).
(ii) Let J be as described in (i), A =

⋃
j∈J Aj and J ⊆ I ⊆ {1, . . . , n}.

If |J | < r, then

|A| − |J | ≥ |Ar| − |J | > kr − r.
When |J | ≥ r, clearly max J ≥ r and kmax J−kr =

∑
r<i≤max J(ki−ki−1) ≥

max J − r, therefore

|A| − |J | ≥ |Amax J | − |J | ≥ kr + max J − r − |J | ≥ kr − r,
and |A| − |J | = kr − r if and only if

A = Amax J , kmax J = kr + max J − r, maxJ = |J |,
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i.e.,

J = {1, . . . , |J |} , A = A|J|, k|J| = kr + |J | − r.
This together with the equality |S(I)

r (A)| = |A| − |J | + 1 yields the second
part.

Lemma 2. Let A and B be finite subsets of Z with 4 ≤ k = |A| < l = |B|,
A ⊆ B, minA = minB, maxA 6= maxB and |S(A,B)| = k+ l− 2. Then B
is an AP.

P r o o f. Let A = {a1, . . . , ak} and B = {b1, . . . , bl} where a1 < . . . < ak
and b1 < . . . < bl. Put C = {a1 + b2, . . . , a1 + bl−1, a1 + bl, . . . , ak + bl}.
Clearly C ⊆ S(A,B) and |C| = k+ l− 2. As |S(A,B)| = k+ l− 2, S(A,B)
coincides with C. Since A ⊆ B and ak 6= bl, for i = 2, . . . , k we may suppose
that ai = bf(i) where i ≤ f(i) < l. Because

S(A,B) ⊇ {a1 + bj : 2 ≤ j < f(i)} ∪ {ai + bj : j 6= f(i)}
∪ {aj + bl : i < j ≤ k},

we have

k + l − 2 = |S(A,B)| ≥ (f(i)− 2) + (l − 1) + (k − i) = k + l + f(i)− i− 3,

i.e. ai ∈ {bi, bi+1}. Observe that a3 < ak ≤ bl−1. Since

a1 + bl−1 < a2 + bl−1 < a3 + bl−1 < a3 + bl,

a2 + bl−1 = a1 + bl and a3 + bl−1 = a2 + bl, it follows that

a2 − a1 = bl − bl−1 = a3 − a2.

If a2 6= b2, then a2 = b3, a3 = b4, b2 − b1 < a2 − b1 = a3 − a2, a1 + b3 <
b2 + a2 < a3 + b1 = a1 + b4; this contradicts the fact a2 + b2 ∈ S(A,B) = C.
So a2 = b2. As a2 + bl−1 ∈ C we must have a2 + bl−1 = a1 + bl, similarly
a2 + bl−2 = a1 + bl−1, . . . , a2 + b3 = a1 + b4. Thus

bl − bl−1 = . . . = b4 − b3 = a2 − a1 = b2 − b1 = a3 − b2.
If a3 6= b3, then a3 = b4 and hence b2 = b2−a3+b4 = b3, which is impossible.
So a3 = b3 and B forms an AP.

3. Proof of Theorem. The case n = 1 is trivial. Below we let n ≥ 2
and assume the statement holds for smaller values of n.

Put ki = |Ai| for i = 1, . . . , n. Set a = min
⋃n
i=1Ai, I = {1 ≤ i ≤ n : a ∈

Ai}, r = min I and t = max I. For i ∈ I let

A′i =
{
Ai \ {a} if i 6= r,
{a} if i = r;
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and for i ∈ Ī = {1, . . . , n} \ I put

A′i =
{
Ai \ {ai} if r < i < t and i 6∈M ,
Ai otherwise,

where ai is an arbitrary element of Ai. Apparently all the A′i are finite,
nonempty and contained in Z, also |S(A′1, . . . , A

′
n)| = |S({A′i}i6=r)|. Let

k′i = |A′i| for i = 1, . . . , n. Observe that k′i < k′j if 1 ≤ i < j ≤ n and i, j 6= r.
By the induction hypothesis,

|S({A′i}i 6=r)| ≥
∑

i 6=r
k′i −

(n− 1)(n− 1 + 1)
2

+ 1 > 0.

Suppose that maxS({A′i}i 6=r) =
∑
i 6=r a

′
i where {a′i}i6=r is an SDR of

{A′i}i6=r. By Lemma 1 there exists a J ⊆ {1, . . . , n} containing r for which

J \ {r} = {i 6= r : a′i ∈ A}, Sr(A) ⊆ S({Ai}ni=1), |Sr(A)| ≥ kr − r + 1,

where A =
⋃
j∈J Aj and Sr(A) = {∑n

i=1 a
′
i : a′r ∈ A \ {a′i : i 6= r}}. As

S(A1, . . . , An) ⊇ S(A′1, . . . , A
′
n) ∪ Sr(A) and

maxS(A′1, . . . , A
′
n) = a+

∑

i6=r
a′i = minSr(A),

we have
|S(A1, . . . , An)| ≥ |S(A′1, . . . , A

′
n)|+ |Sr(A)| − 1

≥
∑

i 6=r
k′i −

n(n− 1)
2

+ 1 + (kr − r + 1)− 1

≥
∑

i 6=r
ki − (t− r)− n(n− 1)

2
+ 1 + kr − r

=
n∑

i=1

ki − n(n+ 1)
2

+ n− t+ 1

≥
n∑

i=1

ki − n(n+ 1)
2

+ 1.

From now on we assume that

(10) |S(A1, . . . , An)| =
n∑

i=1

ki − n(n+ 1)
2

+ 1.

The above deduction yields

(11) |S({A′i}i6=r)| =
∑

i 6=r
ki − (t− r)− n(n− 1)

2
+ 1,

(12) r < i < t⇒ i 6∈ Ī ∩M,
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|Sr(A)| = kr − r + 1,(13)

t = n.(14)

By (13) and Lemma 1 there is an l ∈ {r, . . . , n} for which J = {1, . . . , l},⋃l
j=1Aj = Al, kl = kr + (l − r) and

(15) {1, . . . , l} \ {r} = J \ {r} = {i 6= r : a′i ∈ A = Al}.
(14) indicates that a ∈ An. Let b = max

⋃n
i=1Ai. Clearly a 6= b, for otherwise

each Ai contains exactly one element, which contradicts the inequality k1 <
kn. As −b = min

⋃n
i=1(−Ai) and |S(−A1, . . . ,−An)| = |S(A1, . . . , An)| =∑n

i=1 |−Ai| − n(n + 1)/2 + 1, similarly we have −b ∈ −An. So b ∈ A′n =
An \ {a}. Choose the smallest s ≤ n such that b ∈ As.

Let m ∈ M . We now show that
⋃m
i=1Ai = Am, i.e. Am contains both⋃m

i=1,i 6=r Ai and Ar.
If m = r, then r ∈ M , hence l = r = m and Am =

⋃m
i=1Ai ⊇⋃m

i=1,i 6=r Ai.
Since A′i = Ai for all i < r, by (11), (12) and the induction hypothesis,

if m < r then
⋃m
i=1Ai =

⋃m
i=1,i6=r Ai = Am.

Assume r < n. Clearly b ∈ {a′i : i 6= r} (otherwise
∑
i 6=r,n a

′
i + b ∈

S({A′i}i 6=r) would be greater than
∑
i 6=r a

′
i = maxS({A′i}i 6=r)). Suppose

that b = a′j where j 6= r. In view of (15), b ∈ Al if and only if j ≤ l. Since
b = a′j ∈ A′j ⊆ Aj , we have j ≥ s. If l = s, then b ∈ Al, s ≤ j ≤ l = s,
s = j 6= r.

Now suppose that r < m ≤ n. If m < t = n, then m ∈ I by (12), and
k′m+1 − k′m ≥ (km+1 − 1) − (km − 1) > 1. By (11), (12) and the induction
hypothesis

⋃m
i=1,i6=r A

′
i = A′m. If 1 ≤ i < r, then Ai = A′i ⊆ A′m ⊆ Am;

if r < i ≤ m and i ∈ I, then Ai = A′i ∪ {a} ⊆ A′m ∪ {a} = Am; if
r < i ≤ m but i 6∈ I, then |Ai| ≥ kr + 1 ≥ 2 and hence for any given
xi ∈ Ai by taking ai ∈ Ai different from xi at the beginning we find that
xi ∈ Ai \ {ai} = A′i ⊆ A′m ⊆ Am. So

⋃m
i=1,i 6=r Ai ⊆ Am.

Since s is the smallest index such that −As contains min
⋃n
i=1(−Ai) =

−b, by analogy
⋃m
i=1,i 6=s(−Ai) ⊆ −Am. Thus, if r 6= s then −Ar ⊆ −Am,

i.e. Ar ⊆ Am. If r = s, then by the above l 6= s = r, also l ≤ m since
kl = kr + l − r, therefore Ar ⊆

⋃l
j=1Aj = Al ⊆ Am. So

⋃m
i=1Ai = Am.

Now let us check that An is an AP except the case k1 ≤ 3.
If r = 1 then min{k′i : i 6= r} = k′2 ≥ k2 − 1 ≥ k1, and if r > 1 then

min{k′i : i 6= r} = k′1 = k1. So min{k′i : i 6= r} ≥ k1. Below we assume that
k1 ≥ 4.

Suppose n > 2. By (11), (12) and the induction hypothesis, if r < n then
A′n = An \ {a} is an AP. Similarly, if s < n then −An \ {−b} is an AP and
hence so is An \ {b}. Thus, if r < n and s < n then An = {a}∪ (An \ {a}) =
(An \ {b}) ∪ {b} forms an AP. (Note that |An| = kn > k1 ≥ 4.)
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Now consider the case r = s = 1 < n = 2. By the above l = 2 (since
l 6= s = 1) and k2 = k1 + 1. Let a = b1 < . . . < bk2 = b be all the elements of
A2. If 1 ≤ i < j ≤ k2, then either bi or bj belongs to A1 because |A2\A1| = 1,
therefore bi + bj ∈ S(A1, A2). So

S(A1, A2) ⊇ S(A2 \ {b}, A2)

⊇ C = {b1 + b2, . . . , b1 + bk2 , b2 + bk2 , . . . , bk2−1 + bk2}.
As |S(A1, A2)| = k1 + k2 − 2 = 2k2 − 3 = |C|, we have S(A1, A2) = C =
S(A2\{b}, A2). Clearly |A2\{b}| = k2−1 = k1 ≥ 4, min(A2\{b}) = minA2

and max(A2 \ {b}) 6= maxA2. Applying Lemma 2 we find that An = A2

forms an AP.
With respect to the case r = n we make the following remarks:

(i) Since An =
⋃n
j=1Aj , we have An−1 ⊂ An. If n > 2, then by (11), (12)

and the induction hypothesis A′n−1 =
⋃n−1
i=1 A

′
i forms an AP, i.e.

⋃n−1
i=1 Ai =

An−1 is an AP. Set

A−n = {x ∈ An : x ≤ maxAn−1} and A+
n = {x ∈ An : minAn−1 ≤ x}.

Whether n = 2 or n > 2 we always have
⋃n−1
i=1 Ai = An−1 ⊆ A−n ∩ A+

n and
hence |A−n ∩ A+

n | ≥ kn−1 ≥ k1 ≥ 4. Among A1, . . . , An−1, A
−
n , the index r−

of the first one containing min(
⋃n−1
i=1 Ai ∪A−n ) = a is identical with r while

the index s− of the first one containing max(
⋃n−1
i=1 Ai ∪A−n ) = maxAn−1 is

less than n. Similarly, among A1, . . . , An−1, A
+
n , the index r+ of the first one

containing min(
⋃n−1
i=1 Ai ∪ A+

n ) = minAn−1 is less than n while the index
s+ of the first one containing max(

⋃n−1
i=1 Ai ∪A+

n ) = b is equal to s.
(ii) Suppose that A−n 6= An−1. Then |A−n | > kn−1 > . . . > k1. According

to the previous reasoning,

|S(A1, . . . , An−1, A
−
n )| ≥

n−1∑

i=1

ki + |A−n | −
n(n+ 1)

2
+ 1 > 0.

Observe that
maxS(A1, . . . , An−1, A

−
n ) ≤ maxS(A′1, . . . , A

′
n−1) + maxAn−1

< maxS({a′1}, . . . , {a′n−1}, An \A−n ),

and that |S({a′1}, . . . , {a′n−1}, An \A−n )| = |An \A−n |. So

|S(A1, . . . , An)| ≥ |S(A1, . . . , An−1, A
−
n )|+ |S({a′1}, . . . , {a′n−1}, An \A−n )|

≥
n−1∑

i=1

ki + |A−n | −
n(n+ 1)

2
+ 1 + (kn − |A−n |)

=
n∑

i=1

ki − n(n+ 1)
2

+ 1.
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Since (10) holds, we must have

(16) |S(A1, . . . , An−1, A
−
n )| =

n−1∑

i=1

ki + |A−n | −
n(n+ 1)

2
+ 1.

(iii) By analogy, when −A+
n = {−x ∈ −An : −x ≤ max(−An−1)} 6=

−An−1 (i.e. A+
n 6= An−1), we have

|S(A1, . . . , An−1, A
+
n )| = |S(−A1, . . . ,−An−1,−A+

n )|(17)

=
n−1∑

i=1

ki + |A+
n | −

n(n+ 1)
2

+ 1.

Assume that s < r = n. Then both r+ and s+ = s are less than n.
If A+

n 6= An−1, then (17) holds and hence A+
n forms an AP by previous

arguments. If n > 2, then A+
n is an AP anyway and so is An \ {b} by

the above, therefore An forms an AP. If n = 2, then s = 1, min(−A1) =
min(−A2), max(−A1) 6= max(−A2) (since r = 2), and |S(−A1,−A2)| =
|S(A1, A2)| = k1 + k2 − 2, hence −A2 is an AP by Lemma 2, thus An = A2

forms an AP.
In the case r < s = n, by applying the above result to the subsets

−A1, . . . ,−An instead of A1, . . . , An, we see that −An forms an AP, i.e., An
is an AP.

Finally, we handle the remaining case r = s = n. Since r+ < s+ = s = n
and s− < r− = r = n, by the above A+

n forms an AP if A+
n 6= An−1, and

A−n forms an AP if A−n 6= An−1. Providing n > 2, both A+
n and A−n are

APs, therefore An forms an AP. When n = 2, if An = A2 is not an AP,
then A−2 or A+

2 coincides with A1, hence minA1 = minA−2 = minA2 and
maxA1 6= maxA2 (since s = 2), or min(−A1) = min(−A+

2 ) = min(−A2)
and max(−A1) 6= max(−A2) (since r = 2), thus A2 forms an AP by Lemma
2, which leads a contradiction. So, whether n > 2 or n = 2, An always forms
an AP.

The induction step is now completed and the proof of the Theorem is
finished.
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