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1. Introduction. There is considerable research on the problem of de-
termining the arithmetic structure of terms in binary linear recurrences. In
this paper we consider those sequences which arise from solutions to Pell
equations. For an extensive survey on this topic, the reader is referred to
[11].

Let d denote a positive nonsquare integer. It is well known that the
equation X2 − dY 2 = 1 has infinitely many solutions in positive integers,
all of which are generated by a minimal solution, which we denote by εd =
T + U

√
d. Then all of the solutions in positive integers are given by εkd =

Tk + Uk
√
d, for k ≥ 1. This notation will be used throughout the paper.

Based on a theorem of Ljunggren (see [9]), Cohn [4] proved the following
result, determining the values in the sequence {Tk} which can be perfect
squares.

Theorem A (Cohn, 1996). Let d be a nonsquare positive integer. If the
equation X4 − dY 2 = 1 is solvable in positive integers X,Y , then either
X2 + Y

√
d = εd or ε2

d. Solutions to X4 − dY 2 = 1 arise from both εd and
ε2
d only for d ∈ {1785, 7140, 28560}.

Definition. For a positive integer b, the rank of apparition α(b) of b
in the sequence {Uk} is the minimal index k for which b divides Uk. Since
the sequence {Uk (mod b)} is periodic and satisfies U0 = 0, it follows that
α(b) < ∞ for all b ≥ 1. The rank of apparition β(b) of b in the sequence
{Tk} is the minimal index k for which b divides Tk. We write β(b) = ∞ if
no such k exists.

Theorem A has since been generalized as follows by Bennett and the
author in [2].

Theorem B (Bennett and Walsh, 1998). Let b > 1 and d > 1 be square-
free integers. If Tk = bx2 for some integer x, then k = β(b). Also, there is
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a computable positive constant c = c(b) depending on b such that if d > c
and Tk = bx2, then k = 1 or k = 2.

The purpose of this paper is to study similar questions for the sequence
{Uk}. The following theorem on the number of solutions to the equation
Uk = bx2 follows from a classical result of Ljunggren [7] and Theorem A.

Proposition 1. Let b, d denote positive squarefree integers. There is at
most one index k for which Uk = bx2, except in the following cases:

1. T = 2t2 for some integer t and U = by2 for some integer y, in which
case there is the second solution U2 = b(2ty)2.

2. T = 169, in which case U1 and U4 are both squares for d = 1785 and
d = 16 · 1785, and both twice a square for d = 7140.

When a solution to Uk = bx2 does occur, it would be interesting to
prove analogous results on the value for k, as was done in Theorem B. This
unfortunately seems to be more difficult, mainly because of the lack of a
“Jacobi-symbol” argument, as is available for the sequence {Tk}.

In [10], Mignotte and Pethő make some progress on this question by
proving the following, which is a slight reformulation of their result in order
to coincide with the notation and results of this paper.

Theorem C (Mignotte and Pethő, 1993). Let d be a nonsquare positive
integer such that εd = T + u2

√
d for some integers T and u. A solution to

Uk = bx2 for some b ∈ {1, 2, 3, 6} and some integer x, with k > 3, exists
only when T = 169 and k = 4.

In [10], the authors actually deal with the more general situation of
taking powers of units of the form (a+

√
a2 − 4)/2. In the statement of

Theorem C, we have only considered the case where a is even since we
are restricting our attention to the study of solutions to the Pell equation
X2 − dY 2 = 1.

The following result will provide the basis for improving Theorem C.
More importantly, it provides a different method of proof than that in [10],
which is easily extendable to larger values of b.

Theorem 1. Let d denote a positive nonsquare integer such that the
minimal solution of the Pell equation X2 − dY 2 = 1 is of the form εd =
T + u2

√
d. If Uk = bx2 for some b ∈ {1, 2, 3, 5, 6, 10} and some integer x,

then k = α(b), except in the following cases:

1. (b, T ) = (1, 2v2) for some integer v, in which case U2 = (2vu)2, and
(b, T ) = (1, 169), in which case U4 is a square.

2. (b, T ) = (2, v2) for some integer v, and u is even, in which case
U2 = U2α(2) = 2(vu)2.
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3. b = 3, 3 divides u, and 4T 2 − 1 = 3v2 for some integer v, in which
case U3 = U3α(3) = 3(vu)2.

4. (b, T, d) = (5, 5, 24), in which case U4 = U2α(5) = 5(14)2.

Theorem 1 enables us to prove the following improvement of Theorem C.

Corollary 1. Let d denote a positive nonsquare integer such that the
minimal solution of the Pell equation X2 − dY 2 = 1 is of the form εd =
T + u2

√
d. Assume that Uk = bx2 for some b ∈ {1, 2, 3, 5, 6, 10} and some

integer x. Then k ≤ 2 except in the following cases:

1. T = 169, in which case U4 is a square.
2. 3 divides u and 4T 2 − 1 = 3y2 for some integer y, in which case

U3 = 3(uy)2.
3. (b, d) = (5, 24), in which case U4 = 5(14)2.

The set of integers b considered in Theorem 1 is restricted in order to keep
the proof brief, yet shows how such a result can be proved for any particular
value of b. We conjecture that this result holds for any integer b > 1. That
is, apart from the exceptional cases given here, the only possible value k for
which Uk = bx2 is k = α(b).

More generally, removing the restriction that U is a square, we pose the
following conjecture. It is worth noting that this conjecture follows from an
effective form of Langevin’s theorem about the abc conjecture (see [5]), but
we omit the details.

Conjecture 1. Let d denote a positive nonsquare integer such that the
minimal solution of the Pell equation X2 − dY 2 = 1 is εd = T + U

√
d. For

a squarefree integer b, the only possible solution to Uk = bx2 is k = α(b),
except for the following cases:

1. T = 169 and b ∈ {1, 2}, in which case U2 and U4 are also solutions.
2. T +U

√
d = 2v2 +bu2

√
d or T +U

√
d = v2 +2bu2

√
d for some integers

v and u, in which case U2 = b(2vu)2.
3. 4T 2−1 = 3v2 and U = 3bu2 for some integers v and u, in which case

U3 = b(3vu)2.
4. 2T 2− 1 = v2 and TU = bu2 for some integers v and u, in which case

b(2vu)2 = U4 = U2α(b).

Furthermore, there is a positive constant c = c(b) with the property that
d > c and Uk = bx2 implies k ≤ 3.

Some partial results in this direction can be obtained by the methods of
this paper, relying heavily on Theorem B. The following is an example of
such a result for the case where α(b) is even.

Theorem 2. Let d be a nonsquare positive integer , and let b be a square-
free positive integer such that α(b) is even. If Uk = bx2 for some integer
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x, then k = α(b) except in the case where 2T 2 − 1 = v2 and TU = bu2 for
some integers u and v, in which case U4 = b(2uv)2 = U2α(b). Also, there is
a computable constant c = c(b) with the property that d > c and Uk = bx2

implies k = 2.

2. Properties of certain recurrence sequences. As above, let d be
a nonsquare positive integer, and εd = T + U

√
d the minimal solution of

X2 − dY 2 = 1. For k ≥ 1, let εk = Tk + Uk
√
d. For a prime p not dividing

d, we let δ =
(
d
p

)
denote the Legendre symbol.

Lemma 1. For any odd prime p, with gcd(p, d) = 1, p divides U(p−δ)/2,
i.e. α(p) divides (p− δ)/2. If p divides d, then α(p) = 1 or α(p) = p.

P r o o f. If p divides d, the result can easily be obtained from the binomial
theorem. Assume that gcd(p, d) = 1, then it is well known (see [6]) that p
divides Up−δ = 2T(p−δ)/2U(p−δ)/2, and so it suffices to prove that p does not
divide T(p−δ)/2.

Assume first that p divides T . Then from the relation T 2 − dU2 = 1, it
follows that

(−d
p

)
= 1, hence 4 divides p− δ, showing that (p− δ)/2 is even.

Since gcd(T, T2k) = 1 for all integers k, p cannot divide T(p−δ)/2.
Now assume that p does not divide T . From the binomial theorem it is

easy to show that Tp ≡ T1 (mod p). Furthermore, from the obvious rela-
tion εp = εp−δ · εδ, it follows that Tp = Tp−δT1 + δUp−δU1d, and hence
Tp−δT1 ≡ Tp ≡ T1 (mod p), showing that Tp−δ ≡ 1 (mod p). If p di-
vides T(p−δ)/2, then since Tp−δ = 2T 2

(p−δ)/2 − 1, we deduce that Tp−δ ≡ −1
(mod p), contradicting the fact that p is an odd prime.

The following result is easily proved using the binomial theorem.

Lemma 2. Let k ≥ 1, a ≥ 1, and let p be any prime number. If p ‖
Uk, then for any integer t ≥ 0, and positive integer l with gcd(p, l) = 1,
pa+t ‖ Uptkl.

For further results on the divisibility properties of recurrence sequences,
the reader is referred to the well known paper of Lehmer [6].

3. Squares in recurrence sequences. We present some results used in
the proof of Theorem 1. In [7], Ljunggren showed that for a given nonsquare
positive integer d, the equation X2 − dY 4 = 1 has at most two solutions in
positive integers X and Y . This was improved upon in [12], as follows.

Lemma 3. Let D be a nonsquare integer with D 6∈ {1785, 7140, 28560}.
Then there are at most two positive indices k for which Uk = 2δy2 with y
an integer and δ = 0 or 1. If two solutions k1 < k2 exist , then k1 = 1 and
k2 = 2, and provided that D 6= 5, T + U

√
D is the fundamental unit in
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Q(
√
D), or its square. For D ∈ {1785, 7140, 28560}, there is a third solution

k3 = 4.

The following is a simple consequence of Theorem B. The reader is di-
rected to Corollary 1 of [2] for more details.

Lemma 4. If Tk = bx2 for some b ∈ {2, 3, 5, 6, 10} and some integer x,
then k = 1.

Lemma 5. For k ≥ 1, let Vk +Wk

√
2 = (1 +

√
2)k. The only odd values

of k for which Wk = bx2 for some integer x and b ∈ {1, 2, 3, 5, 6, 10} are
k = 1, 3 and 7.

P r o o f. For odd values of k, V 2
k − 2W 2

k = −1, and so Wk is a product of
primes congruent to 1 modulo 4. Thus, the only candidates for b are 1 and
5. If b = 1, then by the result of Ljunggren [8], the only values for k are 1
and 7. It follows from the main result of [3] that the only integer solution of
X2 − 50Y 4 = 1 is (X,Y ) = (7, 1), resulting in k = 3.

Lemma 6. If εd = T + u2
√
d for some integer u, then for any integer

b > 1 there is at most one solution k to Uk = bx2.

P r o o f. This follows from Proposition 1.

Lemma 7. The only positive integer solution to 5Y 2 = 16X4− 12X2 + 1
is (X,Y ) = (1, 1).

P r o o f. The polynomial 16x4 − 12x2 + 1 factors as 16x4 − 12x2 + 1 =
(4x2 − 2x − 1)(4x2 + 2x − 1), and for any integer x, we have gcd(4x2 −
2x − 1, 4x2 + 2x − 1) = 1. Therefore, if X and Y are integers satisfying
5Y 2 = 16X4 − 12X2 + 1, either 4X2 − 2X − 1 = Z2 or 4X2 + 2X − 1 = Z2

for some integer Z. This is equivalent to either (4X − 1)2 − 5 = 4Z2 or
(4X + 1)2 − 5 = 4Z2 for some integer Z. It is evident that only the former
is solvable with X = 1, forcing Y = 1.

4. Proofs

Proof of Proposition 1. In [7], Ljunggren showed that for a positive non-
square integer D, the equation X2−DY 4 = 1 has at most two solutions, and
if two solutions exist, then they are given by εD and ε2

D, or by εD and ε4
D, the

latter occurring for only finitely many D. It follows from Theorem A that the
latter can only occur for T = 169, and hence D ∈ {1785, 4 · 1785, 16 · 1785}.

Fix an integer b ≥ 1, and let D = db2. If Uk = bx2, then this gives
rise to a solution of X2 − DY 4 = 1, and so by Ljunggren’s result, there
is at most one solution to Uk = bx2 except if one of two situations arise.
The first is that U2 = bz2 and U = by2 for some integers z and y. Since
U2 = 2TU , it follows that T = 2t2 for some integer t. This is precisely the
first exceptional case given in the statement of the proposition. The other



184 G. Walsh

possibility, according to Ljunggren’s theorem, is that T = 169, in which case
U and U4 are both either a square or twice a square.

Proof of Theorem 1. For b ∈ {1, 2}, the result is immediate from Lemma
3, together with the fact that U = U1 is a square. We now consider b > 2,
and in so doing, we consider each value of b separately.

Let us first assume that α(b) is even, α(b) = 2r, say. Let U2r = bm2n
with n squarefree, and assume that Uk = bx2. By Lemma 2, it follows that
k = 2rnc for some integer c. It follows that either Trnc or Urnc is a square,
or twice a square, and so by Theorem A and Lemma 4, either rnc ∈ {1, 2},
or rnc = 4 and T = 169.

If rnc = 1 we are done. Assume that rnc = 2. Then if n = 1 we are done,
so assume that n = 2 and that r = c = 1. Thus, U2 = 2bm2 and U4 = bx2.
From U4 = 2T2U2, it follows that T2 = z2 for some integer z. Also, since
2bm2 = U2 = 2TU = 2Tu2, it follows that T = bv2 for some integer v. From
the relation T2 = 2T 2−1, we deduce finally that z2 = 2b2v4−1. By Lemma
5, it follows that b = 5, v = 1, and hence T + u2

√
d = 5 +

√
24, which is one

of the exceptional cases given.
It remains to consider the case rnc = 4 and T = 169. In this case,

U = 1 or 4, and it is sufficient to consider the former case. We find that
k = 2rnc = 8, and that Uk = 23 · 132 · 2392 · 9601 · 679681 is not of the form
bx2 with b ∈ {3, 5, 6, 10}. Thus, the theorem holds in the case where α(b) is
even.

We now consider each value of b separately.

Case 1: b = 3. Assume that Uk = 3x2 for some integer x. From Lemma 1
we know that α(3) = 1, 2, or 3, and so we consider each odd case separately.
Assume first that α(3) = 1. Since U1 is a square, it follows from Lemma 2
that 3 divides k. Therefore, by Lemma 2, Uk/3 = y2 for some integer y, and
it follows from the above case b = 1 that k/3 = 1, 2, or 4, i.e. k = 3, 6, or 12.
If U6 = 3x2, then since U6 = 2T3U3, 3 divides U3 and the highest power of 2
dividing U3 is even, it follows that T3 = 2y2 for some integer y, contradicting
Lemma 4. Similarly, if U12 = 3x2, then T6 = 2y2, which again contradicts
Lemma 4. Thus, the only possibility is that U3 = 3x2, so that k = 3α(3).
Furthermore, in this case, it is easy to verify that U3 = (4T 2 − 1)u2, and
so 4T 2 − 1 = 3y2 for some integer y, which is one of the exceptional cases
given in the statement of the theorem.

To complete the analysis of Case 1, we must deal with the possibility that
α(3) = 3. Again let U3 = 3m2n with n squarefree. Then Uk = 3x2 implies
k = 3nl for some integer l. Applying Lemma 2, it follows that Unl = y2

for some integer y, forcing nl ∈ {1, 2, 3, 4}, and hence k ∈ {3, 6, 9, 12}. If
U12 = 3x2, then since U6 is divisible by 6, it follows that T6 is a perfect
square, which is not possible by Theorem A. If U9 = 3x2, then Lemma 4
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implies that U3 is a square, which is not possible by Lemma 3 since U1 is
a square. If U6 = 3x2, then since 3 divides U3, it follows that T3 is either
a square or twice a square, neither of which is possible. Therefore, the only
possible value for k is α(3) = 3.

The analysis for b = 6 is similar.

Case 2: b = 5. Assume that Uk = 5x2 for some integer x. From Lemma
1 we know that α(3) = 1, 2, 3, or 5, and so we consider each odd case
separately. Assume that α(5) = 1, U = 5m2n with n squarefree. By Lemma
2, if Uk = 5x2, then k = nl for some integer l. Since U = u2, it follows
that n = 5, and so U5l = 5x2. It follows from Lemma 2 that Ul = y2 for
some integer y, and hence l = 1, 2 or 4. If l = 1, then U5 = 5x2, and hence
5(x/u)2 = U5/U = 16T 4−12T 2 + 1, which by Lemma 7 implies that T = 1,
which contradicts the fact that T > 1.

Assume that α(5) = 3, so that U3 = 5m2n with n squarefree. By Lemma
2, if Uk = 5x2, then k = 3nl for some integer l. By Lemma 2, Unl =
y2, 3y2, 5y2 or 15y2 for some integer y. By Lemma 6, 5y2 is not possible.
By Lemma 2, Unl = 15y2 implies 3 divides nl, and U(nl)/3 = 5z2 for some
integer z, which is not possible by Lemma 6. If Unl = 3y2, then by the
results above, nl = 1, 2 or 3. The case nl = 1 is not possible, since U = U1 is
a square. If nl = 3, then U3 = 3y2, together with U3 = 5m2n above, implies
that 15 divides n, a contradiction. Thus, the only possibility is nl = 2. If
n = 1, then 3 = α(5), and we are done. Otherwise, n = 2, and U3 = 10m2,
which is not possible since the highest power of 2 dividing U , and hence U3,
is even.

Assume that α(5) = 5, so that U5 = 5m2n with n squarefree. Let Uk =
5x2. Then it follows that k = 5nl for some integer l. By Lemma 2, Unl = y2

for some integer y, forcing nl ∈ {1, 2, 4}, and hence k ∈ {5, 10, 20}. If U20 =
5x2 = 2T10U10, then T10 = z2 for some integer z, which is not possible by
Theorem A. Similarly, if U10 = 5x2 = 2T5U5, it follows that T5 = 2δz2 for
some δ ∈ {0, 1}, which is not possible by Lemma 4 and Theorem A. Thus,
the only possibility is U5 = 5x2, forcing 5(x/u)2 = U5/U = 16T 4−12T 2 +1,
which by Lemma 7 yields T = 1, which is not possible.

The analysis for b = 10 is similar.

Proof of Corollary 1. Consider first the case b ∈ {1, 2}. The result is
immediate from Lemma 3, and the fact that U = u2 is a square.

Now assume that b ∈ {3, 5, 6, 10}. We consider each case separately.
Assume that b = 3. Then from Lemma 1 α(b) = 1, 2 or 3. Thus by

Theorem 1, if Uk = 3x2, then k = 1, 2 or 3. Assume that U3 = 3x2. Since
3x2 = U3 = U(4T 2 − 1) = u2(4T 2 − 1), it follows that 4T 2 − 1 = 3y2 for
some integer y, which is one of the exceptional cases. Thus, aside from this
case, Uk = 3x2 implies k ≤ 2.
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Assume that b = 5, then by Lemma 1, α(b) is one of 1, 2, 3, 5.
By Theorem 1, if Uk = 5x2, then for d 6= 24, in which case U4 = 5(14)2,

k is one of 1, 2, 3, 5. We therefore must show that U3 = 5x2 and U5 = 5x2

cannot occur. If U5 = 5x2, then 5(x/u)2 = U5/U = 16T 4 − 12T 2 + 1.
By Lemma 7, T = 1, which is impossible. Assume that U3 = 5x2. It is
easy to check that U3 = U(4T 2 − 1), and so 5x2 = u2(4T 2 − 1), and hence
(2T )2−5(x/u)2 = 1. Since the minimal solution to X2−5Y 2 = 1 is 9+4

√
5,

it follows that every solution to X2 − 5Y 2 = 1 has X odd, showing that
U3 = 5x2 is not possible.

Assume that b = 6, and that Uk = 6x2. By Theorem 1, k = α(6), which
implies that k ∈ {1, 2, 3, 6}. If α(6) = 6 then it is easy to show that 3 divides
U3. Therefore, from the relation U6 = 2T3U3, it follows that T3 is a square
or twice a square, contradicting Theorem A or Lemma 4. Assume now that
α(6) = 3 and that U3 = 6x2. It follows that 2 divides U = u2 to an odd
power, which is not possible. Therefore, the only possibilities for k are k = 1
and k = 2.

Assume that b = 10. Then the possible values for α(b) are 1, 2, 3, 5, 10.
If α(10) = 10 it follows that 5 divides U5, and hence T5 is either a square
or twice a square, which is not possible. If α(10) = 5, and U5 = 10x2,
then 2 divides U = u2 to an odd power, which is not possible. Similarly, if
α(10) = 3, and U3 = 10x2, then 2 divides U = u2 to an odd power, which
is not possible. Thus, the only possible values for k are k = 1 and k = 2.

Proof of Theorem 2. Since α(b) is even, k is even; k = 2l say. We first
consider the case where α(b) divides l. Since bx2 = Uk = 2TlUl, gcd(Tl, Ul) =
1, and b divides Ul, it follows that Tl is a square or twice a square, forcing
l = 1 or l = 2 by Theorem A and Lemma 4. Since α(b) divides l and is even,
the only possibility is l = 2 and k = 4. This leads to the exceptional case
given in the statement of the theorem.

Assume that α(b) does not divide l. Then k/α(b) is an odd integer, which
we will show is equal to 1 unless the exceptional case holds. Assume on the
contrary that p is an odd prime dividing k/α(b). Note that since α(b) divides
k/p, it follows that b divides Uk/p. We are assuming that Uk = bx2, and so
bx2 = 2Tk/2Uk/2. Therefore, there is a positive integer b1 dividing 2b such
that Tk/2 = b1y

2 for some integer y. If b1 = 1, then by Theorem A, k = 2
or k = 4, which entails either that k = α(b), or the exceptional case. Thus
we may assume that b1 > 1. By Lemma 4, k/2 = β(b1). The result will be
proved by showing that b1 divides Tk/(2p), which contradicts k/2 = β(b1),
thereby proving that no such prime p exists.

Let q denote a prime, and assume that qa properly divides b1. Then qa

divides Tk/2. If q = 2, it follows from the binomial theorem, similar to the
proof of Lemma 2, that qa divides Tk/(2p). If q is an odd prime, then since
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b1 divides 2b, qa divides b, and from the remark above, qa divides Uk/p.
Since Uk/p = 2Tk/(2p)Uk/(2p), either qa divides Tk/(2p) or it divides Uk/(2p).
If qa divides Uk/(2p), then it divides Uk/2, which contradicts the fact that qa

divides Tk/2. Therefore, the only possibility is that qa divides Tk/(2p), and
since this holds for any prime dividing b1, it follows that b1 divides Tk/(2p).
As remarked above, this shows that p cannot exist, and hence k = α(b).

We now prove the last statement in Theorem 2. Assume first that the ex-
ceptional case holds. Then U4 = bx2, and since U4 = (2T 2−1)TU , it follows
that (2T 2−1)T = b1y

2 for some integer y and b1 dividing 2b. By Baker’s ef-
fective version of Siegel’s theorem on integer solutions to hyperelliptic equa-
tions, there is a computable positive constant c1 = c1(b), depending only on
b, such that T < c1. It follows for this case that d < c21.

Otherwise, by the first part of the theorem, if Uk = bx2, then k = α(b).
By Lemma 1 and an inductive argument it follows that α(b) ≤ b for any
positive integer b, and so Uk = bx2 for some k with 1 ≤ k ≤ b. It is easy to
show that Uk/U can be written as a squarefree polynomial Pk(T ) in T of
degree k − 1. If p is a prime dividing gcd(Pk(T ), U), then from Lemma 2, p
divides k, and hence p divides b! . Therefore, the equation Uk = bx2 implies
that T satisfies a hyperelliptic equation Pk(T ) = vy2 with v dividing b! ,
Pk(T ) squarefree of degree k − 1, and k ≤ b. If k ≥ 4, then Pk(T ) has at
least 3 distinct roots, and so Baker’s theorem [1] implies that T , and hence
d, is bounded by some computable constant c2 depending only on b.
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[9] —, Über die Gleichung x4−Dy2 = 1, Arch. Math. Naturv. 45 (1942), no. 5, 61–70.



188 G. Walsh
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