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Asymptotic behaviour of the iterates of
nonnegative operators on a Banach lattice

by JOLANTA SocArA (Katowice)

Abstract. Asymptotic convergence theorems for nonnegative operators on Banach
lattices, on L, on C(X) and on L? (1 < p < co) are proved. The general results are
applied to a class of integral operators on L'

Introduction. In ergodic theory some noncompact Markov operators
play an important role. They can, for example, transform the unit ball of
L' onto itself. A. Lasota and J. A. Yorke [LY] proved the convergence of
the iterates of such operators under the assumption of the existence of a
lower function. A. Zalewska [Z] considers the case where the operator is a
nonnegative contractive operator on L!. Positive operators on C(X) have
been investigated by R. Rudnicki [R], A. Lasota and R. Rudnicki [LR],
A. Lasota and J. A. Yorke [LY1].

The purpose of this paper is to give a necessary and sufficient condition
for the convergence of the iterates of nonnegative linear operators on Banach
lattices. Our result is a straightforward extension of the results of Lasota—
Yorke, Zalewska and Rudnicki and is based on the idea of the lower function.
The main difference between our approach and the classical generalizations
of the Krein—Rutman theorem [A], [ZKP] and [N] is that we do not assume
any kind of compactness of the operators.

The organization of the paper is as follows. Section 1 contains the conver-
gence theorems for nonnegative operators on Banach lattices. In Section 2
we prove the theorems. In Section 3 we discuss the case of C'(X) and L>.
Section 4 contains a convergence theorem for LP (1 < p < 00). In Section 5
we show an application to integral operators on L'. We follow the idea of
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2 J. Socala

A. Lasota and M. C. Mackey [LM] but our criterion is valid for nonnegative
operators.

1. Convergence theorems. Let (V,<,| - ||) be a Banach lattice. For
f €V wedefine ft = max(0, f), f~ = max(0,—f). It is easy to verify that
for f,g,h € V we have

1) (f+g9) <f +g7;
(2) f-<yg for f>g;
3) NN IfI

By V, we denote the set of all nontrivial nonnegative elements, that is,

Vi={feV:f>0,|f|#0}
A linear continuous operator P : V — V is called nonnegative if Pf > 0

for f € V. It is easy to see that a nonnegative operator P satisfies the
condition

(4)  (P"f)~ < P"(f7) and (P"f)* < PP(f*) for f € V, n € N =
{1,2,...}.
A nonnegative operator P : V — V is said to be exponentially stationary

if there exist A > 0, fy € Vi and a continuous linear functional L : V' — R
such that

(5) Pfo = Afo,
(6) lim [|A™"P"f — foLf||=0 for feV.
n—oo
THEOREM 1. A nonnegative operator P : 'V — V is exponentially sta-
tionary if and only if there exist a dense subset D in Vi and h € VL such

that ||P™f|| # 0 for f € DU{h}, n € N and the following three conditions
hold:

) nlinioH<u1]Z:§|| ‘h>H =0 forjeD;
1P|

(IT) limsup
n—oo ||P™h]|

(IIT) The sequence {P™h/||P™h||} has a convergent subsequence.

<oo for feV;

REMARK 1. Example (a) (respectively (b), (c¢)) below shows that as-
sumption I (respectively II, III) of Theorem 1 is essential:
(a) Pf = f for f € V, V a Banach space;
(b) (J. A. Yorke [Y])
1 2 3

Pf=9-1py | f(@)dz+9- 149 | f()de + 14| f(2) da,
0 1 0
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V the space of all integrable functions on [0, 3];
(¢) (R. Rudnicki [R])

(Pf)() =xf(x) =271 (1 - 2) f(1),
V' the space of all continuous functions on [0, 1].
We shall use the following conditions:

ITT". For some gy € D the sequence {P"gy/||P"go||} has a weakly con-
vergent subsequence;
IV. There exists v > 0 such that

P h
o=y || =0
< [l

IV’. There exists v > 0 such that for f € D,m € N,

(71 =5t | =
[P fll vl Pt '

THEOREM 2. A nonnegative operator P : V — V is exponentially sta-
tionary if and only if there exist a dense subset D in' V., h € Vi and~y >0
such that ||P™f|| # 0 for f € DU{h}, n € N, and conditions 1, 11, TIT’
and IV (or 1, 11, III" and IV') are satisfied.

REMARK 2. From the proof of Theorem 2 it follows that instead of gy €
D (see condition III'), we can assume go € Vy and liminf,, o ||P"go||/||P™h||
> 0.

lim
n—oo

lim
n—oo

2. Proofs of the convergence theorems. Let P be a nonnegative
operator defined on a Banach space V. In Lemmas 1-4 we shall assume that
there exists a set D C V, dense in V and h € V4 such that [|[P"f| # 0 for
f€DU{h}, n €N and conditions I and II hold.

LEMMA 1. There exists o < 0o such that:
(a) The following condition holds:

(7) [P FIl < al[P*h| - |IfI|  for feV, neN;

(b) 17 £ €V and |[P"f]| £0 £ |P"g|| forn €N then

prg  pf [ P" Al

8 —f forn € N;
® |- ] < 2ot g

(¢) The following condition holds:

P"h -

9 lim <7 — h) =0.
?) SN

Proof. (a) Every f € V can be written in the form f = f* — f~, so
it is easy to see that condition II holds for f € V (not only for f € V,).
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Consider a sequence {P"/||P™h||} of continuous operators. From Corollary
21 of [Dun] (Part I, I1.3) it follows immediately that there exists a < oo
such that condition (7) holds

) Let f,g € V. From (7) we have

[ T,
1Pegll 1P £l 1P"gll 1Pl (1P £l
HP”Q rrf ’JF‘IIP”fH—HP”gH'
1P 1P"gll
HIP" (g = NI [IP"AI| _ 20lg _f”IIP”hH'
PRl [Prgl = 1P7g]
) From (1), (3) and (8) it follows that for f € D, n € N we have
H( i ) | = H o~ 1| | (e ) |
1Prall 1Al (1P f] 1P £l
prf B
<21+ (g -+) |

Since the set D is dense in V., by condition I this finishes the proof. m

LEMMA 2. Assume condition IV’ holds. Then for g € Vi such that
|P"g|| # 0 for n € N the following conditions are equivalent:

) Png Pn+mh -
1 - =0 N:
@ Jim |(gegy ~ ey ) | =0 ormen
Py h>_
b) lim - = =0;
”w‘(umgu 3

(¢c) There exists mg € N such that
[P Rl - |1 P™gll < 29[1P™ gl for m > mo, n €N;
(d) There exist 6, < oo and ng = no(g) € N such that
[P"hl| < égl[ P gl for n = no.
Proof. (a)=(b). From (1) it follows that for m € N,

H (IIP”QH 7) H
< (et - e |+ | G =5) |
1Prgll AP+l WprEmal )
By (a) and (9) this finishes the proof.
(b)=(c ) Let

P™Myg

(10) Ty =
[l

_h
5
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Condition (b) implies that there exists mg € N such that
< — f > mg.
Il € 5o form=my

By (7) for m > mg we obtain

_ “ < 1P
12" () | < @l PRRI| - |l < ===
~
Since P is monotonic, according to (10) for m > mg we have
[P g HP”h [[P"h]|
> + P*(rh)|| = || P > .
g2 |+ P |~ 1)l =

(¢)=(d). From assumption (c) we obtain
|PEmOR] < [P0 [P7 ]| < 8g[|P™T0g]|

where

2||P|™

[[Pmog]l

(d)=(a). By (1), (3), (8) and (d) for f € D, n > ngy we have

Py Pty T
‘(npngu v||Pn+mhu> H
<|[iemer - 7+ | (s~ i) |

1Brgll ~ TP ] 127 f ~ [Pl

<P“f prtmp >_

[P fll - AllPrtmhal
Since D is dense in V., by assumption IV’ this finishes the proof. m

0y =

< 2allg — fllog +

LEMMA 3. Assume condition IV’ holds. Then there exists 3 < oo such
that

(11) [P R|| - [P R < BIIP™ ™A for n,m € N.

Proof. Condition (d) from Lemma 2 holds for g = h. By (d)=(c) we
have (11), where § = max{2v, 3; } and

[P h]| - || PRl
(1 = max {
[[Prmhl|

LEMMA 4. Assume condition IV’ holds. Then for every f €V there exists
a number p such that

0 < n<myg, OSmgmo}.-

=0.
n—oe||PRh
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Moreover, if f € D (or f € Vi and liminf,, . || P f||/||P™h| > 0) then
prf B P"h
[P £l [Phl
Proof. It suffices to prove (12) for f € V;.. Choose f € V; and define

. (P f—=nP"h)" || }
A:{nEO:hm =0,.
! n—co [[PrA

Since 0 € Ay, the set Ay is not empty. Now we prove that it is bounded.
Let n € Ay and s, = P"f —nP"h. There is ng € N such that

[[57 | < mllP™A]1/2.

(13) lim

n—oo

|-o

Consequently,
1P 1l = [nP"h + 55, | = sy, [| = [InP"h]| = llsp, || = nl P k] /2
and from (7) it follows that n < 2«||f||. We define yx = sup Ay. There exists
{Nm} such that 7, € Ay and lim,, o 7 = p. From (1) and (3) we have
[P f = uP )" _ (P = 1 P"h) ||
1P| B [P
and consequently p € Ay, Let g, = P"f — uP"h for n € N. Now we prove
that there is a sequence {ny} such that

(14) T g3, /1P B = 0.

+ |m —p|  forn,meN

Assume the contrary. Then there exist 6 > 0 and [y € N such that ||¢ || >
0||P™h|| for m > ly. Choose n € N. Since ¢4+ = P™qy, from (4) and (11)
it follows that

m(,+ + n-+m n
PG gy Wl PR al
[Pl [Pt R [[Prh]| - ([P R B

for m > ly. By Lemma 2(d)=-(a) we have

< Pm(qi) Pn+mh >_H _ 0
[Pm(g)] - APl '
Choose m > ly. The inequalities (11) and (7) imply that
1P (g Il _ PR - [[PA ([P ()l 1 Bellgn |l
[[PrEmh|| [[PFmh]| [Prnl Al = TP

It follows easily from the definition of § and (4) that §||P™™h|| < [|[P™(q,})||
and according to (2) we have

WP ) = Py (PP )
[P [P~ TP

>0

(15)

m—0o0
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By (1) and (4) we obtain
[P f — (p+ (8/7)) P h)~ |

[Pl
< P @)l I(P™(g) = (6/9) P ™)~ |
= [Pl [Pt
. Ballgnll H< P ( qn prmh >H
= [1Pra| 1P (@) vIP"*mh]

Since pu € Ay, from (15) it follows that 1+ (§/7) € Ay, which contradicts

the condition p = sup Ay. Consequently, there is a sequence {n;} such that
(14) holds. Conditions (4), (11) and (7) imply that

l9man,ll 1P - [P RY IP™ ()] 1
[Prtrsh| = [[PrtnEh [Phll - ||Ph]|
Ballg, |
< —*—  form,k eN.
TPreh

Hence
Jim (g7 ||/ P" Rl = 0.

Since p1 € Ay, condition (12) holds. If f € D, then from IV’ it follows that
f satisfies condition (a) of Lemma 2. By Lemma 2(a)=-(d) there is § < oo
such that (d) holds. Thus, finally

‘ phf  P"h H 7]l ,U||Pnh||_1‘
1Pefll iemnlp = ieefil | e e
2[rnll _ 207 7nll
R I Pl

where r, = P"f — u < P"h. By (12), f satifies condition (13). =

Proof of Theorem 2. Let P be exponentially stationary. Since L is linear
and L # 0, the set D = {f € V. : Lf # 0} is dense in V. Moreover,
from (5) and (6) it follows that h = gy = fo/||fol| and v = 1 satisfy con-
ditions I, II, IIT", IV, IV’. Now assume conditions I, II, III', IV’ hold. We
are going to prove that P is exponentially stationary. By III' we can as-
sume that some sequence {P™ go/||P™ go||} is weakly convergent to some
foV. Since P is continuous, from (13) it follows that {P"*h/||P™* h||} and
{Pmtlp /|| P h|} are weakly convergent to fo and Pfy. Lemma 4 implies
that there exists a number A such that

lim ||P""'h — AP™h||/||P"h| = 0.

Hence { P11 /|| P™ h||} is weakly convergent to Afg. Consequently, Pfy =
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Afo- By Lemma 4 there is a number p such that
| P" fo — pP"h|| [P foll

(16) lim =0, Jim P =

n—oo  |[Ph

Since go € D, by condition IV" and Lemma 2(a)=-(b) we have limj_. ||r} ||
= 0, where
P™go _h
[P goll
From IIT' it follows that {r;} is weakly convergent to fo — v 'h. Since
r,‘: > 0, we have fy — 7*1h >0 and
(17) 1P foll = [|1P" (v~ R)]| > 0.
By (16) we obtain p # 0. Choose f € V. From Lemma 4 and (16) there is
a number 7; such that
[P f =P o [P f =P fo|

lim =0, lim

n—oo [P Rl n—o0 1™ foll
Since P fy = A\ fy, we have

T NP g fol = 0.

T = for k=1,2,...

=0.

Define L : V.— R by Lf = ny. It is obvious that L is linear. By (7) and
(17) we have

[ ) |
1= e = M
Thus L is continuous and P is exponentially stationary. Now assume con-
ditions I, IT, ITI, TV hold. From I, IV and (1) it follows that condition IV’
holds and this finishes the proof. =

Proof of Theorem 1. It is easy to show that if P is exponentially sta-
tionary, then D = {f € Vi : Lf # 0} and h = fy/|| fo|| satisfy conditions
I-1III. Now we assume conditions I-III hold. By Lemma 1(c) we can assume
that A € D and condition III' holds. We now show that condition IV’ holds.
Choose f € D and m € N. By (2), (4), (7), (11) we obtain

o |- ) |

[Pl ([Pt ||
Pif SPih N\~
< o P"h| - H< .
[Pt fl - [Prtin]

< (oo - o)
I1PEFI 1IP7R]

From IIT it follows that there exists a sequence { P™*h/||P™ h|} convergent
to some fo € V. Since the sequence {ny} is increasing, we have nop —ny > k

fori,neN, j e NU{0}, § € R.
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and [, := nop —m > ny, for k > m. Then, according to (1), (3) and (18) for
k > m we have

|57t -2t |
[P fIl - apl|Pmish|

Pef  |h|P"h >_H 11 H Prh P H
- +a g ||h] -
H(IPlkfll o[ PR 1ol | TP ~ TPmarn]

Pl f - 141 P h
h
H(nplk ol h) H*a IRl HHP"th f

Preey
N

Since limg_, oo (lx — ng) = 00, by condition I we obtain

Falg ) - \ fo

Phf [P
lim =0.
k—co |\ [P™ f[| — aB|[PmFih]
The inequality (18) implies that
Pl Pt )
[Plstnfll a2B2|| Prtitnp)
Plrf  |[p| PR >_
< — for n,m € N.
- ‘ (I!Plkfll af||Pmtieh||

Hence condition IV’ holds and v = o?32||h||~!. By Theorem 2 this finishes
the proof. m

3. Convergence theorem for C(X) and L*. Let V be a Banach
lattice. We shall assume that the unit ball of V' contains a largest element 1 x,
that is, [[1x|| =1 and f < 1x for feV, ||f|| < 1. Define a set V4 CV as
follows: if f € V, and there exists @ > 0 such that f > a-1x, then f € V.

THEOREM 3 (see R. Rudnicki [R], A. Lasota and R. Rudnicki [LR],
A. Lasota and J. A. Yorke [LY1]). Let P be a nonnegative operator on V,
D be a dense subset of V. and o > 0. Assume that for every f € D there is
an integer no(f) such that

[P fIl #0,  P*f/IP*fll =z a-1x  forn =no(f)
and that, for some g € Vi, the sequence {P"g/||P"g||} has a weakly con-
vergent subsequence. Then P is exponentially stationary.

Proof. Theelement h = -1y satisfies condition 1. Since f < o~ Y| f||h
for f € V; and P is monotonic, it follows that P"f < a~!||f||P"h for n € N
and condition II holds. Moreover,

P"h <a Y P"h|lh  forn €N
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and v = o~ ! satisfies condition IV. Since g € V, there exists 3 > 0 such
that g > Bh. Consequently, P*g > BP"h for n € N and

liminf ||P"g||/||P" k|| > 0.

By Theorem 2 and Remark 2 this finishes the proof. =

4. Convergence theorem for LP. Let (X, X, 1) be a o-finite measure
space. We deal with the space V = LP = LP(X, X, ) (1 < p < oo) with the
norm || * || = || *||z». It is easy to verify that for f,g,h € LP we have

(19) (f —max(g,h))” < (f—9)” +(f—h)".

THEOREM 4. A nonnegative operator P : LP — LP is exponentially
stationary if and only if there exist a dense subset D C Lﬂ =V, and
h € L% such that

|IP"fll#0 for fe DU{h}, neN

and the following two conditions hold:

. P f B
1 = J
) nLngoH(Hpan h)

: 1P fll
(IT)  limsup
n—oo [P

=0 for feD;

<oo for felLk.

REMARK 3. Every assumption of Theorem 4 is essential (see Remark 1).

REMARK 4. The above theorem implies the Lasota—Yorke theorem [LY]
and Zalewska’s theorem [Z].

Proof of Theorem 4. If P is exponentially stationary, then D = {f €
LY - Lf# 0} and h = fo/| fo| satisfy conditions I and II (see the proof of
Theorem 2).

Now assume conditions I and II hold. We are going to prove that P is
exponentially stationary. It is easy to show (see Lemma 1) that

P"h B
im | (g =) | =0
| (e

and there exists o < oo such that
(20) |P"fll < af[P"R| - || f]|  for f€LP, neN.
So we can assume h € D. Define

. P ;
G:{geLﬂ: lim <ﬁ—g> HzOforfGD}.

n—oo
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From (20), (2) and next (4), (2) it follows that for f € D we have
(21) Py ey
[Pt fll o[ Phl]
et ) |
—— — P™h
( [al

( () <) G 2) |

Then by condition I we have

< aflupmh”fl

<a7HPmhlIT

Ph
—— G formeN.
af[Phl
Define hg = h and
Perlh
h/rrl+1 = sup <hn“ M) for m 2 0.

By (19), an induction argument shows that h,, € G for m > 1. Then from

the inequality
pPrf pPrf -
ot (g =) |- (o =) |
P £l i

Pn
= Nl = H(upnﬁu - hm) H for f & D,

it follows that ||k, | < 1. Since the sequence {h,,} is increasing, the strong
limit A, = lim,,,_ o b, exists. We show that h, satisfies the assumptions of
Theorem 2. From (1) we obtain

o) = G ) |
—— — h, < —— — A, R, — D
H <HP"f|| <\ o |

for f € D, m € N. Since h,, € G, we have h, € G (assumption I of
Theorem 2). As h < h,, we obtain

P FI/ NP hell < ([P £/ PRI for n € N

(assumption IT). We have P™h/«||P™h| < hy for m € N and (see [LM],
Remark 5.1.3) the sequence { P"*h/(«||P™h||)} has a weakly convergent sub-
sequence (assumption III). It is easy to show that there exists § < oo such
that

[P fIl < BIP"hll - Il for feLP, neN
(see Lemma 1) and P™h,/(B||P™h.]||) € G (see (21)). Moreover, from (2)
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and h € D we obtain

(o~ 77y |
ah, — ————
BIIP™ hy||
(i~ ) |
[P+ BlP™hy||
(assumption IV). According to Theorem 2 the operator P is exponentially
stationary. m

lim sup

n—oo

< limsup =0 formeN

n—oo

5. The integral operators. Let (X, X, 1) be a o-finite measure space.
We deal with the space V = L1(X, X, i) with the norm |- || = || - ||z:. Let
K : X x X — [0,00) be a measurable function. Assume that there exist
numbers «, 5 (0 < § < «) such that

(22) ﬁSSK(x,y)dwgoz for y € X.
X
Further, we define an integral operator P by
(23) Pf(z) = | K(x,9)f(y)dy for f€V.
X

The operator P is clearly linear and nonnegative. It is easy to verify (see
[LM]) that the operator P™ can be written in the form

P f(x) =\ Ku(z,9)f(y) dy
X

where K; = K and

Kpim(z,y) = S K, (x,2)K;(z,y)dz for n,m € N.
b's
By (22) an induction argument shows that

(24) g" < S K,(z,y)dx <a" forye X
X
and
(25) 0 <A If I < [P fIl < ™[I f]]  for f e V5.

THEOREM 5. Assume that there exist integers myi, ms and positive num-
bers o, B, & such that condition (22) holds and

(26) sup K, (z,y) < dinf K,,,, (z,y) forx € X.
y )

Then the operator P defined by (23) is exponentially stationary.
Proof. Define D =V, and
h(z) = a”™ inf K, (z,y).
y
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Then, according to (26) and (24),
Al > 6 o™ S sup K, (z,y)dz > ™5 ta™™2 > 0.
y

b's
From (25) it follows that for f € D,n € N we have
(27) P fla) = § | Koy (2, 2)Kn(2,9) f(y) dy d2
XX

> a2 h(z)|[ P f]| = h(z)|| P2 f]]
and ||[P"T™2 f|| # 0. By (26) we obtain
primf(z) = | | Kn(2,2) K, (2,9) f(y) dy dz < 60 P"h(z)| ]

XX
Then, according to (25) we have ™ ||P"h|| < ||P"T™h|| and
(28) [Pl < mll PR (] where = a2 BT

By Theorem 4 this finishes the proof. =

Let X be an unbounded measurable subset of a d-dimensional Euclidean
space RY. We call a continuous nonnegative function V : X — R satisfying
lim| |00 V(2) = 00 a Lyapunov function.

Consider a measurable function K : X? — [0,00) which satisfies condi-
tion (22) for some numbers «, 5 (0 < 8 < ).

THEOREM 6. Assume that there exists a Lyapunov function V : X — R
such that

(29) | K(2,9)V(2)dz <AV (y) +n,

X
where y > 0, n > 0 and v/ < 1. Moreover, assume that there exist l,m € N
such that for every positive € we can choose 6. which satisfies

(30) sup K;(z,y) < dc nf{Kp(z,y) : [y < e} forze X.
y

Then the operator P : L' — L' defined by equation (23) is exponentially
stationary.

Proof. First we define
E.(V | f)=\V(@)P"f(z)dv, D={feLl:E(V|f)<oo}
X
Choose f €D. From the inequality (29), we have

Enn (V| )= | | V(@)K (z,y)P"f(y)dy de
X X

<[P fll +yEn(V | £)-



14 J. Socala

Since v/ < 1, by (25) an induction argument shows that

Enii(V 1 1) “1 BV 1)
preig =1 ey
and
BN n (1) B
|1Prfll = B—v \B [0/ -
There exists an integer ng = ng(f) such that
(31) E,(V [ f) <oal[P"f||  for n = ny,

where a; = 2n/(8 — ). Now let
U={zreX:|x|<e}
Since V(z) — oo as |x| — oo, we can choose € > 0 such that V(z) > 2oy
for x € X — U. From (31) it follows that
2001 S P"f(x)dx < S V(z)P"(z)dx < aq||P"f||
X-U X-U
for n > ng. Then by (25) we obtain

P f(w) > | Ko, y) P f(y) dy
U

> 20" h(z) | P"f(y) dy = o™ h(x)| P" || = h(z)||P™ |
U
for x € X, n > ng, where
h(z) = (2a™) M inf{K,,(z,y) :y € U} for z € X.
From (30), (24) and (25) we have ||h|| > 0 and ||Pf|| # 0 # ||P'h| for
i € N. Hence condition I of Theorem 4 holds. From (30) it follows that

P f(z) = | | Kn(w, 2)Ki(2,9)f (y) dy dz < 200 P"h(z)||f]|
X X

and by (25),
[P f|| < 200 B[P [If]] - for n € N.
Hence h satisfies condition II. By Theorem 4 this finishes the proof. =

REMARK 5. Instead of (30) we can assume the following two conditions:

(32)  There exists m € N such that

S inf{K,,(z,y) : ly| <e}dr >0 fore > 0;
X
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(33)  There exist 0 € R and ng € N such that

sup S K, (z,y)dx < §inf S K, (z,y)dx for n > ny.
v ox Y x
In this case for n > ng we have

1P f1 - 16l = § § Ko, y) £ (y) dy da |1
< §inf | Ko (z,y)da | f] - bl
v X

<6 | | Kne,)h(y) dy de |17 = 31P"H] - | £
X X

and h satisfies condition II.

REMARK 6. Theorems 5 and 6 imply the theorems of A. Lasota and
M. C. Mackey [LM].
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