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Asymptotic behaviour of the iterates of

nonnegative operators on a Banach lattice

by Jolanta Soca la (Katowice)

Abstract. Asymptotic convergence theorems for nonnegative operators on Banach
lattices, on L∞, on C(X) and on Lp (1 ≤ p < ∞) are proved. The general results are
applied to a class of integral operators on L1.

Introduction. In ergodic theory some noncompact Markov operators
play an important role. They can, for example, transform the unit ball of
L1 onto itself. A. Lasota and J. A. Yorke [LY] proved the convergence of
the iterates of such operators under the assumption of the existence of a
lower function. A. Zalewska [Z] considers the case where the operator is a
nonnegative contractive operator on L1. Positive operators on C(X) have
been investigated by R. Rudnicki [R], A. Lasota and R. Rudnicki [LR],
A. Lasota and J. A. Yorke [LY1].

The purpose of this paper is to give a necessary and sufficient condition
for the convergence of the iterates of nonnegative linear operators on Banach
lattices. Our result is a straightforward extension of the results of Lasota–
Yorke, Zalewska and Rudnicki and is based on the idea of the lower function.
The main difference between our approach and the classical generalizations
of the Krein–Rutman theorem [A], [ZKP] and [N] is that we do not assume
any kind of compactness of the operators.

The organization of the paper is as follows. Section 1 contains the conver-
gence theorems for nonnegative operators on Banach lattices. In Section 2
we prove the theorems. In Section 3 we discuss the case of C(X) and L∞.
Section 4 contains a convergence theorem for Lp (1 ≤ p < ∞). In Section 5
we show an application to integral operators on L1. We follow the idea of
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A. Lasota and M. C. Mackey [LM] but our criterion is valid for nonnegative
operators.

1. Convergence theorems. Let (V,≤, ‖ · ‖) be a Banach lattice. For
f ∈ V we define f+ = max(0, f), f− = max(0,−f). It is easy to verify that
for f, g, h ∈ V we have

(1) (f + g)− ≤ f− + g−;

(2) f− ≤ g− for f ≥ g;

(3) ‖f−‖ ≤ ‖f‖.

By V+ we denote the set of all nontrivial nonnegative elements, that is,

V+ = {f ∈ V : f ≥ 0, ‖f‖ 6= 0}.

A linear continuous operator P : V → V is called nonnegative if Pf ≥ 0
for f ∈ V+. It is easy to see that a nonnegative operator P satisfies the
condition

(4) (Pnf)− ≤ Pn(f−) and (Pnf)+ ≤ Pn(f+) for f ∈ V, n ∈ N =
{1, 2, . . .}.

A nonnegative operator P : V → V is said to be exponentially stationary

if there exist λ > 0, f0 ∈ V+ and a continuous linear functional L : V → R

such that

(5) Pf0 = λf0,

(6) lim
n→∞

‖λ−nPnf − f0Lf‖ = 0 for f ∈ V.

Theorem 1. A nonnegative operator P : V → V is exponentially sta-

tionary if and only if there exist a dense subset D in V+ and h ∈ V+ such

that ‖Pnf‖ 6= 0 for f ∈ D ∪ {h}, n ∈ N and the following three conditions

hold :

(I) lim
n→∞

∥

∥

∥

∥

(

Pnf

‖Pnf‖
− h

)−∥

∥

∥

∥

= 0 for f ∈ D;

(II) lim sup
n→∞

‖Pnf‖

‖Pnh‖
< ∞ for f ∈ V+;

(III) The sequence {Pnh/‖Pnh‖} has a convergent subsequence.

Remark 1. Example (a) (respectively (b), (c)) below shows that as-
sumption I (respectively II, III) of Theorem 1 is essential:

(a) Pf = f for f ∈ V , V a Banach space;
(b) (J. A. Yorke [Y])

Pf = 9 · 1[0,1]

1\
0

f(x) dx + 9 · 1[1,2]

2\
1

f(x) dx + 1[2,3]

3\
0

f(x) dx,
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V the space of all integrable functions on [0, 3];
(c) (R. Rudnicki [R])

(Pf)(x) = xf(x) − 2−1(1 − x)f(1),

V the space of all continuous functions on [0, 1].

We shall use the following conditions:

III′. For some g0 ∈ D the sequence {Png0/‖P
ng0‖} has a weakly con-

vergent subsequence;
IV. There exists γ > 0 such that

lim
n→∞

∥

∥

∥

∥

(

γh −
Pnh

‖Pnh‖

)−∥

∥

∥

∥

= 0;

IV′. There exists γ > 0 such that for f ∈ D,m ∈ N,

lim
n→∞

∥

∥

∥

∥

(

Pnf

‖Pnf‖
−

Pn+mh

γ‖Pn+mh‖

)−∥

∥

∥

∥

= 0.

Theorem 2. A nonnegative operator P : V → V is exponentially sta-

tionary if and only if there exist a dense subset D in V+, h ∈ V+ and γ > 0
such that ‖Pnf‖ 6= 0 for f ∈ D ∪ {h}, n ∈ N, and conditions I, II, III′

and IV (or I, II, III′ and IV′) are satisfied.

Remark 2. From the proof of Theorem 2 it follows that instead of g0 ∈
D (see condition III′), we can assume g0 ∈ V+ and lim infn→∞ ‖Png0‖/‖P

nh‖
> 0.

2. Proofs of the convergence theorems. Let P be a nonnegative
operator defined on a Banach space V . In Lemmas 1–4 we shall assume that
there exists a set D ⊆ V+ dense in V+ and h ∈ V+ such that ‖Pnf‖ 6= 0 for
f ∈ D ∪ {h}, n ∈ N and conditions I and II hold.

Lemma 1. There exists α < ∞ such that :

(a) The following condition holds:

(7) ‖Pnf‖ ≤ α‖Pnh‖ · ‖f‖ for f ∈ V, n ∈ N;

(b) If f, g ∈ V and ‖Pnf‖ 6= 0 6= ‖Png‖ for n ∈ N then

(8)

∥

∥

∥

∥

Png

‖Png‖
−

Pnf

‖Pnf‖

∥

∥

∥

∥

≤ 2α‖g − f‖
‖Pnh‖

‖Png‖
for n ∈ N;

(c) The following condition holds:

(9) lim
n→∞

∥

∥

∥

∥

(

Pnh

‖Pnh‖
− h

)−∥

∥

∥

∥

= 0.

P r o o f. (a) Every f ∈ V can be written in the form f = f+ − f−, so
it is easy to see that condition II holds for f ∈ V (not only for f ∈ V+).
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Consider a sequence {Pn/‖Pnh‖} of continuous operators. From Corollary
21 of [Dun] (Part I, II.3) it follows immediately that there exists α < ∞
such that condition (7) holds.

(b) Let f, g ∈ V . From (7) we have
∥

∥

∥

∥

Png

‖Png‖
−

Pnf

‖Pnf‖

∥

∥

∥

∥

≤

∥

∥

∥

∥

Png − Pnf

‖Png‖

∥

∥

∥

∥

+

∥

∥

∥

∥

Pnf

‖Png‖
−

Pnf

‖Pnf‖

∥

∥

∥

∥

≤

∥

∥

∥

∥

Png − Pnf

‖Png‖

∥

∥

∥

∥

+

∣

∣

∣

∣

‖Pnf‖ − ‖Png‖

‖Png‖

∣

∣

∣

∣

≤ 2
‖Pn(g − f)‖

‖Pnh‖

‖Pnh‖

‖Png‖
≤ 2α‖g − f‖

‖Pnh‖

‖Png‖
.

(c) From (1), (3) and (8) it follows that for f ∈ D, n ∈ N we have
∥

∥

∥

∥

(

Pnh

‖Pnh‖
− h

)−∥

∥

∥

∥

≤

∥

∥

∥

∥

Pnh

‖Pnh‖
−

Pnf

‖Pnf‖

∥

∥

∥

∥

+

∥

∥

∥

∥

(

Pnf

‖Pnf‖
− h

)−∥

∥

∥

∥

≤ 2α‖h − f‖ +

∥

∥

∥

∥

(

Pnf

‖Pnf‖
− h

)−∥

∥

∥

∥

.

Since the set D is dense in V+, by condition I this finishes the proof.

Lemma 2. Assume condition IV′ holds. Then for g ∈ V+ such that

‖Png‖ 6= 0 for n ∈ N the following conditions are equivalent :

(a) lim
n→∞

∥

∥

∥

∥

(

Png

‖Png‖
−

Pn+mh

γ‖Pn+mh‖

)−∥

∥

∥

∥

= 0 for m ∈ N;

(b) lim
n→∞

∥

∥

∥

∥

(

Png

‖Png‖
−

h

γ

)−∥

∥

∥

∥

= 0;

(c) There exists m0 ∈ N such that

‖Pnh‖ · ‖Pmg‖ ≤ 2γ‖Pn+mg‖ for m ≥ m0, n ∈ N;

(d) There exist δg < ∞ and n0 = n0(g) ∈ N such that

‖Pnh‖ ≤ δg‖P
ng‖ for n ≥ n0.

P r o o f. (a)⇒(b). From (1) it follows that for m ∈ N,
∥

∥

∥

∥

(

Png

‖Png‖
−

h

γ

)−∥

∥

∥

∥

≤

∥

∥

∥

∥

(

Png

‖Png‖
−

Pn+mh

γ‖Pn+mh‖

)−∥

∥

∥

∥

+

∥

∥

∥

∥

(

Pn+mh

γ‖Pn+mh‖
−

h

γ

)−∥

∥

∥

∥

.

By (a) and (9) this finishes the proof.
(b)⇒(c). Let

(10) rm =
Pmg

‖Pmg‖
−

h

γ
.
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Condition (b) implies that there exists m0 ∈ N such that

‖r−m‖ ≤
1

2αγ
for m ≥ m0.

By (7) for m ≥ m0 we obtain

‖Pn(r−m)‖ ≤ α‖Pnh‖ · ‖r−m‖ ≤
‖Pnh‖

2γ
.

Since P is monotonic, according to (10) for m ≥ m0 we have

‖Pn+mg‖

‖Pmg‖
≥

∥

∥

∥

∥

Pnh

γ
+ Pn(r+

m)

∥

∥

∥

∥

− ‖Pn(r−m)‖ ≥
‖Pnh‖

2γ
.

(c)⇒(d). From assumption (c) we obtain

‖Pn+m0h‖ ≤ ‖P‖m0‖Pnh‖ ≤ δg‖P
n+m0g‖

where

δg =
2γ‖P‖m0

‖Pm0g‖
.

(d)⇒(a). By (1), (3), (8) and (d) for f ∈ D, n ≥ n0 we have
∥

∥

∥

∥

(

Png

‖Png‖
−

Pn+mh

γ‖Pn+mh‖

)−∥

∥

∥

∥

≤

∥

∥

∥

∥

Png

‖Png‖
−

Pnf

‖Pnf‖

∥

∥

∥

∥

+

∥

∥

∥

∥

(

Pnf

‖Pnf‖
−

Pn+mh

γ‖Pn+mh‖

)−∥

∥

∥

∥

≤ 2α‖g − f‖δg +

∥

∥

∥

∥

(

Pnf

‖Pnf‖
−

Pn+mh

γ‖Pn+mh‖

)−∥

∥

∥

∥

.

Since D is dense in V+, by assumption IV′ this finishes the proof.

Lemma 3. Assume condition IV′ holds. Then there exists β < ∞ such

that

(11) ‖Pmh‖ · ‖Pnh‖ ≤ β‖Pn+mh‖ for n,m ∈ N.

P r o o f. Condition (d) from Lemma 2 holds for g = h. By (d)⇒(c) we
have (11), where β = max{2γ, β1} and

β1 = max

{

‖Pmh‖ · ‖Pnh‖

‖Pn+mh‖
: 0 ≤ n ≤ m0, 0 ≤ m ≤ m0

}

.

Lemma 4. Assume condition IV′ holds. Then for every f ∈V there exists

a number µ such that

(12) lim
n→∞

‖Pnf − µPnh‖

‖Pnh‖
= 0.
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Moreover , if f ∈ D (or f ∈ V+ and lim infn→∞ ‖Pnf‖/‖Pnh‖ > 0) then

(13) lim
n→∞

∥

∥

∥

∥

Pnf

‖Pnf‖
−

Pnh

‖Pnh‖

∥

∥

∥

∥

= 0.

P r o o f. It suffices to prove (12) for f ∈ V+. Choose f ∈ V+ and define

∆f =

{

η ≥ 0 : lim
n→∞

‖(Pnf − ηPnh)−‖

‖Pnh‖
= 0

}

.

Since 0 ∈ ∆f , the set ∆f is not empty. Now we prove that it is bounded.
Let η ∈ ∆f and sn = Pnf − ηPnh. There is n0 ∈ N such that

‖s−n0
‖ ≤ η‖Pn0h‖/2.

Consequently,

‖Pn0f‖ ≥ ‖ηPn0h + s+
n0
‖ − ‖s−n0

‖ ≥ ‖ηPn0h‖ − ‖s−n0
‖ ≥ η‖Pn0h‖/2

and from (7) it follows that η ≤ 2α‖f‖. We define µ = sup∆f . There exists
{ηm} such that ηm ∈ ∆f and limm→∞ ηm = µ. From (1) and (3) we have

‖(Pnf − µPnh)−‖

‖Pnh‖
≤

‖(Pnf − ηmPnh)−‖

‖Pnh‖
+ |ηm − µ| for n,m ∈ N

and consequently µ ∈ ∆f . Let qn = Pnf − µPnh for n ∈ N. Now we prove
that there is a sequence {nk} such that

(14) lim
k→∞

‖q+
nk
‖/‖Pnk h‖ = 0.

Assume the contrary. Then there exist δ > 0 and l0 ∈ N such that ‖q+
m‖ ≥

δ‖Pmh‖ for m ≥ l0. Choose n ∈ N. Since qn+m = Pmqn, from (4) and (11)
it follows that

‖Pm(q+
n )‖

‖Pmh‖
≥ ‖Pnh‖

‖q+
n+m‖

‖Pn+mh‖
·

‖Pn+mh‖

‖Pnh‖ · ‖Pmh‖
≥

δ‖Pnh‖

β
> 0

for m ≥ l0. By Lemma 2(d)⇒(a) we have

(15) lim
m→∞

∥

∥

∥

∥

(

Pm(q+
n )

‖Pm(q+
n )‖

−
Pn+mh

γ‖Pn+mh‖

)−∥

∥

∥

∥

= 0.

Choose m ≥ l0. The inequalities (11) and (7) imply that

‖Pm(q−n )‖

‖Pn+mh‖
=

‖Pmh‖ · ‖Pnh‖

‖Pn+mh‖
·
‖Pm(q−n )‖

‖Pmh‖
·

1

‖Pnh‖
≤

βα‖q−n ‖

‖Pnh‖
.

It follows easily from the definition of δ and (4) that δ‖Pn+mh‖ ≤ ‖Pm(q+
n )‖

and according to (2) we have

‖(Pm(q+
n ) − (δ/γ)Pn+mh)−‖

‖Pn+mh‖
≤ δ

∥

∥

∥

∥

(

Pm(q+
n )

‖Pm(q+
n )‖

−
Pn+mh

γ‖Pn+mh‖

)−∥

∥

∥

∥

.
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By (1) and (4) we obtain

‖(Pn+mf − (µ + (δ/γ))Pn+mh)−‖

‖Pn+mh‖

≤
‖Pm(q−n )‖

‖Pn+mh‖
+

‖(Pm(q+
n ) − (δ/γ)Pn+mh)−‖

‖Pn+mh‖

≤
βα‖q−n ‖

‖Pnh‖
+ δ

∥

∥

∥

∥

(

Pm(q+
n )

‖Pm(q+
n )‖

−
Pn+mh

γ‖Pn+mh‖

)−∥

∥

∥

∥

.

Since µ ∈ ∆f , from (15) it follows that µ + (δ/γ) ∈ ∆f , which contradicts
the condition µ = sup∆f . Consequently, there is a sequence {nk} such that
(14) holds. Conditions (4), (11) and (7) imply that

‖q+
m+nk

‖

‖Pm+nkh‖
≤

‖Pmh‖ · ‖Pnkh‖

‖Pm+nkh‖
·
‖Pm(q+

nk
)‖

‖Pmh‖
·

1

‖Pnkh‖

≤
βα‖q+

nk
‖

‖Pnkh‖
for m,k ∈ N.

Hence

lim
n→∞

‖q+
n ‖/‖Pnh‖ = 0.

Since µ ∈ ∆f , condition (12) holds. If f ∈ D, then from IV′ it follows that
f satisfies condition (a) of Lemma 2. By Lemma 2(a)⇒(d) there is δf < ∞
such that (d) holds. Thus, finally

∥

∥

∥

∥

Pnf

‖Pnf‖
−

Pnh

‖Pnh‖

∥

∥

∥

∥

≤
‖rn‖

‖Pnf‖
+

∣

∣

∣

∣

µ‖Pnh‖

‖Pnf‖
− 1

∣

∣

∣

∣

≤
2‖rn‖

‖Pnf‖
≤

2δf‖rn‖

‖Pnh‖
,

where rn = Pnf − µ ≤ Pnh. By (12), f satifies condition (13).

Proof of Theorem 2. Let P be exponentially stationary. Since L is linear
and L 6= 0, the set D = {f ∈ V+ : Lf 6= 0} is dense in V+. Moreover,
from (5) and (6) it follows that h = g0 = f0/‖f0‖ and γ = 1 satisfy con-
ditions I, II, III′, IV, IV′. Now assume conditions I, II, III′, IV′ hold. We
are going to prove that P is exponentially stationary. By III′ we can as-
sume that some sequence {Pnkg0/‖P

nkg0‖} is weakly convergent to some
f0V . Since P is continuous, from (13) it follows that {Pnkh/‖Pnk h‖} and
{Pnk+1h/‖Pnkh‖} are weakly convergent to f0 and Pf0. Lemma 4 implies
that there exists a number λ such that

lim
n→∞

‖Pn+1h − λPnh‖/‖Pnh‖ = 0.

Hence {Pnk+1h/‖Pnk h‖} is weakly convergent to λf0. Consequently, Pf0 =
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λf0. By Lemma 4 there is a number µ such that

(16) lim
n→∞

‖Pnf0 − µPnh‖

‖Pnh‖
= 0, lim

n→∞

‖Pnf0‖

‖Pnh‖
= µ.

Since g0 ∈ D, by condition IV′ and Lemma 2(a)⇒(b) we have limk→∞ ‖r−k ‖
= 0, where

rk =
Pnkg0

‖Pnkg0‖
−

h

γ
for k = 1, 2, . . .

From III′ it follows that {r+
k } is weakly convergent to f0 − γ−1h. Since

r+
k ≥ 0, we have f0 − γ−1h ≥ 0 and

(17) ‖Pnf0‖ ≥ ‖Pn(γ−1h)‖ > 0.

By (16) we obtain µ 6= 0. Choose f ∈ V . From Lemma 4 and (16) there is
a number ηf such that

lim
n→∞

‖Pnf − ηfPnf0‖

‖Pnh‖
= 0, lim

n→∞

‖Pnf − ηfPnf0‖

‖Pnf0‖
= 0.

Since Pf0 = λf0, we have

lim
n→∞

‖λ−nPnf − ηff0‖ = 0.

Define L : V → R by Lf = ηf . It is obvious that L is linear. By (7) and
(17) we have

ηf = lim
n→∞

‖Pnf‖

‖Pnh‖
·
‖Pnh‖

‖Pnf0‖
≤ αγ‖f‖.

Thus L is continuous and P is exponentially stationary. Now assume con-
ditions I, II, III′, IV hold. From I, IV and (1) it follows that condition IV′

holds and this finishes the proof.

Proof of Theorem 1. It is easy to show that if P is exponentially sta-
tionary, then D = {f ∈ V+ : Lf 6= 0} and h = f0/‖f0‖ satisfy conditions
I–III. Now we assume conditions I–III hold. By Lemma 1(c) we can assume
that h ∈ D and condition III′ holds. We now show that condition IV′ holds.
Choose f ∈ D and m ∈ N. By (2), (4), (7), (11) we obtain

(18)

∥

∥

∥

∥

(

Pn+if

‖Pn+if‖
−

δPn+jh

‖Pn+jh‖

)−∥

∥

∥

∥

≤ α‖Pnh‖ ·

∥

∥

∥

∥

(

P if

‖P i+nf‖
−

δP jh

‖Pn+jh‖

)−∥

∥

∥

∥

≤

∥

∥

∥

∥

(

P if

‖P if‖
−

αβδP jh

‖P jh‖

)−∥

∥

∥

∥

for i, n ∈ N, j ∈ N ∪ {0}, δ ∈ R.

From III it follows that there exists a sequence {Pnkh/‖Pnk h‖} convergent
to some f0 ∈ V . Since the sequence {nk} is increasing, we have n2k−nk ≥ k
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and lk := n2k −m > nk for k > m. Then, according to (1), (3) and (18) for
k > m we have
∥

∥

∥

∥

(

P lkf

‖P lkf‖
−

‖h‖Pm+lkh

αβ‖Pm+lkh‖

)−∥

∥

∥

∥

≤

∥

∥

∥

∥

(

P lkf

‖P lkf‖
−

‖h‖Pnk h

αβ‖Pnkh‖

)−∥

∥

∥

∥

+ α−1β−1‖h‖ ·

∥

∥

∥

∥

Pnkh

‖Pnkh‖
−

Pn2kh

‖Pn2kh‖

∥

∥

∥

∥

≤

∥

∥

∥

∥

(

P lk−nkf

‖P lk−nkf‖
− h

)−∥

∥

∥

∥

+ α−1β−1‖h‖ ·

∥

∥

∥

∥

Pnkh

‖Pnkh‖
− f0

∥

∥

∥

∥

+ α−1β−1‖h‖ ·

∥

∥

∥

∥

f0 −
Pn2kh

‖Pn2kh‖

∥

∥

∥

∥

.

Since limk→∞(lk − nk) = ∞, by condition I we obtain

lim
k→∞

∥

∥

∥

∥

(

P lkf

‖P lkf‖
−

‖h‖Pm+lkh

αβ‖Pm+lkh‖

)−∥

∥

∥

∥

= 0.

The inequality (18) implies that
∥

∥

∥

∥

(

P lk+nf

‖P lk+nf‖
−

‖h‖Pm+lk+nh

α2β2‖Pm+lk+nh‖

)−∥

∥

∥

∥

≤

∥

∥

∥

∥

(

P lkf

‖P lkf‖
−

‖h‖Pm+lkh

αβ‖Pm+lkh‖

)−∥

∥

∥

∥

for n,m ∈ N.

Hence condition IV′ holds and γ = α2β2‖h‖−1. By Theorem 2 this finishes
the proof.

3. Convergence theorem for C(X) and L∞. Let V be a Banach
lattice. We shall assume that the unit ball of V contains a largest element1X ,
that is, ‖1X‖ = 1 and f ≤ 1X for f ∈V, ‖f‖ ≤ 1. Define a set V++ ⊆ V as
follows: if f ∈ V+ and there exists α > 0 such that f ≥ α·1X , then f ∈ V++.

Theorem 3 (see R. Rudnicki [R], A. Lasota and R. Rudnicki [LR],
A. Lasota and J. A. Yorke [LY1]). Let P be a nonnegative operator on V,
D be a dense subset of V+ and α > 0. Assume that for every f ∈ D there is

an integer n0(f) such that

‖Pnf‖ 6= 0, Pnf/‖Pnf‖ ≥ α · 1X for n ≥ n0(f)

and that , for some g ∈ V++, the sequence {Png/‖Png‖} has a weakly con-

vergent subsequence. Then P is exponentially stationary.

P r o o f. The element h = α ·1X satisfies condition I. Since f ≤ α−1‖f‖h
for f ∈ V+ and P is monotonic, it follows that Pnf ≤ α−1‖f‖Pnh for n ∈ N

and condition II holds. Moreover,

Pnh ≤ α−1‖Pnh‖h for n ∈ N
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and γ = α−1 satisfies condition IV. Since g ∈ V++, there exists β > 0 such
that g ≥ βh. Consequently, Png ≥ βPnh for n ∈ N and

lim inf
n→∞

‖Png‖/‖Pnh‖ > 0.

By Theorem 2 and Remark 2 this finishes the proof.

4. Convergence theorem for Lp. Let (X,Σ, µ) be a σ-finite measure
space. We deal with the space V = Lp = Lp(X,Σ, µ) (1 ≤ p < ∞) with the
norm ‖ ∗ ‖ = ‖ ∗ ‖Lp . It is easy to verify that for f, g, h ∈ Lp we have

(19) (f − max(g, h))− ≤ (f − g)− + (f − h)−.

Theorem 4. A nonnegative operator P : Lp → Lp is exponentially

stationary if and only if there exist a dense subset D ⊂ Lp
+ = V+ and

h ∈ Lp
+ such that

‖Pnf‖ 6= 0 for f ∈ D ∪ {h}, n ∈ N

and the following two conditions hold :

(I) lim
n→∞

∥

∥

∥

∥

(

Pnf

‖Pnf‖
− h

)−∥

∥

∥

∥

= 0 for f ∈ D;

(II) lim sup
n→∞

‖Pnf‖

‖Pnh‖
< ∞ for f ∈ Lp

+.

Remark 3. Every assumption of Theorem 4 is essential (see Remark 1).

Remark 4. The above theorem implies the Lasota–Yorke theorem [LY]
and Zalewska’s theorem [Z].

Proof of Theorem 4. If P is exponentially stationary, then D = {f ∈
Lp

+ : Lf 6= 0 } and h = f0/‖f0‖ satisfy conditions I and II (see the proof of
Theorem 2).

Now assume conditions I and II hold. We are going to prove that P is
exponentially stationary. It is easy to show (see Lemma 1) that

lim
n→∞

∥

∥

∥

∥

(

Pnh

‖Pnh‖
− h

)−∥

∥

∥

∥

= 0

and there exists α < ∞ such that

(20) ‖Pnf‖ ≤ α‖Pnh‖ · ‖f‖ for f ∈ Lp, n ∈ N.

So we can assume h ∈ D. Define

G =

{

g ∈ Lp
+ : lim

n→∞

∥

∥

∥

∥

(

Pnf

‖Pnf‖
− g

)−∥

∥

∥

∥

= 0 for f ∈ D

}

.
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From (20), (2) and next (4), (2) it follows that for f ∈ D we have

(21)

∥

∥

∥

∥

(

Pn+mf

‖Pn+mf‖
−

Pmh

α‖Pmh‖

)−∥

∥

∥

∥

≤ α−1‖Pmh‖−1

∥

∥

∥

∥

(

Pn+mf

‖Pnf‖
− Pmh

)−∥

∥

∥

∥

≤ α−1‖Pmh‖−1

∥

∥

∥

∥

Pm

((

Pnf

‖Pnf‖
− h

)−)
∥

∥

∥

∥

≤

∥

∥

∥

∥

(

Pnf

‖Pnf‖
− h

)−∥

∥

∥

∥

.

Then by condition I we have

Pmh

α‖Pmh‖
∈ G for m ∈ N.

Define h0 = h and

hm+1 = sup

(

hm,
Pm+1h

α‖Pm+1h‖

)

for m ≥ 0.

By (19), an induction argument shows that hm ∈ G for m ≥ 1. Then from
the inequality

1 ≥

∥

∥

∥

∥

hm +

(

Pnf

‖Pnf‖
− hm

)+∥

∥

∥

∥

−

∥

∥

∥

∥

(

Pnf

‖Pnf‖
− hm

)−∥

∥

∥

∥

≥ ‖hm‖ −

∥

∥

∥

∥

(

Pnf

‖Pnf‖
− hm

)−∥

∥

∥

∥

for f ∈ D,

it follows that ‖hm‖ ≤ 1. Since the sequence {hm} is increasing, the strong
limit h∗ = limm→∞ hm exists. We show that h∗ satisfies the assumptions of
Theorem 2. From (1) we obtain

∥

∥

∥

∥

(

Pnf

‖Pnf‖
− h∗

)−∥

∥

∥

∥

≤

∥

∥

∥

∥

(

Pnf

‖Pnf‖
− hm

)−∥

∥

∥

∥

+ ‖hm − h∗‖

for f ∈ D, m ∈ N. Since hm ∈ G, we have h∗ ∈ G (assumption I of
Theorem 2). As h ≤ h∗, we obtain

‖Pnf‖/‖Pnh∗‖ ≤ ‖Pnf‖/‖Pnh‖ for n ∈ N

(assumption II). We have Pmh/α‖Pmh‖ ≤ h∗ for m ∈ N and (see [LM],
Remark 5.1.3) the sequence {Pmh/(α‖Pmh‖)} has a weakly convergent sub-
sequence (assumption III′). It is easy to show that there exists β < ∞ such
that

‖Pnf‖ ≤ β‖Pnh∗‖ · ‖f‖ for f ∈ Lp, n ∈ N

(see Lemma 1) and Pmh∗/(β‖P
mh∗‖) ∈ G (see (21)). Moreover, from (2)
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and h ∈ D we obtain

lim sup
n→∞

∥

∥

∥

∥

(

αh∗ −
Pmh∗

β‖Pmh∗‖

)−∥

∥

∥

∥

≤ lim sup
n→∞

∥

∥

∥

∥

(

Pn+mh

‖Pn+mh‖
−

Pmh∗

β‖Pmh∗‖

)−∥

∥

∥

∥

= 0 for m ∈ N

(assumption IV). According to Theorem 2 the operator P is exponentially
stationary.

5. The integral operators. Let (X,Σ, µ) be a σ-finite measure space.
We deal with the space V = L1(X,Σ, µ) with the norm ‖ · ‖ = ‖ · ‖L1 . Let
K : X × X → [0,∞) be a measurable function. Assume that there exist
numbers α, β (0 < β ≤ α) such that

(22) β ≤
\
X

K(x, y) dx ≤ α for y ∈ X.

Further, we define an integral operator P by

(23) Pf(x) =
\
X

K(x, y)f(y) dy for f ∈ V.

The operator P is clearly linear and nonnegative. It is easy to verify (see
[LM]) that the operator Pn can be written in the form

Pnf(x) =
\
X

Kn(x, y)f(y) dy

where K1 = K and

Kn+m(x, y) =
\
X

Kn(x, z)Km(z, y) dz for n,m ∈ N.

By (22) an induction argument shows that

(24) βn ≤
\
X

Kn(x, y) dx ≤ αn for y ∈ X

and

(25) 0 < βn‖f‖ ≤ ‖Pnf‖ ≤ αn‖f‖ for f ∈ V+.

Theorem 5. Assume that there exist integers m1, m2 and positive num-

bers α, β, δ such that condition (22) holds and

(26) sup
y

Km1
(x, y) ≤ δ inf

y
Km2

(x, y) for x ∈ X.

Then the operator P defined by (23) is exponentially stationary.

P r o o f. Define D = V+ and

h(x) = α−m2 inf
y

Km2
(x, y).
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Then, according to (26) and (24),

‖h‖ > δ−1α−m2

\
X

sup
y

Km1
(x, y) dx ≥ βm1δ−1α−m2 > 0.

From (25) it follows that for f ∈ D,n ∈ N we have

Pn+m2f(x) =
\
X

\
X

Km2
(x, z)Kn(z, y)f(y) dy dz(27)

≥ αm2h(x)‖Pnf‖ ≥ h(x)‖Pn+m2f‖

and ‖Pn+m2f‖ 6= 0. By (26) we obtain

Pn+m1f(x) =
\
X

\
X

Kn(x, z)Km1
(z, y)f(y) dy dz ≤ δαm2Pnh(x)‖f‖.

Then, according to (25) we have βm1‖Pnh‖ ≤ ‖Pn+m1h‖ and

(28) ‖Pn+m1f‖ ≤ η‖Pn+m1h‖ · ‖f‖ where η = δαm2β−m1 .

By Theorem 4 this finishes the proof.

Let X be an unbounded measurable subset of a d-dimensional Euclidean
space R

d. We call a continuous nonnegative function V : X → R satisfying
lim|x|→∞ V (x) = ∞ a Lyapunov function.

Consider a measurable function K : X2 → [0,∞) which satisfies condi-
tion (22) for some numbers α, β (0 < β ≤ α).

Theorem 6. Assume that there exists a Lyapunov function V : X → R

such that

(29)
\
X

K(x, y)V (x) dx ≤ γV (y) + η,

where γ ≥ 0, η ≥ 0 and γ/β < 1. Moreover , assume that there exist l,m ∈ N

such that for every positive ε we can choose δε which satisfies

(30) sup
y

Kl(x, y) ≤ δε inf{Km(x, y) : |y| ≤ ε} for x ∈ X.

Then the operator P : L1 → L1 defined by equation (23) is exponentially

stationary.

P r o o f. First we define

En(V | f) =
\
X

V (x)Pnf(x) dx, D = {f ∈ L1
+ : E0(V | f) < ∞}.

Choose f ∈D. From the inequality (29), we have

En+1(V | f) =
\
X

\
X

V (x)K(x, y)Pnf(y) dy dx

≤ η‖Pnf‖ + γEn(V | f).
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Since γ/β < 1, by (25) an induction argument shows that

En+1(V | f)

‖Pn+1f‖
≤ ηβ−1 + γβ−1 En(V | f)

‖Pnf‖

and

En(V | f)

‖Pnf‖
≤

η

β − γ
+

(

γ

β

)n
E0(V | f)

‖f‖
.

There exists an integer n0 = n0(f) such that

(31) En(V | f) ≤ α1‖P
nf‖ for n ≥ n0,

where α1 = 2η/(β − γ). Now let

U = {x ∈ X : |x| ≤ ε}.

Since V (x) → ∞ as |x| → ∞, we can choose ε > 0 such that V (x) ≥ 2α1

for x ∈ X − U . From (31) it follows that

2α1

\
X−U

Pnf(x) dx ≤
\

X−U

V (x)Pn(x) dx ≤ α1‖P
nf‖

for n ≥ n0. Then by (25) we obtain

Pn+mf(x) ≥
\
U

Km(x, y)Pnf(y) dy

≥ 2αmh(x)
\
U

Pnf(y) dy ≥ αmh(x)‖Pnf‖ ≥ h(x)‖Pn+mf‖

for x ∈ X, n ≥ n0, where

h(x) = (2αm)−1 inf{Km(x, y) : y ∈ U} for x ∈ X.

From (30), (24) and (25) we have ‖h‖ > 0 and ‖P if‖ 6= 0 6= ‖P ih‖ for
i ∈ N. Hence condition I of Theorem 4 holds. From (30) it follows that

Pn+lf(x) =
\
X

\
X

Kn(x, z)Kl(z, y)f(y) dy dz ≤ 2δεα
mPnh(x)‖f‖

and by (25),

‖Pn+lf‖ ≤ 2δεα
mβ−l‖Pn+lh‖ · ‖f‖ for n ∈ N.

Hence h satisfies condition II. By Theorem 4 this finishes the proof.

Remark 5. Instead of (30) we can assume the following two conditions:

(32) There exists m ∈ N such that\
X

inf{Km(x, y) : |y| ≤ ε} dx > 0 for ε > 0;
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(33) There exist δ ∈ R and n0 ∈ N such that

sup
y

\
X

Kn(x, y) dx ≤ δ inf
y

\
X

Kn(x, y) dx for n ≥ n0.

In this case for n ≥ n0 we have

‖Pnf‖ · ‖h‖ =
\
X

\
X

Kn(x, y)f(y) dy dx ‖h‖

≤ δ inf
y

\
X

Kn(x, y) dx ‖f‖ · ‖h‖

≤ δ
\
X

\
X

Kn(x, y)h(y) dy dx ‖f‖ = δ‖Pnh‖ · ‖f‖

and h satisfies condition II.

Remark 6. Theorems 5 and 6 imply the theorems of A. Lasota and
M. C. Mackey [LM].
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