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On the role of partial Ricci curvature in the geometry

of submanifolds and foliations

by Vladimir Rovenskĭı (Krasnoyarsk)

Abstract. Submanifolds and foliations with restrictions on q-Ricci curvature are stud-
ied. In §1 we estimate the distance between two compact submanifolds in a space of positive
q-Ricci curvature, and give applications to special classes of submanifolds and foliations:
k-saddle, totally geodesic, with nonpositive extrinsic q-Ricci curvature. In §2 we generalize
a lemma by T. Otsuki on asymptotic vectors of a bilinear form and then estimate from
below the radius of an immersed submanifold in a simply connected Riemannian space with
nonpositive curvature; moreover, we prove a theorem on nonembedding into a circular
cylinder when the ambient space is Euclidean. Corollaries are nonembedding theorems of
Riemannian manifolds with nonpositive q-Ricci curvature into a Euclidean space. In §3 a
lower estimate of the index of relative nullity of a submanifold with nonpositive extrinsic
q-Ricci curvature is proven. Corollaries are extremal theorems for a compact submanifold
with the nullity foliation in a Riemannian space of positive curvature. On the way, some
results by T. Frankel, K. Kenmotsu and C. Xia, J. Morvan, A. Borisenko, S. Tanno,
B. O’Neill, J. Moore, T. Ishihara, H. Jacobowitz, L. Florit, M. Dajczer and L. Rodŕıguez
are generalized.

The relations between curvature and topology of (sub) manifolds play an
essential role in Global Riemannian Geometry. Note that the results on Ricci
curvature are often based on more complicated techniques from Riemannian
geometry than the results on sectional curvature.

H. Wu [Wu] (and later Z. Shen [Shen]) studied certain curvature func-
tions on a Riemannian manifold M which “interpolate” between the sec-
tional curvature and the Ricci curvature. By definition, for q + 1 orthonor-
mal vectors {x0;x1, . . . , xq} ⊂ TM the (partial) q-Ricci curvature is given
by the formula

Ricq(x0;x1, . . . xq) =

q∑

i=1

K(x0, xi).
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In fact, the q-Ricci curvature Ricq(x0;x1, . . . xq) depends on the vector x0

and the q-dimensional subspace V = {x1, . . . , xq}, which is orthogonal to
x0. Obviously, the 1-Ricci curvature coincides with sectional curvature, and
the (dim M − 1)-Ricci curvature is the usual Ricci curvature. In view of the
inductive identity

(1)

q+1∑

i=1

K(x, zi) =
1

q

q+1∑

i=1

∑

j 6=i

K(x, zj),

if for Mn the inequality Ricq
M ≥ qc (or Ricq

M ≤ qc) holds, then Ricq+1
M ≥

(q + 1)c (resp., Ricq+1
M ≤ (q + 1)c). For example, since the product of two

round spheres M2n = Sn(1) × Sn(1), where n > 2, has Ricci curvature
RicM = Ric2n−1

M = n − 1 and sectional curvature KM = Ric1
M ∈ [0, 1], the

(n + 1)-Ricci curvature of M2n is positive: Ricn+1
M ≥ 1. Hence, the class

of Riemannian manifolds with positive q-Ricci curvature is larger than the
class of manifolds with positive sectional curvature. Note that if for some
1 < q < dimM −1 the partial curvature Ricq is constant, then M is a space
of constant sectional curvature.

Let h : R
n ×R

n → R
p be a symmetric bilinear map (in particular, h can

be the second fundamental form h : TmM × TmM → TmM⊥ at a point m
of a submanifold M ⊂ M) and {xi}0≤i≤q ⊂ R

n an orthonormal system of
q + 1 vectors. We define the extrinsic q-Ricci curvature of h by the formula

Ricq
h(x0;x1, . . . , xq) =

q∑

i=1

[(h(x0, x0), h(xi, xi)) − h2(x0, xi)],

where ( , ) is the scalar product in R
p. For q = 1 it is called an extrinsic

sectional curvature (see [Bor 1, 2], [Flo], [KN]). In view of the equality

Ricq
h(x0;x1, . . . , xq) =

q∑

i=1

Ric1
h(x0, xi),

an inductive formula analogous to (1) is satisfied:

(1′) Ricq+1
h (x0;x1, . . . , xq+1) =

1

q

q+1∑

i=1

Ricq
h(x0;x1, . . . , x̂i, . . . , xq+1),

where the symbol ̂ over a vector means the absence of this vector. Hence
for any 1 ≤ q < n − 1 the inequality Ricq

h ≤ qc implies Ricq+1
h ≤ (q + 1)c,

and Ricq
h ≡ 0 implies Ric1

h ≡ 0. For a submanifold M ⊂ M with second
fundamental form h and for any orthonormal vectors {xi}0≤i≤q from the
tangent space TmM at an arbitrary point m ∈ M the following equality
holds:

(2) Ricq
M (x0;x1, . . . , xq) − Ricq

M
(x0;x1, . . . , xq) = Ricq

h(x0;x1, . . . , xq);
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in particular, for a submanifold M in a Euclidean space we have

(2′) Ricq
M (x0;x1, . . . , xq) = Ricq

h(x0;x1, . . . , xq).

In the present paper we discuss the role of q-Ricci curvature in the theory
of submanifolds and foliations.

In §1 we estimate the distance between two compact submanifolds in a
space of positive q-Ricci curvature, and give applications to the following
types of submanifolds: k-saddle, totally geodesic, with nonpositive extrinsic
q-Ricci curvature. As a corollary, we find an upper bound for the dimension
of a compact k-saddle (in particular, totally geodesic and with nonpositive
extrinsic q-Ricci curvature) foliation with positive mixed q-Ricci curvature.
On the way, the results on q-Ricci curvature by K. Kenmotsu and C. Xia [KX
1–2], and the results on sectional curvature by A. Borisenko [1, 2], J. Mor-
van [Mor], S. Tanno [Tan] and B. O’Neill [O’N], relating to T. Frankel’s
result [Fra], are generalized.

In §2 we generalize a lemma by T. Otsuki [Ots] on asymptotic vectors
of a bilinear form. As an application, we estimate from below the radius
of an immersed submanifold in a simply connected Riemannian space with
nonpositive curvature. A corollary is a nonembedding theorem of a compact
n-dimensional Riemannian manifold with nonpositive q-Ricci curvature into
a (2n−q)-dimensional Euclidean space. Moreover, for the ambient Euclidean
space we prove a theorem on nonembedding into a circular cylinder. On the
way, the results on sectional curvature by T. Ishihara [Ish], H. Jacobowitz
[Jac] and J. Moore [Moo 1] are generalized.

In §3 a lower estimate of the index of relative nullity of a submani-
fold with nonpositive extrinsic q-Ricci curvature and small codimension is
given. Corollaries are extremal theorems for compact submanifolds with
nullity foliations in a Riemannian space with positive curvature and also
tests for totally geodesic submanifolds. On the way, the results on sectional
curvature by L. Florit [Flo], A. Borisenko [Bor 2, 3], and M. Dajczer and
L. Rodŕıguez [DR] are generalized.

1. The distance between two submanifolds in a space of pos-

itive q-Ricci curvature. By using the formula for the second variation
of the length (or energy) of a geodesic, T. Frankel [Fra] showed that two

compact totally geodesic submanifolds M1, M2 in a Riemannian space M
with positive sectional curvature (for example, two great spheres in a round
sphere) must necessarily intersect if their dimensions sum to at least the

dimension of M . If M is also a Kähler manifold with positive bisectional
curvature, then two compact analytic submanifolds M1, M2 must necessar-
ily intersect if their dimensions sum to at least the dimension of M (see
[Fra], [GK]). These results were applied by S. Tanno [Tan], K. Abe [Abe 1]
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and A. Borisenko [Bor 1–3] to estimating the dimension of a compact totally
geodesic foliation on a Riemannian manifold (or submanifold) with positive
mixed sectional curvature. K. Kenmotsu and C. Xia [KX 1–2] generalized
the above result of T. Frankel to the case of positive q-Ricci curvature.

If the radius of a circle of S2 is “small”, it is possible to find a great circle
of S2 which is “far” from it. Starting from this elementary fact J. Morvan
[Mor] generalized T. Frankel’s result [Fra] by giving an upper bound for the
distance of two submanifolds of a Riemannian space with positive sectional
curvature in terms of the lengths of their second fundamental forms.

In this section we generalize the results by J. Morvan and K. Kenmotsu–
C. Xia to submanifolds and give applications to foliated manifolds.

Note that there are two mixed q-Ricci curvatures for a foliated Rieman-
nian manifold (M, {L}): Ricq

1(y0;x1, . . . , xq) when q ≤ dim L and Ricq
2(x0;

y1, . . . , yq) when q ≤ codim L, where xi ∈ TL, yi ∈ TL⊥.

Let ‖hi‖ be the supremum of the norm of the second fundamental form of
a submanifold Mi in a Riemannian manifold M , and |Hi| the mean curvature
of Mi.

Lemma 1. Let Mν1

1 and Mν1

2 be two compact submanifolds in a Rie-

mannian manifold Mn with Ricq
M ≥ c > 0 for some q ≤ min{ν1, ν2}, and

let

q′ = ν1 + ν2 − n + 1.

Then the distance d(M1,M2) between M1 and M2 satisfies the inequality

d2(M1,M2) ≤





q

c

{
‖h1‖ + ‖h2‖ +

π2

4

}
if q′ ≤ 0,

q

c
{‖h1‖ + ‖h2‖} +

q − q′

c
· π2

4
if 0 < q′ < q,

q

c
{‖h1‖ + ‖h2‖} if q′ ≥ q.

Remark. For q = 1 Lemma 1 was proved in [Mor], and the first in-
equality is the best possible: two orthogonal great circles in S3(1) have
‖h1‖ = ‖h2‖ = 0 and distance π/2.

We shall prove a version of this result for foliations.

Let ‖hL‖ be the supremum of the norm of the second fundamental form
of leaves and diam⊥ L the maximal distance between the leaves of a folia-
tion {L}.

Theorem 1. Let {Lν} be a compact foliation on a Riemannian manifold

Mν+n with Ricq
M ≥ c > 0 for some q ≤ ν. Then
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(diam⊥ L)2 ≤





2q

c

{
‖hL‖ +

π2

2

}
if ν ≤ n − 1,

2q

c
‖hL‖ +

q − ν + n − 1

c
· π2

4
if n − 1 < ν < n − 1 + q,

2q

c
‖hL‖ if ν ≥ n − 1 + q.

Remark. For the Riemannian foliation of Theorem 1 the condition on
the Ricci curvature can be changed to Ricq

1(L) ≥ c > 0, because the shortest
geodesic between any two leaves (see the proof) is orthogonal to such a
foliation at all its points.

P r o o f (of Theorem 1). Consider two leaves L1, L2 with distance l =
dist(L1, L2), which is reached at points m1 ∈ L1, m2 ∈ L2. An argument us-
ing the first variation formula of arc-length shows that the shortest geodesic
γ(t) (0 ≤ t ≤ 1) with length l between m1, m2 is orthogonal to L1 and L2.

Consider the second case: n − 1 < ν < n − 1 + q. Then the parallel
displacement of Tm1

L1 along γ will intersect Tm2
L2 in a q′-dimensional

subspace V2, where ν − n + 1 ≤ q′ < q. We denote by V1 the inverse image
of V2 in Tm1

L1. Let Tm1
L = V1⊕V ′

1 ⊕V ′′ be the orthogonal decomposition,
where the parallel image of V ′

1 is uniquely projected onto Tm2
L2 (denote

its orthogonal projection in Tm2
L2 by V ′

2) and the parallel image of V ′′ is
orthogonal to Tm2

L. (Note that V ′′ is zero for small l.) Let vectors e1, . . . , eq′

form an orthonormal basis of V1 and continue them to parallel vector fields
e1, . . . , eq′ along γ. Obviously, e1(m2), . . . , eq′(m2) belong to V2. Let vectors
a1, . . . , as (where s = dim V ′

1) form an orthonormal basis of V ′
1 and vectors

b1, . . . , bs form an orthonormal basis of V ′
2 , and continue them to parallel

vector fields a1, . . . , as and b1, . . . , bs along γ.

Proposition 1. Let V1, V2 be subspaces in R
N with dim V1 = dim V2.

Then there exist orthonormal bases {ai} ⊂ V1, {bi} ⊂ V2 (which corre-

spond to the values of extremal angles between the given subspaces) with the

property ai ⊥ bj (i 6= j).

Consider the field of parallel planes σi(t) along γ, spanned by vectors
ai(t), bi(t). Assume that {ai}, {bi} correspond to extremal angles between
V ′

1 and the parallel image of V ′
2 (see Proposition 1). Then σi(t) ⊥ σj(t) for

i 6= j. We take a unit vector b̃i(t) ∈ σi(t) such that (ai, b̃i(t)) = 0. It is

always possible to choose bi and b̃i(t) with (ai, bi) ≥ 0 and (bi, b̃i(t)) ≥ 0.
We introduce unit vector fields along the geodesic γ,

xi(t) = (cos θit)ai + (sin θit)̃bi(t),

where θi = arccos(ai, bi) ∈ [0, π/2]. Note that xi(t) ⊥ xj(t) when i 6= j.
If q′ + s < q, then we complete the system {ai} by a certain number of
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orthogonal vectors from V ′′ and complete {bi} by a certain number of or-
thogonal vectors from the orthogonal complement to V2 ⊕ V ′

2 in Tm2
L. For

such additional pairs of vectors the fields xi(t) are defined in the same way,
but with θi = π/2. Thus we may assume that q′ + s = q. Using the second
variation of the energy E of γ along xi(t) and ej we obtain

(3)

E ′′
xi

(0) = (hL(bi, bi), γ
′(1)/l) − (hL(ai, ai), γ

′(0)/l) + θ2
i

− l2
1\
0

K(γ′, xi(t)) dt ≥ 0,

E ′′
ēj

(0) = (hL(ej , ej), γ
′(1)/l) − (hL(ej , ej), γ

′(0)/l)

− l2
1\
0

K(γ′, ej) dt ≥ 0.

Since s = q − q′ ≤ q − ν + n − 1 and
∑

i θ2
i ≤ π2

4
s,

q′∑

i=1

|(hL(bi, bi), γ
′(1)/l) − (hL(ai, ai), γ

′(0)/l)| ≤ 2q′‖hL‖,

s∑

j=1

|(hL(ej , ej), γ
′(1)/l) − (hL(ej , ej), γ

′(0)/l)| ≤ 2s‖hL‖,

and since by the given inequality for Ricq
M ,

q′∑

i=1

K(γ′, x(t)) +

s∑

j=1

K(γ′, ej) ≥ c,

from (3) it follows l2c ≤ 2q‖hL‖+ (q − ν + n− 1)π2/4, which completes the
proof of the second inequality of the theorem. The other cases are similar:
for the first inequality the subspace V1 is trivial, for the third we must only
consider q vectors from V1.

From the third case of Theorem 1 we have the following

Corollary 1. Let Mn+ν be a Riemannian manifold with compact totally

geodesic foliation {Lν} and suppose Ricq
1(L) is positive along some leaf.

Then ν < n − 1 + q.

Remark. For q = 1 Corollary 1 was proved in [Tan] using the idea of
[Fra].

The following result can be proved by a similar method to that for
Lemma 1.

Corollary 2. Let Mn−1
1 and M l

2 be a complete hypersurface and a

submanifold in a Riemannian space Mn with Ricq

M
≥ c ≥ 0 for some q ≤ l,
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and let one of Mn−1
1 ,M l

2 be compact. Assume that Mn has positive q-Ricci

curvature either at all points of Mn−1
1 or at all points of M l

2. Then

d2(M1,M2) ·
c

q
< ‖h1‖ + |H2|.

Remark. For c=0 in Corollary 2 we obtain the result of [KX 2] that a
totally geodesic hypersurface Mn−1

1 (i.e., h1 = 0) and a minimal submanifold
M2 (i.e., H2 =0) must intersect. The well-known particular case is that there
exists no closed immersed minimal submanifold in an open hemisphere.

Next we consider classes of submanifolds and foliations with additional
conditions on the second fundamental form.

Definition 1 [Shef]. A submanifold M in a Riemannian space M is
called a k-saddle submanifold if for every normal ξ ∈ TM⊥ the second
quadratic form Aξ has less than k eigenvalues with the same sign, i.e., its
canonical term is

a1 dx2
1 + . . . + aj dx2

j − b1dx2
j+1 − . . . − bi dx2

j+i,

max{i, j} ≤ k − 1, as, bl > 0.

A foliation {L} on a Riemannian manifold M is called a k-saddle foliation

if every leaf is a k-saddle submanifold.

Obviously, totally geodesic submanifolds are 1-saddle.

Lemma 2. Let Mν1

1 and Mν2

2 be compact ki-saddle submanifolds in a

Riemannian manifold Mn with Ricq
M ≥ c > 0 for some q ≤ min{ν1 −

k1, ν2 − k2} + 1, and let q′ = ν1 + ν2 − n − k1 − k2 + 3. Then

d(M1,M2) ≤





π

2

√
q

c
if q′ ≤ 0,

π

2

√
q − q′

c
if 0 < q′ < q,

0, i .e., M1 ∩ M2 6= ∅, if q′ ≥ q.

The third case of Lemma 2 (see [Rov]) implies the result of [BRT], which
generalizes [Lemma 8, Bor 2] to k-saddle submanifolds with q = 1, and the
results for totally geodesic submanifolds: of [KX 1] for k = 0, and of [Fra]
for k = 0, q = 1.

Corollary 3 [BRT]. Let Mn be a complete Riemannian manifold with

nonnegative q-Ricci curvature and let Mν1

1 and Mν2

2 be complete immersed

ki-saddle submanifolds. Assume Mν1

1 is closed and Mν2

2 is compact. If Mn

has positive q-Ricci curvature either at all points of Mν1

1 or at all points of

Mν2

2 and ν1 + ν2 ≥ n + q + k1 + k2 − 3, then Mν1

1 and Mν2

2 must intersect.
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We shall prove a version of Lemma 2 for foliations, using the following

Lemma 3 [Bor 2]. The maximal dimension of a subspace contained in

the cone
∑k

i=1 aix
2
i −

∑r
j=k+1 ajx

2
j = 0 (as > 0) is min{k, r − k}.

Theorem 2. Let Mn+ν be a Riemannian manifold with a compact k-

saddle foliation {Lν} and suppose Ricq
1(L) is positive for some q ≤ ν−k+1.

Then ν < q+n+2k−3. Moreover , if Ricq
M is positive for some q ≤ ν−k+1,

then

diam⊥ L ≤





π

2

√
q

c
if ν ≤ n + 2k − 3,

π

2

√
q − ν + n + 2k − 3

c
if n + 2k − 3 < ν < q + n + 2k − 3.

P r o o f. Consider two leaves L1, L2 with distance l = dist(L1, L2), which
is reached at points m1 ∈ L1, m2 ∈ L2. The shortest geodesic γ(t) (0 ≤
t ≤ 1) with length l between m1, m2 is orthogonal to L1 and L2. Since L1

and L2 are k-saddle submanifolds, by Lemma 3 the asymptotic cones for the
quadratic forms of the normals ξ1 = γ′(0)/l, ξ2 = γ′(1)/l at the end points
contain subspaces W1,W2 with dimensions ≥ ν − (k − 1).

Next we follow the proof of Theorem 1 with Wi in place of Tmi
L.

Definition 2 ([Bor 4] for s = 1). A foliation {L} on a Riemannian
manifold M is said to be of nonpositive (negative) extrinsic s-Ricci curvature

Rics
h(L) if the s-Ricci curvature of its leaves is not more (less) than the

s-Ricci curvature of the ambient space along the leaves.

The following lemma was proved in [Gla] for s = 1.

Lemma 4. A submanifold Mn ⊂ Mn+p with partial extrinsic Ricci cur-

vature Rics
h ≤ 0 is k-saddle with k = p + s.

P r o o f. By Lemma 5 (below) every subspace V ⊂ TM with dim V >
p+s−1 contains an asymptotic vector. Hence for every unit normal ξ∈TM⊥

the second quadratic form Aξ has not more than p+s−1 nonzero eigenvalues
with the same sign. From Definition 1 it follows that Mn is a (p+ s)-saddle
submanifold.

In view of Lemma 4 and Theorem 2 we obtain the following

Corollary 4. 1. Let Mνi

1 (i = 1, 2) be two compact submanifolds with

nonpositive extrinsic si-Ricci curvature in a Riemannian space Mn with

Ricq
M ≥ c > 0 for some q ≤ min{2ν1 − s1, 2ν2 − s2} − n + 1, and let
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q′ = 2(ν1 + ν2) − 3n + 3 − (s1 + s2). Then

d(M1,M2) ≤





π

2

√
q

c
if q′ ≤ 0,

π

2

√
q − q′

c
if 0 < q′ < q,

0, i.e., M1 ∩ M2 6= ∅, if q′ ≥ q.

2. If {Lν} is a compact foliation on Mν+n with extrinsic partial Ricci

curvature (of leaves) Rics
h(L) ≤ 0 and partial mixed Ricci curvature Ricq

1(L)
> 0 for some q ≤ ν − s − n + 1, then ν < 3n + q + 2s − 3.

Remark. Analogous results hold for the Kählerian case with positive
partial Ricci curvature (see [KX 1–2] for the totally geodesic case).

2. The radius of an immersed manifold and nonexistence of im-

mersions. The well-known lemma by T. Otsuki [Ots] allows one to prove the
nonexistence of an isometric embedding of a compact Riemannian manifold
Mn with nonpositive sectional curvature into the Euclidean space R

2n−1

(see [KN]). Below we generalize this lemma.

Lemma 5. Let h : Rn × Rn → Rp be a symmetric bilinear map and

suppose that for some integer q ∈ [1, n − 1] and real c ≥ 0,

Ricq
h ≤ qc2, |h(x, x)| > cx2 (x 6= 0).

Then p > n − q.

Remark. For q = 1 Lemma 5 is the result of T. Otsuki [Ots]. From
Lemma 5 it follows that in the case Ricq

h ≤ 0 and p ≤ n − q the symmetric
bilinear map h has an asymptotic vector, i.e., there exists a nonzero x ∈ R

n

such that h(x, x) = 0.

P r o o f (of Lemma 5). Assume the contrary, i.e., p ≤ n− q. The smooth
function f(x) = h2(x, x) is positive on the unit sphere Sn−1. The minimum
of f is reached at some unit vector x0. Let F (x) = f(x) − λ(x, x). Then

(4)

(a)
1

2
dF (x0)x = 2(h(x0, x0), h(x0, x)) − λ(x0, x) = 0,

(b)
1

2
d2F (x0)(x, x) = 2(h(x0, x0), h(x, x)) + 4h2(x0, x) − λ(x, x) ≥ 0,

where x ∈ R
n is an arbitrary vector. From the assumptions and (4a) for

x = x0 we obtain λ > 2c2. In view of (4a) the subspace V = {x : h(x0, x)
= 0} is orthogonal to x0 and, obviously, dimV ≥ n − p. Since n − p ≥ q,
we can find an orthonormal system {xi}1≤i≤q ⊂ V of q vectors. From
h(x0, xi) = 0 and (4b) it follows that (h(x0, x0), h(xi, xi)) ≥ 1

2λ > c2, and
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hence Ricq
h(x0;x1, . . . , xq) =

∑q
i=1(h(x0, x0), h(xi, xi)) > qc2, contrary to

assumption.

Note that for a submanifold M ⊂ M with second fundamental form h
and an orthonormal system {xi}0≤i≤q ⊂ TmM of q + 1 vectors we have

(5) Ricq(x0;x1, . . . , xq) − Ricq(x0;x1, . . . , xq) = Ricq
h(x0;x1, . . . , xq).

We now consider an application of Lemma 5 to submanifolds.

J. Moore [Moo 1] proved that when M is a complete simply connected
Riemannian space with sectional curvature a ≤ K ≤ b ≤ 0 and M a compact
Riemannian manifold with K ≤ a − b, then M has no isometric immersion
in M unless dimM ≥ 2 dim M (for b = 0 see [O’N]). On the other hand,
H. Jacobowitz [Jac] showed that an isometric immersion of an n-dimensional
compact Riemannian manifold with sectional curvatures less than 1/d2 into
R

2n−1 can never have its image in a ball of radius d. T. Ishihara [Ish] proved
a nonembedding theorem using the T. Otsuki Lemma, which generalized
both the mentioned results. Below we generalize the result of T. Ishihara
[Ish] (and hence those of J. Moore [Moo 1] and M. Jacobowitz [Jac]) to the
case of partial Ricci curvature.

A positive continuous function C(b, d) (b ≤ 0, d > 0) is defined by [Ish]

C(b, d) =

{
1/d if b = 0,√
−b coth(d

√
−b) if b < 0.

This function is decreasing with respect to b and also d and obviously,
C2(b, d) > −b. Let M be a compact submanifold in M with distance d.
For any x ∈ M and any r > 0 put B(x, r) = {y ∈ M : d(x, y) < r}. Then
we set

r(M) = inf{r : M ⊂ B(x, r)} = inf{max{d(x, y) : y ∈ M}, x ∈ M}.
There is a point x0 ∈ M such that M ⊂ B(x0, r(M)). Moreover, there is a
point y0 ∈ M such that d(x0, y0) = r(M). We will call r(M) the radius of M
in M and B(x0, r(M)) a minimal ball containing M [Ish]. Generally, there
are several minimal balls containing M , for example, 2 balls (hemispheres)
when M is a great circle in a 2-sphere M . But there is only one minimal
ball for a compact manifold immersed in a Euclidean space [Ish].

Theorem 3. Let Mn+p−q be a complete simply connected Riemannian

space with sectional curvature a ≤ K ≤ b ≤ 0 and Mn a compact Rieman-

nian manifold with diameter < d. Assume that at every point of Mn there is

a p-dimensional subspace in the tangent space along which the partial Ricci

curvature satisfies

(6)
1

q
Ricq

M ≤ a + C2(b, d).

Then Mn cannot be isometrically immersed in Mn+p−q.
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This theorem is an immediate consequence (a compact submanifold M ⊂
M with diameter d is always contained in some ball of radius d) of the
following

Theorem 4. Let Mn+p−q satisfy the same conditions as in Theorem 3
and d be some positive constant. Let Mn be a compact Riemannian man-

ifold such that at every point of Mn there is a p-dimensional subspace in

the tangent space along which the inequality (6) holds. Then no isometric

immersion of Mn into Mn+p−q has image in a ball of radius < d.

For q = 1 Theorems 3 and 4 were proved by T. Ishihara [Ish]. Note that
(6) follows from a stronger inequality

(6′)
1

q
Ricq

M ≤ a − b.

P r o o f o f T h e o r e m 4. Suppose that Mn is isometrically immersed
in Mn+p−q and contained in a ball of radius < d. Then we have r(M) < d.
Take m0 ∈ M and m1 ∈ M satisfying r(M) = d(m0,m1). Let γ : [0, 1] → M
be a minimal geodesic with γ(0) = m0, γ(1) = m1. For each unit tangent
vector y ∈ Tm1

M there is a unique Jacobi vector field Y along γ such that
Y (0) = 0, Y (1) = y. Corresponding to Y we have a 1-parameter family of
geodesics from m0 to M , γs(t) = γ(s, t) (|s| < ε, t ∈ [0, 1]), which satisfy

γ0(t) = γ(t), (∂/∂s)γ(0, t) = Y (t). We set E(γs) = 1
2

T1
0
(γ′

s, γ
′
s) dt, the energy

of γs. Then from the definition of γ it follows that E(γs) ≤ E(γ). Hence

(7) 0 ≥
(

d2

ds2
E(γs)

)

s=0

= I(Y, Y ) + (h(y, y), γ′(1)),

where I( , ) is the index form (see [KN]). Taking a proper Jacobi field on a
space of constant curvature b, J. Moore [Moo 1] proved that

I(Y, Y ) ≥ r(M)C(b, r(M)).

Hence from (7) we get (h(y, y), γ′(1)) < −r(M)C(b, r(M)). Since C(b, d) is
decreasing, it follows that C(b, r(M)) > C(b, d). In view of |γ′(1)| = r(M)
we obtain for all unit vectors y ∈ Tm1

M the inequality

|h(y, y)| ≥ C(b, r(M)) > C(b, d).

From the conditions on the sectional curvature of M it follows that Ricq

M
≥

qa. Hence, from (6), in view of (5), the restriction h1 : V × V → Tm1
M⊥

of the second fundamental form of Mn to some p-dimensional subspace
V ⊂ Tm1

M satisfies the inequality

Ricq
h1

≤ qC2(b, d).

But then Lemma 5 yields a contradiction: p − q > dimV − q = p − q.
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Corollary 5. (a) Let Mn be a compact Riemannian manifold with

Ricq
M ≤ qc2 for some integer q ∈ [1, n − 1] and a constant c > 0. Then Mn

cannot be isometrically immersed in R
2n−q into a ball of radius r = 1/c.

(b) Let Mn be a compact Riemannian manifold with nonpositive q-Ricci

curvature. Then Mn cannot be isometrically immersed into R
2n−q.

(c) Let Mn be a Riemannian manifold with negative q-Ricci curvature.

Then Mn cannot be isometrically immersed into R
2n−q−1.

For q = 1 Corollary 5 was proved by S. Chern and N. Kuiper (see [KN]).

P r o o f (of Corollary 5). (a) directly follows from Theorem 4.
(b) Assume the contrary, i.e., Mn ⊂ R

n+p, where p ≤ n−q. By Lemma 5
(with c = 0) for each m ∈ M there exists an asymptotic vector x ∈ TmM .
But for a compact submanifold Mn ⊂ R

n+p there exist a point m0 ∈ M
and a unit normal ξ0 ∈ Tm0

M⊥ with positive second quadratic form Aξ0

(see [KN]). Hence, there are no asymptotic vectors at m0, which is a con-
tradiction.

(c) Assume the contrary, i.e., Mn ⊂ R
n+p, where p < n−q. By Lemma 5

(with c = 0) for any m ∈ M there exists a unit asymptotic vector x0 ∈
TmM . Note that the subspace V = {x ∈ TmM : h(x0, x) = (x0, x) = 0}
has dim V ≥ q. Then for any orthonormal system {xi}1≤i≤q ⊂ V we have
Ricq(x0;x1, . . . , xq) = Ricq

h(x0;x1, . . . , xq) = 0, which is a contradiction.

Note that the product M2n = Mn(−1) × Mn(−1) of hyperbolic space
forms has sectional curvature KM ∈ [−1, 0], constant Ricci curvature RicM

= −(n− 1) and hence Ricn+1
M ≤ −1 and Ricn

M ≤ 0. By Corollary 5 such an
M2n cannot be isometrically locally immersed into R

3n−2.
Corollary 5 can be improved in the case of embeddings into a cylinder

of a Euclidean space.

Definition 3. A hypersurface C(s, r) in R
N+1 which is congruent to

s+1∑

i=1

(xi)
2 − r2 = 0

is called a circular cylinder of radius r with s-dimensional parallel and

(N − s)-dimensional ruling (generator , or axes).
For s = N we obtain a hypersphere of radius r > 0.

Theorem 5. Let Mn be a compact manifold with Ricq
M ≤ qc2 for some

integer q ∈ [1, n−1] and a constant c > 0. Then Mn cannot be isometrically

embedded into R
n+p (p ≤ n− q) inside a circular cylinder of radius r = 1/c

with (2p + q − 1)-dimensional parallel.

P r o o f. Suppose the contrary, i.e., Mn is isometrically embedded into
R

n+p (p≤ n− q) inside a circular cylinder C(2p + q − 1, r) of radius r=1/c
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with (2p+q−1)-dimensional parallel. Since the dimension n of the manifold is
greater than the dimension n−p−q of the axes of the cylinder C(2p+q−1, r),
decreasing the radius r and keeping the axes we obtain a smaller cylinder
C(2p+q−1, r1) of radius r1 ∈ (0, r) which is tangent to Mn at some point m.

Consider the field of unit normals n to the cylinder C(2p + q − 1, r1),
pointing inwards. Then the principal curvatures {ki(n)} of C(2p+ q−1, r1)
are nonnegative, and

0 = k1(n) = . . . = kn−p−q(n) < kn−p−q+1(n) = . . . = kn+p−1(n) = 1/r1.

In view of the relation between the dimensions of the cylinder, its parallel
and the submanifold Mn: n + (2p + q− 1)− (n + p− 1) = p + q, there exists
a (p + q)-dimensional subspace T1 ⊂ TmM which is tangent to a parallel of
cylinder.

The principal curvatures of C(2p + q − 1, r1) in directions x ∈ T1 are
constant and equal to the principal curvature 1/r1 of a parallel ((2p+q−1)-
dimensional sphere) S(r1). Since the principal curvature A

n̄(m)(x, x) of Mn

for the normal n(m) in direction x ∈ T1 is not less than 1/r1, in view of the
formula

(8) A
n̄(m)(x, x) = (h(x, x),n(m)),

we have the following estimate for the second fundamental form h of Mn in
directions of T1:

|h(x, x)|
(8)

≥ A
n̄(m)(x, x) >

1

r
x2 (x ∈ T1).

Hence there exist q + 1 orthonormal vectors {x0;x1, . . . , xq} in T1 with

Ricq
M (x0;x1, . . . , xq)

(2′)
= Ricq

h(x0;x1, . . . , xq) >
q

r2
,

because in the opposite case, by Lemma 5 for the restriction of the second
fundamental form h : T1 × T1 → TmM⊥, we obtain p > dim T1 − q = p, a
contradiction.

3. The index of relative nullity and extremal theorems for q-
Ricci curvature.We consider a symmetric bilinear form h with nonpositive
extrinsic q-Ricci curvature more carefully and obtain the best estimate of
its index of relative nullity.

Lemma 6. Let h : R
n × R

n → R
p be a symmetric bilinear map with

Ricq
h ≤ 0. Then µ(h) ≥ n − 2p − q + δ1q.

For q = 1 Lemma 6 was proved by L. Florit [Flo]. Note that from Ricq
h

≡ 0, where q < n − 1, it follows that Ric1
h ≡ 0 and then (see [KN])

µ(h) ≥ n − p. From Lemma 6 we obtain an estimate for the index µ(M)
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of relative nullity of a submanifold Mn ⊂ Mn+p with nonpositive extrinsic
q-Ricci curvature and “small” codimension (for q = 1 see [Flo] and [Bor 1]):

µ(M) ≥ n − 2p − q + δ1q .

Lemma 6 follows immediately from Lemmas 7, 8 given below.

Definition 4 [Moo 2]. We say that y ∈ R
n is a regular element of a

bilinear map β : R
n×R

m → R
p if dim Im β(y) = max{dim Im β(z) : z ∈ R

n}.
The set of regular elements of β is denoted by RE(β).

Note that the set RE(β) is open and dense in R
p.

Lemma 7 [Moo 2]. Let β : R
n × R

m → R
p be a bilinear map and y0 ∈

RE(β). Then β(y, ker β(y0)) ⊂ Imβ(y0) for all y ∈ R
n.

P r o o f. Let z1, . . . , zr be vectors in R
m with r = dim Im β(y0) and

Im β(y0) = span{β(y0, zj) : 1 ≤ j ≤ r}. It is easy to see that the vectors
{β(y0 + ty, zj)}1≤j≤r are linearly independent except for a finite number of
values of t. Hence, they generate a family of r-dimensional subspaces that
varies continuously with t if |t| < ε for some ε > 0. But if z ∈ ker β(y0),
then β(y0 + ty, z) = tβ(y, z). Therefore, by continuity, β(y, z) ∈ Imβ(y0).

We denote the set of asymptotic vectors of h by As(h). Recall that T ⊂
R

n is an asymptotic subspace of h if h(x, y) = 0 for all x, y ∈ T .

The following result, which for q = 1 was proved in [Flo], generalizes
Lemma 5.

Lemma 8. Let h : R
n × R

n → R
p be a symmetric bilinear map with

Ricq
h ≤ 0. Then there exists an asymptotic subspace T ⊂ R

n of h such that

dim T ≥ n − p − q + δ1q.

P r o o f. If n−p−q+δ1q = 1, then by Lemma 5 there exists an asymptotic
vector and this concludes the proof. Thus assume n − p − q + δ1q ≥ 2. For
each vector x0 ∈ As(h) which is a regular element for h, we define a linear
transformation h(x0) : R

n → R
p by h(x0)y = h(x0, y), set V1 = V1(x0) =

ker h(x0), W1 = W1(x0) = {Im h(x0)}⊥, and define h1 = h|V1×V1
. With the

above notations we claim that Im h1 ⊂ W1.

From the above assumption, dimV1 ≥ n− p ≥ q + 2− δ1q . To prove the
claim, take an orthonormal system {zi}δ1q≤i≤q ⊂ V1 of vectors which are
orthogonal to x0. Then, since x0 ∈ As(h), we have for any unit y ∈ R

n and
for all t,

(h(x0 + ty, x0 + ty), h(zi, zi)) − (h(x0 + ty, zi), h(x0 + ty, zi))

= 2t(h(x0, y), h(zi, zi)) + t2[(h(y, y), h(zi , zi)) − (h(y, zi), h(y, zi))].

We can assume y ⊥ V1 (see the coefficient of t), and then the unit vector
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xt = (1 + t2)−1/2(x0 + ty) is orthogonal to each zi. Hence for all t,

(1 + t2)Ricq
h(xt; z1, . . . , zq) = 2t

(
h(x0, y),

q∑

i=1

h(zi, zi)
)

+ t2 Ricq
h(y; z1, . . . , zq).

In view of Ricq
h ≤ 0, we have (h(x0, y),

∑q
i=1 h(zi, zi)) = 0 (y ∈ R

n), i.e.,∑q
i=1 h(zi, zi) ⊂ W1. Note that for q = 1 we have h(z, z) ⊂ W1 for all z ∈ V1

and by symmetry of h the claim is proved.
So assume q > 1. Since the analogous property

∑q−1
i=0 h(zi, zi) ⊂ W1

holds, we have h(z0, z0) − h(zq , zq) ⊂ W1. In the same way we obtain
h(z0, z0) − h(zi, zi) ⊂ W1 for each i and hence

h(z0, z0) =
1

q

q∑

i=1

[h(z0, z0) − h(zi, zi)] +
1

q

q∑

i=1

h(zi, zi) ⊂ W1.

Since z0 is an arbitrary unit vector in V1, by symmetry of h we have Im h1 ⊂
W1.

The above claim allows us to proceed inductively as follows. Set V0 = R
n

and W0 = R
p. Given k ≥ 0, for the symmetric bilinear map hk = h|Vk×Vk

:
Vk × Vk → Wk with nonpositive Ricq

hk
, define

rk = max{dim Im hk(x) : x ∈ As(hk)},
and suppose that if k ≥ 1, then

nk = dim Vk = n −
k−1∑

i=0

ri, pk = dimWk = p −
k−1∑

i=0

ri.

Picking xk ∈ As(hk) with dim Im hk(xk) = rk, set Vk+1 = Vk+1(x0, . . . , xk)

= ker hk(xk) ⊂ Wk, and then nk+1 = dim Vk+1 = n − ∑k
i=0 ri. The above

claim implies that Im hk+1 ⊂ Wk+1, where Wk+1 = Wk+1(x0, . . . , xk) =
{Im hk(xk)}⊥ ⊂ Wk, and hk+1 = h|Vk+1×Vk+1

. Since

0 ≤ pk+1 = dim Wk+1 = p −
k∑

i=0

ri,

there exists a positive integer m such that rm = 0. This tells us that
As(hm) = ker hm. Set T = ker hm. By Lemma 5 (with c = 0) for each sub-
space S ⊂ Vm such that dim S ≥ pm + q − δ1q , we have S ∩ T = S ∩As(hm)
6= 0. Hence, dim T ≥ nm − pm + q − δ1q = n − p + q − δ1q . Moreover, since
hm = h|Vm×Vm

, T is an asymptotic subspace of h and this concludes the
proof.

Proof of Lemma 6. Let T ⊂ R
n be an asymptotic subspace of h such

that dimT = n − p − q + δ1q (see Lemma 8 below). Then the orthogonal
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complement T ′ to T in R
n has dimT ′ = p + q − δ1q ≥ q + 1 − δ1q . Define a

bilinear map β : T ′×T → R
p by β = h|T ′×T . Take y0 ∈ RE(β), z ∈ T, z′ ∈

ker β(y0) ⊂ T and an orthonormal system {yi}1≤i≤q ⊂ T ′ of vectors which
in case q > 1 are also orthogonal to y0. Using only the assumption on T , we
have for all s, t ∈ R,

(h(y0 + tz, y0 + tz), h(yi + sz′, yi + sz′)) − h2(y0 + tz, yi + sz′)

= (h(y0, y0) + 2th(y0, z), h(yi, yi) + 2sh(yi, z
′)) − h2(y0 + tz, yi + sz′).

Since h(y0, z
′) = 0, we get

(h(y0 + tz, y0 + tz), h(yi + sz′, yi + sz′)) − h2(y0 + tz, yi + sz′)

= {(h(y0, y0), h(yi, yi)) − h2(y0, yi)} − t2h2(z, yi)

+ 2t{h(y0, z), h(yi, yi)) − (h(y0, yi), h(z, yi))}
+ 2s{h(y0, y0), h(yi, z

′)) + 2t(h(y0, z), h(yi, z
′))},

which is linear in s. For the unit vectors

y(t) =
1√

1 + t2
(y0 + tz), yi(s) =

1√
1 + s2

(yi + sz′)

we then obtain

(1 + t2)(1 + s2)Ricq
h(y(t); y1(s), . . . , yq(s))

= Ricq
h(y0; y1, . . . , yq) − t2

q∑

i=1

h2(z, yi)

+ 2t
{(

h(y0, z),

q∑

i=1

h(yi, yi)
)
−

q∑

i=1

(h(y0, yi), h(z, yi))
}

+ 2s
{(

h(y0, y0), h
( q∑

i=1

yi, z
′
))

+ 2t
(
h(y0, z), h

( q∑

i=1

yi, z
′
))}

,

which is linear in s. This implies, in view of Ricq
h ≤ 0, that for all t ∈ R,

(
h(y0, y0), h

( q∑

i=1

yi, z
′
))

+ 2t
(
h(y0, z), h

( q∑

i=1

yi, z
′
))

= 0,

which says that (h(y0, y0), h(
∑q

i=1 yi, z
′)) = 0, and hence (h(y0, y0), h(y, z′))

= 0 for all y ∈ T ′. From the arbitrariness of z, z′ it follows that

β(y, ker β(y0)) ⊥ Im β(y0).

This together with Lemma 7 tells us that h(y, x) = 0 for all y ∈ T ′ and
x ∈ ker β(y0). But since ker β(y0) ⊂ T , we obtain ker β(y0) ⊂ ker h. Then

µ(h) ≥ dim ker β(y0) = dim T − dim Im β(y0) ≥ n − 2p − q + δ1q ,

which concludes the proof.
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M. Dajczer and L. Rodŕıguez [DR] have shown that any isometric im-

mersion of a Kähler manifold into a complex space form MN (c) (c 6= 0) with

positive index of relative nullity must be holomorphic. The proof of that re-
sult and Lemma 6 yield the following statement, which for q = 1 was given
in [Flo].

Corollary 6. Let M2n be a Kähler manifold and m0 ∈ M such that

Ricq(m0) ≤ qc, where c is a positive constant. Then there is no isometric

immersion of M2n into a real space form M2n+p(c) for p < n − q + δ1q.

P r o o f. Suppose that such an immersion exists and call it f . Composing
f with the totally geodesic and totally real inclusion i of the (2n + p)-

dimensional real space form into a certain complex space form C̃M2n+p(c),
we conclude from Lemma 6 that the index of relative nullity µ(i ◦ f)m0

> 0.
But the proof of the main result in [DR] shows that Tm0

M must be invariant
with respect to the complex structure J of M . This is a contradiction,
because i ◦ f is totally real.

Let ̺(m − 1) be the well-known number of continuous pointwise lin-

early independent vector fields on the (m − 1)-dimensional sphere. Then
̺((odd)24b+c) = 8b + 2c (b ≥ 0, 0 ≤ c ≤ 3) and ̺(n) ≤ 2 log2 n + 2,
̺(n) ≤ n.

The integer sequence ν(n) = max{t : t < ̺(n − t)} was introduced
in [Fer].

D. Ferus [Fer] proved that any isometric immersion of a complete Rie-

mannian manifold Mn into a round sphere SN with index of relative nullity

µ(M) ≥ ̺(n − µ(M)) (i.e., with µ(M) ≥ ν(n)) must be totally geodesic.
From [Abe 2] and [DR] it follows that any isometric immersion of a com-

plete Kähler manifold into CPN with positive index of relative nullity must

be totally geodesic. The above results and Lemma 6 yield the following state-
ment, which was given in [Fer] and [Flo 2] for q = 1.

Corollary 7. (a) Let f : Mn → Sn+p be an isometric immersion of a

complete Riemannian manifold with Ricq
h ≤ 0. If 2p < n − ν(n) − q + δ1q ,

then f is a totally geodesic inclusion.

(b) Let f : M2n → CPn+p be an isometric immersion of a complete

Kähler manifold with Ricq
h ≤ 0. If 2p < n−q+1 then f is a totally geodesic

inclusion.

Next we give some extremal theorems (tests for totally geodesic subman-
ifolds in the unit sphere) involving partial Ricci curvature, which generalize
the results on sectional curvature by [Bor 3], for the first time obtained
in [Bor 2] for submanifolds in CROSS (i.e., compact rank one symmetric
spaces).
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A curvature invariant submanifold M ⊂ M , i.e., one satisfying

(9) R(x, y, z)⊥ = 0 (x, y, z ∈ TM),

which holds, for instance, in space forms, in case µ(M) > 0 has the structure
of a ruled developable submanifold with µ(M)-dimensional generator, and
intrinsically is a totally geodesic foliated manifold [Mal].

Theorem 6. Let Mn ⊂ Mn+p be a complete curvature invariant sub-

manifold with Ricq
h ≤ 0. Then M is a totally geodesic submanifold if any of

the following conditions is satisfied :

1. M is compact with Rics(M) > 0, and 4p ≤ n − s − 2q + 2δ1q ,

2. M is compact with Rics(M)|M > 0, and 5p ≤ n − s − 2q + 2δ1q ,

3. 2p < n − ν(n) − q + δ1q and for some k = const > 0,

(10) R(x, y)x = −ky(x, x) (x, y ∈ TM).

Remark. For a submanifold Mn in the sphere Sn+p(k) for case 3 with
q = 1 see [Flo], for a submanifold with a stronger condition than (9) and
with q = s = 1 see [Bor 3].

P r o o f (of Theorem 6). The relative nullity (totally geodesic) foliation
on the regularity domain has complete leaves and dimension µ(M) ≥ n −
2p − q + δ1q (see Lemma 6).

1. Suppose that Mn is not a totally geodesic submanifold. Then from
Rics(M) > 0 it follows that µ(M) < n − µ(M) + s (see Lemma 1 or Corol-
lary 1 for the relative nullity foliation). Hence 4p > n − s − 2q + 2δ1q .

2. Analogously to case 1, from Rics(M)|M > 0 it follows that µ(M) <
n + p− µ(M) + s (see Corollary 1). Hence 5p > n− s− 2q + 2δ1q , or Mn is
a totally geodesic submanifold.

3. Denote by Kmix the sectional curvature in mixed directions (a plane
which contains a vector tangent to the foliation and a vector orthogonal to
it is said to be mixed). From Kmix = k we have µ(M) ≤ ν(n) [Fer]. Hence
2p ≥ n − ν(n) − q + δ1q , or M is a totally geodesic submanifold.

Theorem 6 directly implies

Theorem 7. Let Mn ⊂ Mn+p be a compact simply connected curvature

invariant submanifold , and suppose one of following properties holds:

1. Rics(M) ≤ s ≤ Rics(M)|M for some s < n − 1, and 2p < n − ν(n) −
s + δ1s − 1,

2. K(M)|M ≡ 1, KM ≤ 1, inj(M) ≥ π, and 2p < n − 1.

Then Mn is a totally geodesic submanifold which is isometric to the unit

sphere.
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The property inj(M) ≥ π in case 2 follows from KM > 0 when n is even,
and from KM ≥ 1/4 when n is odd (see [KN]).

P r o o f (of Theorem 7). 1. Since the extrinsic partial Ricci curvature
Rics

h ≤ 0, by Lemma 6 we have µ(M) > ν(n) + 1 ≥ 2. For any orthonormal
vectors {x0, . . . , xs} ⊂ TM with x0 ∈ ker h we have Rics(x0;x1, . . . , xs) =
s = Rics(x0;x1, . . . , xs) and hence the relative nullity foliation {L} on Mn

has KL = Kmix = 1. Then from Theorem 6, case 3 (see the proof) it
follows that µ(M) = n, i.e., Mn is a totally geodesic submanifold. Since the
sectional curvature KM = 1, the simply connected Mn is isometric to the
unit n-sphere.

2. Since the extrinsic sectional curvature is nonpositive, from Lemma
6 (with q = 1) it follows that µ(M) ≥ 2, and hence Mn contains a µ(M)-
dimensional totally geodesic submanifold L (a generator) with KL = 1,
which is simply connected by the condition inj(M) ≥ π. Since L contains a
closed geodesic γ of Mn of length 2π and index n−1, Mn is isometric to the
unit sphere due to Toponogov’s extremal theorem [Top]. Since the extrinsic
sectional curvature of Mn is zero, we have µ(M) ≥ n − p (see [KN]). From
the above it follows that µ(M) ≥ n/2 + 1 and by Lemma 1 (for totally
geodesic submanifolds in M with q = 1) µ(M) = n, i.e., Mn is a totally
geodesic submanifold.

If the curvature of a submanifold of Mn+p satisfies stronger restrictions
than in condition 1 of Theorem 7, we obtain the following extremal theorem.

Theorem 8. Let Mn be a compact curvature invariant submanifold in

a complete simply connected Riemannian space Mn+p satisfying 9/4 ≥ KM

≥ 1, Rics(M) ≤ s for some s < n− 1 and 2p ≤ n− s− 2+ δ1s. Then Mn+p

is isometric to the unit sphere.

P r o o f. Since the extrinsic curvature Rics
h is nonpositive, from Lemma 6

it follows that µ(M) ≥ 2. For any orthonormal vectors {x0, . . . , xs} ⊂ TM
with x0 ∈ ker h we have Rics(x0;x1, . . . , xs) = s = Rics(x0;x1, . . . , xs)
and hence the relative nullity foliation {L} on Mn has KL = Kmix = 1. In
particular, Mn+p contains a µ(M)-dimensional totally geodesic submanifold
L (a generator from Mn) with sectional curvature 1.

Lemma 9 [Bor 3]. Let M be a compact Riemannian C4-manifold with

1/4 < KM ≤ 1. Then any complete totally geodesic submanifold Lµ (µ ≥ 2)
is simply connected.

In view of the curvature restrictions on Mn+p and by Lemma 9 the
generator L is simply connected and hence is isometric to the unit sphere
Sµ(M). Hence Mn+p contains a closed geodesic of length 2π. Let m1, m2,
m3 be points on this geodesic which define a triangle with sides of length
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2
3π each. Since Mn+p is simply connected with certain curvature conditions,
every geodesic of length 2

3π is shortest (see [Top]).

Theorem 9 [Top]. Let M be a compact Riemannian C4-manifold with

KM ≥ 1. If there exists a triangle in M with perimeter 2π whose sides are

shortest geodesics, then M is isometric to the unit sphere.

Then we apply Toponogov’s Theorem 9 to this triangle with vertices m1,
m2 and m3 and conclude that Mn+p is isometric to the unit sphere.

Theorems 7 and 8 directly yield

Theorem 10. Let Mn be a compact curvature invariant submanifold in

a complete simply connected Riemannian space Mn+p with 9/4 ≥ KM ≥ 1
and suppose that one of the following conditions is satisfied :

1. Rics(M) ≤ s for some s < n − 1, and 2p < n − ν(n) − s + δ1s − 1,
2. KM ≤ 1, inj(M) ≥ π and 2p < n − 1.

Then Mn+p is isometric to the unit sphere and Mn is a totally geodesic

submanifold.

P r o o f. 1. Since 2p < n− s + δ1s − 1, by Theorem 8 the space Mn+p is
isometric to the unit sphere Sn+p. Now Rics(M) = s and hence conditions
1 of Theorem 7 hold. Thus Mn is a great sphere.

2. Since conditions 1 of Theorem 8 are satisfied, Mn+p is isometric to
the unit sphere Sn+p and KM = 1. From Theorem 7, case 2, we find that
Mn is a great sphere.
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