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On the class of functions strongly starlike

of order α with respect to a point

by Adam Lecko (Rzeszów)

Abstract. We consider the class Z(k;w), k ∈ [0, 2], w ∈ C, of plane domains Ω
called k-starlike with respect to the point w. An analytic characterization of regular and
univalent functions f such that f(U) is in Z(k;w), where w ∈ f(U), is presented. In
particular, for k = 0 we obtain the well known analytic condition for a function f to
be starlike w.r.t. w, i.e. to be regular and univalent in U and have f(U) starlike w.r.t.
w ∈ f(U).

1. Introduction. Let Ur ={z∈C : |z| < r}, 0 < r ≤ 1, denote the disk
of radius r in the complex plane C and U = U1 denote the unit disk. We
denote by B(ξ, ̺), ξ ∈ U , ̺ > 0, the hyperbolic open disk with hyperbolic
center at ξ and hyperbolic radius ̺. We recall that

B(ξ, ̺) = {z ∈ U : D(ξ, z) < ̺} =

{

z ∈ U :
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∣

∣

∣
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∣
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where

D(ξ, z) =
1

2
log

|1 − ξz| + |z − ξ|

|1 − ξz| − |z − ξ|
= artanh

∣
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denotes the hyperbolic distance on U between ξ and z.

For each α ∈ (0, 1] we denote by S∗(α) the class of functions f regular
in U , normalized by f(0) = f ′(0) − 1 = 0 and satisfying
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zf ′(z)

f(z)

}
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∣

< α
π

2
for z ∈ U,

called strongly starlike of order α. For each α ∈ (0, 1] the class S∗(α) is a
subset of the class S∗ = S∗(1) of starlike functions. Therefore each function
in S∗(α) is univalent.
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The classes S∗(α) were introduced by Brannan and Kirwan [1], and
independently by Stankiewicz [4, 5] (see also [2, Vol. I, pp. 138–139]).

Brannan and Kirwan found a geometric condition called δ-visibility which
is sufficient for a function to be in S∗(α). Stankiewicz [5] obtained an ex-
ternal geometric characterization of strongly starlike functions. In [3] Ma
and Minda presented an internal geometric characterization of functions in
S∗(α) using the concept of k-starlike domains.

Using an idea similar to that in the paper of Ma and Minda we introduce
the class Z(k;w), k ∈ [0, 2], w ∈ C, of domains Ω which will be called
k-starlike with respect to w ∈ Ω. For w = 0 the class Z(k; 0) consists of
the k-starlike domains. For k = 0 the class Z(0;w) consists of the domains
Ω starlike w.r.t. w, which means that the line segment joining w and an
arbitrary point ω ∈ Ω lies in Ω.

We present an analytic characterization of the class Sg(k; ξ, w) of func-
tions f which are regular and univalent in U and have f(U) ∈ Z(k;w),
where w = f(ξ) and ξ ∈ U . In other words, the internal geometric property
of k-starlikeness w.r.t. an interior point is connected with the class of regular
and univalent functions f satisfying an analytic condition (3.1), which are
called strongly starlike of order α w.r.t. w.

2. Domains and functions k-starlike w.r.t. a point. Let k ∈ (0, 2]
be fixed. We denote by K1(k) and K2(k) two closed disks of radius 1/k each
centered at 1/2 − i

√

1/k2 − 1/4 and 1/2 + i
√

1/k2 − 1/4, respectively. For
k = 0 we set

K1(0) = {v ∈ C : Im v < 0} ∪ [0, 1],

K2(0) = {v ∈ C : Im v > 0} ∪ [0, 1].

For each k ∈ [0, 2] we define

Ek = K1(k) ∩ K2(k).

Of course, E0 = [0, 1]. Each set Ek, k ∈ (0, 2], contains the points 0 and 1
on its boundary.

For A,B ⊂ C and ω ∈ C we define

AB = {uv ∈ C : u ∈ A ∧ v ∈ B}, A ± B = {u ± v ∈ C : u ∈ A ∧ v ∈ B},

ωA = {ω}A, ω ± A = {ω} ± A.

For fixed k ∈ [0, 2] define

Γ+
k = ∂Ek ∩ ∂K1(k) and Γ−

k = ∂Ek ∩ ∂K2(k).

Then Γ+
k and Γ−

k , for k > 0, are closed circular arcs in the boundary of
Ek with endpoints 0 and 1 and with interiors lying in the upper and lower
halfplane, respectively. Clearly, Γ+

0 = Γ−

0 = [0, 1]. Throughout, Γ+
k and Γ−

k

will be treated as oriented arcs: from 1 to 0 and from 0 to 1, respectively.
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For k > 0 this means that the boundary of the set Ek is positively oriented,
i.e. in counterclockwise direction.

For w,ω ∈ C let

Γ+
k (w,ω) = w + (ω − w)Γ+

k , Γ−

k (w,ω) = w + (ω − w)Γ−

k ,

Ek(w,ω) = w + (ω − w)Ek.

Of course, Γ+
k = Γ+

k (0, 1), Γ−

k = Γ−

k (0, 1) and Ek = Ek(0, 1).

For w,ω ∈ C, w 6= ω, Γ+
k (w,ω) will be oriented from ω to w, and

Γ−

k (w,ω) from w to ω. For k > 0 this means that the boundary of Ek(w,ω)
is positively oriented.

For every z ∈ Γ+
k \ {0, 1} we denote by θ(z) ∈ [0, π/2] the directed angle

from iz to the tangent vector to Γ+
k at z. We also set θ(1)=lim

Γ
+

k
∋z→1θ(z)=

arccos(k/2) and θ(0) = lim
Γ

+

k
∋z→0 θ(z) = π/2.

Similarly, for every z ∈ Γ−

k \ {0, 1} we denote by ϑ(z) ∈ [−π/2, 0] the
directed angle from iz to the tangent vector to Γ−

k at z and we set ϑ(1) =
lim

Γ
−

k
∋z→1 ϑ(z) = − arccos(k/2) and ϑ(0) = lim

Γ
−

k
∋z→0 ϑ(z) = −π/2.

Observation 2.1. 1. If z moves along Γ+
k , k ∈ (0, 2], from 1 to 0,

then θ(z) strictly increases from θ(1) = arccos(k/2) to θ(0) = π/2. For all

z ∈ Γ+
0 , θ(z) = π/2.

2. If z moves along Γ−

k , k ∈ (0, 2], from 0 to 1, then ϑ(z) strictly increases

from ϑ(0) = −π/2 to ϑ(1) = − arccos(k/2). For all z ∈ Γ−

0 , θ(z) = −π/2.

Definition 2.2. Fix k ∈ [0, 2]. A domain Ω in the plane is called k-

starlike with respect to the point w ∈ Ω provided that Ek(w,ω) ⊂ Ω for
every ω ∈ Ω.

The set of all k-starlike domains w.r.t. w ∈ C will be denoted by Z(k;w).
For simplicity of notation we denote the set Z(0;w) by Z(w) and the set
Z(0; 0) of all domains starlike w.r.t. the origin by Z.

Remark 2.3. 1. 0-starlikeness of Ω w.r.t. w ∈ Ω is exactly starlikeness
w.r.t. w, i.e. the line segment joining w and an arbitrary point ω ∈ Ω lies
in Ω.

2. k-starlike domains w.r.t. the origin will be called k-starlike. These
domains were considered in [3].

The following lemma is clear.

Lemma 2.4. If 0 ≤ k1 ≤ k2 ≤ 2, w ∈ C and Ω ∈ Z(k2;w), then

Ω ∈ Z(k1;w).

Since Z(k;w) ⊂ Z(w) for all k ∈ (0, 2], every domain in Z(k;w) is simply
connected.
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Lemma 2.5. If Ω ∈ Z(k;w) for k ∈ (0, 2] and w ∈ Ω, then Ek(w,ω)\{ω}
⊂ Ω for every ω ∈ ∂Ω.

P r o o f. Fix ω ∈ ∂Ω. By Lemma 2.4, Ω is starlike w.r.t. w so [w,ω) ⊂ Ω.
Take the sequence wn = w + (1 − 1/n)(ω − w), n ≥ 2, in [w,ω). It is clear
that limn→∞ wn = ω. Since wn ∈ Ω it follows that Ek(w,wn) ⊂ Ω for all
n ≥ 2. Therefore

(2.1)

∞
⋃

n=2

Ek(w,wn) ⊂ Ω.

Notice also that

(2.2) Ek(w,wn) ⊂ Ek(w,wn+1) for n ≥ 2.

Indeed, let u ∈ Ek(w,wn). Then there exists η ∈ Ek such that u = w +
(wn − w)η = w + (1 − 1/n)(ω − w)η. By starlikeness of Ek we see that
ζ = (1 − 1/n2)η ∈ Ek. Consequently,

w + (wn+1 − w)ζ = w +

(

1 −
1

n + 1

)

(ω − w)

(

1 −
1

n2

)

η

= w +

(

1 −
1

n

)

(ω − w)η = u,

which means that u ∈ Ek(w,wn+1), so (2.2) is proved.
Now we prove that

(2.3) IntEk(w,ω) ⊂
∞
⋃

n=2

Ek(w,wn).

To this end, let u ∈ Int Ek(w,ω). Thus there exists η ∈ Int Ek such that
u = w + (ω − w)η. Let a ∈ ∂Ek, a 6= 0, be the point of intersection of ∂Ek

with the straight line joining the origin and η. It is clear that η 6= a and
therefore ζ = nη/(n − 1) ∈ Ek for some n ≥ 2. Hence

w + (wn − w)ζ = w +

(

1 −
1

n

)

(ω − w)ζ = w +
n − 1

n
(ω − w)

n

n − 1
η

= w + (ω − w)η = u.

This means that u ∈ Ek(w,wn). Therefore (2.3) holds.
From (2.1) and (2.3) we obtain

(2.4) IntEk(w,ω) ⊂ Ω.

It remains to prove that if v ∈ ∂Ek(w,ω), v 6= ω, then v ∈ Ω. Suppose,
on the contrary, that there exists v ∈ Γ+

k (w,ω), v 6= ω, such that v 6∈ Ω. By
(2.4) we can assume that v ∈ ∂Ω.

Let w0 be an arbitrary point lying on the open subarc of Γ+
k (w,ω) joining

ω and v, so w0 = w+(ω−w)η for some η ∈ Γ+
k . The directed angle from the
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vector i(w0 − w) to the tangent vector to Γ+
k (w,ω) at w0 is equal to θ(η).

From Observation 2.1 and since k > 0 it follows that θ(η) > arccos(k/2).
But considering the set Ek(w,w0) we see that the directed angle from the
vector i(w0 − w) to the one-sided tangent vector to Γ+

k (w,w0) at w0 is
equal to arccos(k/2). Hence the open subarc of Γ+

k (w,ω) joining w and w0

is contained in the interior of Ek(w,w0). Thus v ∈ Int Ek(w,w0). If now
w0 ∈ Ω, then Ek(w,w0) ⊂ Ω, so v ∈ Ω. If w0 ∈ ∂Ω, then by (2.4) we have
IntEk(w,w0) ⊂ Ω, so v ∈ Ω also. Both cases contradict the assumption
that v ∈ ∂Ω.

If we assume that v ∈ Γ−

k , v 6= ω, and v 6∈ Ω, then a similar analysis
leads to a contradiction once again. This ends the proof of the lemma.

Let ξ ∈ U and w ∈ C. The set of all functions f regular in U such that
f(ξ) = w will be denoted by A(ξ, w).

Definition 2.6. Fix k∈ [0, 2]. A function f ∈ A(ξ, w), where ξ∈U and
w ∈ C, univalent in U will be called k-starlike w.r.t. w if the domain f(U)
is k-starlike w.r.t. w, i.e. f(U) ∈ Z(k;w).

The set of all functions f ∈ A(ξ, w), w = f(ξ), which are k-starlike w.r.t.
w will be denoted by Sg(k; ξ, w).

We write Sg(ξ, w) for Sg(0; ξ, w). If ξ = 0 and w = f(ξ) = 0, then
k-starlike functions w.r.t. the origin will be called k-starlike (see [3]). For
k = 0, ξ = 0 and w = f(ξ) = 0 we obtain the well known class Sg(0, 0; 0) of
starlike functions. This class will be denoted by Sg.

Let us also introduce the following classes:

Sg(k;w) =
⋃

ξ∈U

Sg(k; ξ, w), Sg
ξ (k) =

⋃

w∈C

Sg(k; ξ, w).

The basic property of these classes is preservation of k-starlikeness w.r.t.
w on each hyperbolic disk centered at ξ, which can be formulated as follows:

Theorem 2.7. A regular and univalent function f is in Sg(k; ξ, w), where

k ∈ [0, 2], ξ ∈ U and w ∈ C, if and only if for every ̺ > 0 the domain

f(B(ξ, ̺)) is in Z(k;w), where w = f(ξ).

P r o o f. Suppose first that f ∈ Sg(k; ξ, w), where k ∈ [0, 2], ξ ∈ U
and w = f(ξ). Hence Ω = f(U) ∈ Z(k;w). Fix ̺ > 0 and set Ω(ξ, ̺) =
f(B(ξ, ̺)). We will show that Ek(w,ω) ⊂ Ω(ξ, ̺) for all ω ∈ Ω(ξ, ̺).

Since Ω is k-starlike domain w.r.t. w, we see that w + (ω −w)v ∈ Ω for
all ω ∈ Ω and v ∈ Ek. Thus the function

(2.5) g(z) = f−1(w + (f(z) − w)v), z ∈ U,

is well defined for each v ∈ Ek, regular in U and g(U) ⊂ U . Since g(ξ) = ξ,
Pick’s Theorem, the invariant formulation of Schwarz’s Lemma, shows that
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g(B(ξ, ̺)) ⊂ B(ξ, ̺). Moreover, g(B(ξ, ̺)) = B(ξ, ̺) only if g is a Möbius
transformation which maps the unit circle into itself. From (2.5) we now get

w + (Ω(ξ, ̺) − w)v = f(g(B(ξ, ̺))) ⊂ Ω(ξ, ̺)

for all v∈Ek. This implies that w+(Ω(ξ, ̺)−w)Ek ⊂ Ω(ξ, ̺). Consequently,
w + (ω − w)Ek = Ek(w,ω) ⊂ Ω(ξ, ̺) for all ω ∈ Ω(ξ, ̺). This means that
Ω(ξ, ̺) ∈ Z(k;w).

Conversely, suppose that f(B(ξ, ̺)) is in Z(k;w), where w = f(ξ), for
every ̺ > 0. Since

f(U) =
⋃

̺>0

f(B(ξ, ̺)),

the assertion is immediate. This ends the proof of the theorem.

3. An analytic characterization of the class Sg(k; ξ, w). In this
section we present an analytic characterization of functions f ∈ Sg(k; ξ, w).

The main theorem of this paper is the following.

Theorem 3.1. If f ∈ Sg(k; ξ, w) for k ∈ [0, 2), ξ ∈ U and w ∈ C, then

(3.1)

∣

∣

∣

∣

arg

{

(1 − ξz)(z − ξ)f ′(z)

f(z) − w

}
∣

∣

∣

∣

< α
π

2
, z ∈ U,

where α = (2/π) arccos(k/2).
Conversely , let α ∈ (0, 1], ξ ∈ U and w ∈ C. If (3.1) is satisfied for a

function f regular in U , then f ∈ Sg(k; ξ, w) for k = 2cos(απ/2).

P r o o f. For f regular in U and ξ ∈ U we set Ω = f(U), Ω(ξ, ̺) =
f(B(ξ, ̺)) and C(̺) = ∂B(ξ, ̺) for ̺ > 0.

1. We first consider the case k = 0.

(i) Assume that f ∈ Sg(ξ, w), where ξ ∈ U and w ∈ C. Thus w = f(ξ)
and Ω ∈ Z(w). By Theorem 2.7, also Ω(ξ, ̺) ∈ Z(w) for every ̺ > 0.
Therefore arg(f(z) − w) is well defined locally on the circle C(̺). Let us
parametrize C(̺) as follows:

(3.2) C(̺) : z = z(t) =
Reit + ξ

1 + ξReit
, t ∈ [0, 2π),

where R = tanh ̺ ∈ (0, 1). Hence we get

z′(t) =
i(1 − |ξ|2)Reit

(1 + ξReit)2
= i

1 − |ξ|2

1 + ξReit
·

Reit

1 + ξReit
(3.3)

= i

(

1 − ξ
Reit + ξ

1 + ξReit

)

Reit − |ξ|2Reit

(1 − |ξ|2)(1 + ξReit)

=
i(1 − ξz)(z − ξ)

1 − |ξ|2
.
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By starlikeness of C(̺) w.r.t. w it follows that the function

(3.4) [0, 2π) ∋ t → arg(f(z(t)) − w)

is nondecreasing. Hence and by (3.3) we have

d

dt
arg(f(z(t)) − w) =

d

dt
Im log(f(z(t)) − w)(3.5)

= Im

{

z′(t)f ′(z(t))

f(z(t)) − w

}

=
1

1 − |ξ|2
Re

{

(1 − ξz)(z − ξ)f ′(z)

f(z) − w

}

≥ 0

for all z ∈ U \ {ξ}. As w = f(ξ) the function

(3.6) Q(z, ξ) =
(1 − ξz)(z − ξ)f ′(z)

f(z) − w
, z ∈ U \ {ξ},

has a removable singularity at z = ξ with

Q(ξ, ξ) = lim
z→ξ

(1 − ξz)(z − ξ)f ′(z)

f(z) − f(ξ)
=

1

1 − |ξ|2
,

where we used the fact that f ′(ξ) 6= 0 since f is univalent in U . Hence
the inequality (3.5) holds for z = ξ also. Since Q(ξ, ξ) > 0, the minimum
principle for harmonic functions shows that for all z ∈ U the inequality (3.5)
is strict, i.e.

(3.7) ReQ(z, ξ) > 0 for z ∈ U,

which is equivalent to (3.1) for α = 1.

(ii) Conversely, let (3.1) be satisfied for α = 1 and fixed f regular in U ,
i.e. (3.7) holds. From (3.7) we see that Q has no pole and no zero in U . But
this holds only when w = f(ξ) and f ′(z) 6= 0 for all z ∈ U . In consequence,
f ∈ A(ξ, w) and f is locally univalent in U . Moreover, from (3.7) we have
f(z) 6= w = f(ξ) for all z ∈ U \{ξ}. We conclude that the equation f(z)−w
= 0 has a unique simple zero at z = ξ on U . The argument principle now
shows that

∆C(̺)arg(f(z) − w) = Im

{ \
C(̺)

f ′(z)

f(z) − w
dz

}

= 2π

for every ̺ > 0. Hence applying once more the argument principle we deduce
that the equation f(z) − ω = 0 has a unique solution for each ω ∈ Ω(ξ, ̺),
which implies univalence of f in B(ξ, ̺) for every ̺ > 0. In consequence, f
is univalent in U .

Further, from (3.7) and (3.5) it follows that the function (3.4) is increas-
ing so the curve f(C(̺)) and consequently the domain Ω(ξ, ̺) are starlike
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w.r.t. w for every ̺ > 0. In this way, by Theorem 2.7 we see that f(U) is
starlike w.r.t. w, which means that f ∈ Sg(ξ, w).

2. (i) Let now k ∈ (0, 2) and α = (2/π) arccos(k/2). Let f ∈ Sg(k; ξ, w)
with w = f(ξ). Hence Ω = f(U) ∈ Z(k;w). We will prove that (3.1)
holds, i.e.

(3.8) |arg Q(z, ξ)| < α
π

2
for z ∈ U,

for α = (2/π) arccos(k/2).

For z = ξ the inequality (3.8) is clear since Q(ξ, ξ) = 1/(1 − |ξ|2) is a
positive real number.

Now we prove that (3.8) is true for all points on C(̺) for every ̺ > 0.
Let γ̺ denote the curve ∂Ω(ξ, ̺) positively oriented. For each z ∈ C(̺) we
denote by τ(z) the tangent vector to γ̺ at ω = f(z), i.e.

τ(z) = z′(t)f ′(z(t)),

where z = z(t) is given by (3.2). From (3.3) we get

τ(z) =
i(1 − ξz)(z − ξ)f ′(z)

1 − |ξ|2
, z ∈ C(̺).

Let ϕ(z), z ∈ C(̺), denote the directed angle from the vector i(f(z)−w)
to τ(z), i.e.

ϕ(z) = arg{τ(z)} − arg{i(f(z) − w)}(3.9)

= arg

{

i(1 − ξz)(z − ξ)f ′(z)

(1 − |ξ|2)i(f(z) − f(ξ))

}

= arg

{

(1 − ξz)(z − ξ)f ′(z)

f(z) − f(ξ)
} = arg Q(z, ξ).

Let z ∈ C(̺) and ω = f(z). By Theorem 2.7 the domain Ω(ξ, ̺) is in
Z(k;w). Therefore by a limit argument Ek(w,ω) ⊂ Ω(ξ, ̺).

As was mentioned in Section 2, the boundary of the set Ek(w,ω) is
positively oriented. Let s1 and s2 be one-sided tangent vectors to the arcs
Γ+

k (w,ω) and Γ−

k (w,ω) at ω, respectively, and let p1 and p2 be the half-
lines starting from ω with directional vectors s1 and s2, respectively. We
denote by V the closed sector bounded by p1 and p2 with vertex ω for which
IntV ∩ IntEk(w,ω) = ∅. The normal line to the vector joining w and ω and
going through ω divides the plane into two closed half-planes, one of them
containing Ek(w,ω). Consequently, one of the two closed half-lines starting
from ω and normal to the vector joining w and ω lies in V ; denote it by p.
Then p divides V into two closed sectors with vertex at ω: V1 bounded by
p1 and p, and V2 bounded by p2 and p. Since Ek(w,ω) is symmetric w.r.t.
the straight line going through w and ω which is normal to p, we see that p
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bisects V . From the assumption that Ω(ξ, ̺) is k-starlike w.r.t. w it follows
that the tangent line to γ̺ at ω cannot intersect the interior of Ek(w,ω).
Therefore the tangent vector τ(z) lies in V .

If τ(z) lies in V1, then ϕ(z) is nonnegative and in view of (3.9) we obtain

(3.10) ϕ(z) ≤ arg{s1} − arg{i(f(z) − f(ξ))} = θ(1) = arccos
k

2
= α

π

2
.

If τ(z) lies in V2, then ϕ(z) is nonpositive and using again (3.9) we have

(3.11) ϕ(z) ≥ arg{s2} − arg{i(f(z) − f(ξ))} = ϑ(1) = − arccos
k

2
= −α

π

2
.

In consequence, the inequalities (3.10) and (3.11) are true for every point
in C(̺). As ̺ was arbitrary, they are satisfied in U .

Suppose that equality holds in (3.10). Then by the maximum principle
for harmonic functions it holds for every point in U . But this is impossible
since Q(ξ, ξ) is a real number. Therefore the inequality (3.10) is strict, and
similarly for (3.11).

(ii) Conversely, let α ∈ (0, 1) and assume that (3.1) is satisfied for f
regular in U , i.e. (3.8) holds. As in Part 1(ii) we can prove that w = f(ξ)
and therefore f ∈ A(ξ, w).

The inequality (3.8) is clearly true for α = 1 also. But, as was shown in
Part 1(ii), this implies that f ∈ Sg(ξ, w) and therefore f is univalent in U .
Thus we need to prove that f(U) ∈ Z(k;w) for k = 2cos(απ/2).

Suppose, on the contrary, that f(U) is not k-starlike w.r.t. w for k =
2cos(απ/2). By Theorem 2.7 there exists ̺ > 0 such that Ω(ξ, ̺) is not
k-starlike w.r.t. w. This means that there exists w0 ∈ Ω(ξ, ̺) such that
Ek(w,w0) is not contained in Ω(ξ, ̺).

Suppose that

Γ+
k (w,w0) ∩ γ̺ 6= ∅.

Thus there exists w1 ∈ (Γ+
k (w,w0) \ {w,w0}) ∩ γ̺ such that the subarc

of Γ+
k (w,w0) joining w1 and w0 without the endpoint w1 is contained in

Ω(ξ, ̺). Since w1 ∈ γ̺, there exists z1 ∈ C(̺) such that w1 = f(z1). Let
ϕ(z1) denote the directed angle defined by (3.9), where z is replaced by z1.
The tangent line to the convex set Ek(w,w0) at w1 is the boundary of two
closed half-planes denoted by H1 and H2. One of them, say H1, supports the
set Ek(w,w0), the other H2 contains it. Since γ̺ is positively oriented, from
the definition of w1 it follows that the tangent vector τ(z1) lies in H2, and
the vector i(w1 − w) lies in H1. Hence the angle ϕ(z1) is positive. Further,
using Observation 2.1, the fact that w1 6= w0 and (3.9) we have

arg Q(z1, ξ) = ϕ(z1) ≥ θ(z1) = θ

(

w1 − w

w0 − w

)

> θ(1) = arccos
k

2
= α

π

2
,

contrary to (3.8).
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Suppose now that

Γ−

k (w,w0) ∩ γ̺ 6= ∅.

Thus there exists w2 ∈ (Γ−

k (w,w0) \ {w,w0}) ∩ γ̺ such that the subarc
of Γ−

k (w,w0) joining w2 and w0 without the endpoint w2 is contained in
Ω(ξ, ̺). Let z2 ∈ C(̺) be such that w2 = f(z2). Since γ̺ is positively
oriented, we see that the tangent vector τ(z2) lies in the closed half-plane
supporting Ek(w,w0) at w2, and i(f(z2) − w) lies in the complementary
closed half-plane. In consequence, the angle ϕ(z2) is negative. Moreover, by
Observation 2.1, the fact that w2 6= w and (3.9) we have

arg Q(z2, ξ) = ϕ(z2) ≤ ϑ(z2) = ϑ

(

w2 − w

w0 − w

)

< ϑ(1) = − arccos
k

2
= −α

π

2
,

which contradicts (3.8).

So f ∈ Sg(k; ξ, w) with k = 2cos(απ/2), which ends the proof of the
theorem.

4. Remarks. Taking into account (3.1) we can introduce the following

Definition 4.1. For each α ∈ (0, 1] and ξ ∈ U we denote by S∗(α; ξ)
the class of all functions f regular in U satisfying the condition

(4.1)

∣

∣

∣

∣

arg

{

(1 − ξz)(z − ξ)f ′(z)

f(z) − f(ξ)

}∣

∣

∣

∣

< α
π

2
, z ∈ U.

From Theorem 3.1 it follows that every function in S∗(α; ξ) is univalent
and belongs to the unique class Sg(k; ξ, w) for k = 2cos(απ/2).

Theorem 3.1 gives an equivalence between k-starlikeness with respect
to a fixed point w ∈ C, a property which defines the class Sg(k; ξ, w),
and an analytic condition (4.1) which describes the class S∗(α; ξ), where
α = (2/π) arccos(k/2). For ξ = 0 and w = f(ξ) = 0 we get the results of
Ma and Minda [3]. Then the inequality (4.1) reduces to (1.1) and with the
normalization f ′(0) = 1 defines the class S∗(α) of strongly starlike func-
tions, which coincides with the subclass of Sg(k; 0, 0), k = 2cos(απ/2), with
standard normalization.

The subclass of S∗(1; ξ) with normalization f(0) = 0 is known. For
details about this class see [2, Vol. I, pp. 155–164]. But this normalization
seems to be unnatural. It excludes situations like ξ = 0 and w = f(ξ) 6= 0
or ξ 6= 0 and w = f(ξ) = 0.

It is also natural to consider the subclass of S∗(α; ξ) with normalization
f ′(ξ) = 1.
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It is worth noticing that the condition (3.7) was obtained in 1978 by
Wald [6], who transformed the condition

(4.2) Re

{

zf ′(z)

f(z) − f(ξ)

}

> 0, z ∈ U,

into the form (3.7). The inequality (4.2) says geometrically that the domains
f(Ur) are starlike with respect to w = f(ξ) for all r such that |ξ| < r < 1.
Since at z = ξ the expression on the left side of (4.1) has a pole, this
condition fails to characterize the class Z(w).

Looking at Theorem 2.7 it is clear that starlikeness of f with respect to
w = f(ξ) is not connected with the family Ur, r ∈ (0, 1), of Euclidean disks
but rather with the family of hyperbolic disks B(ξ, ̺) where ̺ > 0. This
last family is transformed by every function f in S∗(1; ξ) onto a family of
starlike domains with respect to f(ξ).
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