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The law of large numbers and a functional equation

by Joanna Ger and Maciej Sablik (Katowice)

Abstract. We deal with the linear functional equation

(E) g(x) =
r∑
i=1

pig(cix),

where g : (0,∞) → (0,∞) is unknown, (p1, . . . , pr) is a probability distribution, and ci’s
are positive numbers. The equation (or some equivalent forms) was considered earlier
under different assumptions (cf. [1], [2], [4], [5] and [6]). Using Bernoulli’s Law of Large
Numbers we prove that g has to be constant provided it has a limit at one end of the
domain and is bounded at the other end.

1. Introduction. In [4] the authors asked for the conditions under
which any solution of the equation

(J) f(x− ϕ(x)) + f(x+ ϕ(x)) = 2f(x)

is affine. The equation (J) is called the Jensen equation on the graph of
the function ϕ. For ϕ linear, say ϕ(x) = αx, x ∈ (0,∞), (J) leads to the
equation

(∗) g(x) =
c

2
g(cx) +

d

2
g(dx)

where g(x) = f(x)/x, c = 1+α and d = 1−α. Obviously, (∗) is a particular
case of (E) which is our main point of interest. Thus one motivation for the
present paper is to extend our previous results.

Another motivation comes from [1] and [6] (cf. also [5]), where the fol-
lowing equation has been considered:

(L) G(t) =
r∑
i=1

AiG(t+ ai)

where G : R→ R is unknown, Ai’s are positive, and ai’s are different from 0.
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Suppose that λ ∈ R is a solution of the characteristic equation of (L), i.e.
r∑
i=1

Aie
λai = 1.

Then it easy to check that G solves (L) if and only if g : (0,∞) → R given
by

g(x) = x−λG(lnx)

solves (E) with pi = Aie
λai and ci = eai , i ∈ {1, . . . , r}. The equation (L)

has been studied by the aforementioned authors either under the assump-
tion that solutions are continuous and bounded (G. Derfel, who moreover
uses probability methods to prove the results) or measurable and nonneg-
ative (M. Laczkovich) or satisfy some asymptotic conditions (J. Baker). It
might be interesting that M. Pycia in [7] when dealing in particular with (L)
with equality replaced by inequality, assumes measurability and asymptotic
conditions. In the present paper we also impose some asymptotic conditions,
which is another consequence of our original interest in solving the Jensen
equation on curves. In [4], following several authors dealing with a similar
problem for the Cauchy equation on curves, we looked for solutions of (J)
which are differentiable at 0 and such that the quotient f(x)/x is bounded
at infinity. Our present results concerning (E) are of a similar type.

2. Preliminaries. Let (Ω,A,P) be a probability space, let r ∈ N be a
positive integer and fix p1, . . . , pr ≥ 0 such that

∑r
i=1 pi = 1. We consider

a sequence (Xn)n∈N of vector random variables, Xn = (Xn,1, . . . , Xn,r),
where Xn,i : Ω → R for i ∈ {1, . . . , r}, and assume that for every n ∈ N the
random variable Xn has polynomial distribution, i.e. for every k1, . . . , kr ∈
{0, 1, . . . , n} such that k1 + . . .+ kr = n,

P({ω ∈ Ω : Xn,1(ω) = k1, . . . , Xn,r(ω) = kr}) =
n!

k1! . . . kr!
pk11 . . . pkrr .

We start with the following

Lemma 2.1. If (Xn)n∈N, Xn = (Xn,1, . . . , Xn,r), n ∈ N, is a sequence of
vector random variables with polynomial distribution, then for every δ > 0,

(1) lim
n→∞

P
({

ω ∈ Ω : max
1≤i≤r

∣∣∣∣Xn,i(ω)
n

− pi
∣∣∣∣ < δ

})
= 1.

P r o o f. Fix δ > 0. For i ∈ {1, . . . , r} set

Ani =
{
ω ∈ Ω :

∣∣∣∣Xn,i(ω)
n

− pi
∣∣∣∣ < δ,

r∑
j=1, j 6=i

Xn,j(ω) = n−Xn,i(ω)
}
.
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Then
n⋂
i=1

Ani =
{
ω ∈ Ω : max

1≤i≤r

∣∣∣∣Xn,i(ω)
n

− pi
∣∣∣∣ < δ

}
.

It is obvious that if we prove

(2) lim
n→∞

P(Ani ) = 1 for i ∈ {1, . . . , r},

then we get (1). By symmetry it is enough to show that (2) holds for i = r.
We have

P(Anr ) =
∑

{kr:|kr/n−pr|<δ}

∑
k1+...+kr−1=n−kr

n!
k1! . . . kr!

pk11 . . . p
kr−1
r−1 p

kr
r

=
∑

{kr:|kr/n−pr|<δ}

n!
kr!(n− kr)!

pkrr

×
∑

k1+...+kr−1=n−kr

(n− kr)!
k1! . . . kr−1!

pk11 . . . p
kr−1
r−1

=
∑

{kr:|kr/n−pr|<δ}

n!
kr!(n− kr)!

pkrr (1− pr)n−kr

= P
({

ω ∈ Ω :
∣∣∣∣Yn,r(ω)

n
− pr

∣∣∣∣ < δ

})
,

where Yn,r : Ω → R, n ∈ N, is a random variable with Bernoulli distribution

P(Yn,r = kr) =
(
n

kr

)
pkrr (1− pr)1−kr .

Using Bernoulli’s law of large numbers (cf. [3], Chapter VI, §4), we get (2).

In the sequel we will deal with the equation

(E) g(x) =
r∑
i=1

pig(cix),

assuming that

(H) pi > 0, ci 6= 1, 1 ≤ i ≤ r, 0 < c1 < . . . < cr,
∑r
i=1 pi = 1, and∏r

i=1 c
pi
i 6= 1.

Consider the characteristic equation for (E), i.e.

(3)
r∑
i=1

pic
λ
i = 1.

Denote by Λ the set of roots of (3). In view of (H) we have 0 ∈ Λ. Using
simple calculus methods to the function R 3 λ →

∑r
i=1 pic

λ
i − 1 ∈ R one

can show that cardΛ ≤ 2 and the following holds.
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Lemma 2.2. Assume that (H) holds. We have

(i) if c1 > 1 or cr < 1 then Λ = {0};
(ii) if c1 < 1 < cr then Λ = {0, λ}; moreover ,

r∏
i=1

cpii > 1⇒ λ < 0 and
r∏
i=1

c
pic

λ
i

i < 1,

while
r∏
i=1

cpii < 1⇒ λ > 0 and
r∏
i=1

c
pic

λ
i

i > 1.

3.Main results. Let us prove first the following extension of Theorem 1
of [4].

Proposition 3.1. Let g : (0,∞) → R be a solution of equation (E). If
either

(A1) g is bounded in the vicinity of 0,
(A2) lim

x→∞
g(x) = a ∈ [−∞,∞], and

(A3)
r∏
i=1

cpii > 1,

or
(B1) g is bounded in the vicinity of ∞,
(B2) lim

x→0+
g(x) = a ∈ [−∞,∞], and

(B3)
r∏
i=1

cpii < 1,

then a ∈ R and g(x) = a, x ∈ (0,∞).

P r o o f. Assume that (A1)–(A3) hold. We first show that for every R > 0
there exists a BR > 0 such that

(4) |g(x)| ≤ BR

for every x ∈ (0, R).
It follows from (A3) that cr = max{c1, . . . , cr−1} > 1 and hence

α := min{1, 1/c1, . . . , 1/cr−1} · cr > 1.

Let d0 > 0 and β0 > 0 be such that for every x ∈ (0, d0),

(5) |g(x)| ≤ β0.

Fix R > 0 and let x ∈ (0, d1) where d1 := αd0. Then x/cr < d0 and
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(ci/cr)x < d0, i ∈ {1, . . . r − 1}. From (E) and (5) we get

|g(x)| =
∣∣∣∣ 1
pr

[
g

(
x

cr

)
−
r−1∑
i=1

pig

(
cix

cr

)]∣∣∣∣
≤ 1
pr

(∣∣∣∣g( xcr
)∣∣∣∣+

r−1∑
i=1

pi

∣∣∣∣g(cixcr
)∣∣∣∣)

≤ β0

pr

(
1 +

r−1∑
i=1

pi

)
=
β0

pr
(2− pr) = β0

(
2
pr
− 1
)

=: β1.

Using the same argument, we prove that for every n ∈ N there exists a
βn > 0 such that

(6) |g(x)| ≤ βn ≤
(

2
pr
− 1
)n
β0

for every x ∈ (0, dn) where dn := αnd0. Since α > 1 we have αNd0 > R for
some N ∈ N. In view of (6) it is enough to put BR := βN .

For every n ∈ N, put

∆n := {(k1, . . . , kr) ∈ (N ∪ {0})r : k1 + . . .+ kr = n}.
An easy induction shows that (E) implies

(7) g(x) =
∑

(k1,...,kr)∈∆n

n!
k1! . . . kr!

pk11 . . . pkrr g(ck11 . . . ckrr x), x ∈ (0,∞),

for n ∈ N. First, we will prove that a ∈ R. Indeed, suppose that a =∞. Fix
D > 0 and let R > 0 be such that

(8) g(x) ≥ D
for every x ≥ R. Let ε > 0 be such that

(9) cp11 . . . cprr > eε.

Finally, let x ∈ (0,∞) and choose n0 ∈ N such that for every n ≥ n0,

(10) (R/x)1/n < eε.

In view of (9) there exists a δ > 0 such that

(11) cξ11 . . . cξrr > eε

for every ξ = (ξ1, . . . , ξr) ∈ Rr satisfying

(12) ‖ξ − p‖ < δ,

where p = (p1, . . . , pr) and ‖ · ‖ denotes the maximum norm in Rr. Now, if
n ≥ n0 and k1, . . . , kr ∈ N ∪ {0} are such that∥∥∥∥(k1

n
− p1, . . . ,

kr
n
− pr

)∥∥∥∥ < δ
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then (see (10)–(12)) for n ≥ n0,

(13) ck11 . . . ckrr x = (ck1/n1 . . . ckr/nr )nx > enεx >
R

x
x = R.

For every n ∈ N, put

Kn := {(k1, . . . , kr) ∈ ∆n : ck11 . . . ckrr x ≥ R},
Ln := {(k1, . . . , kr) ∈ ∆n : ‖(k1/n− p1, . . . , kr/n− pr)‖ < δ},
Mn := ∆n \Kn, Pn := ∆n \ Ln.

In view of (13) we have Ln ⊂ Kn and Mn ⊂ Pn for n ≥ n0.
Let (Ω,A,P) be a probability space and let (Yn)n∈N be a sequence of

vector-valued random variables defined by

Yn :=
Xn
n
− p,

where Xn : Ω → Rr, n ∈ N, are vector-valued random variables with poly-
nomial distribution. Lemma 2.1 implies that for every η > 0,

lim
n→∞

P(‖Yn‖ < η) = 1.

In particular, we have

(14)
∑

(k1,...,kr)∈Ln

n!
k1! . . . kr!

pk11 . . . pkrr = P(‖Yn‖ < δ)−−−→
n→∞

1.

Using (4), (7), (8), (13) and (14) we get

|g(x)| =
∣∣∣∣ ∑
(k1,...,kr)∈Kn

n!
k1! . . . kr!

pk11 . . . pkrr g(ck11 . . . ckrr x)

+
∑

(k1,...,kr)∈Mn

n!
k1! . . . kr!

pk11 . . . pkrr g(ck11 . . . ckrr x)
∣∣∣∣

≥
∑

(k1,...,kr)∈Kn

n!
k1! . . . kr!

pk11 . . . pkrr g(ck11 . . . ckrr x)

−
∑

(k1,...,kr)∈Mn

n!
k1! . . . kr!

pk11 . . . pkrr |g(ck11 . . . ckrr x)|

≥ D
∑

(k1,...,kr)∈Ln

n!
k1! . . . kr!

pk11 . . . pkrr

−BR
∑

(k1,...,kr)∈Pn

n!
k1! . . . kr!

pk11 . . . pkrr

≥ DP(‖Yn‖ < δ)−BRP(‖Yn‖ ≥ δ)−−−→
n→∞

D.
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Since x > 0 was arbitrary this shows that |g(x)| ≥ D for x ∈ (0,∞).
But D > 0 was arbitrary as well, thus |g(x)| = ∞, x ∈ (0,∞), which
contradicts the boundedness of g at 0. This contradiction shows that a <∞.
An analogous argument may be used to show that a > −∞, too.

To prove that g = a fix η > 0 and let R > 0 be such that

(15) |g(x)− a| < η

for every x ∈ [R,∞). Let x ∈ (0,∞). From (4), (7) and (13)–(15) we get

|g(x)− a| ≤
∑

(k1,...,kr)∈Kn

n!
k1! . . . kr!

pk11 . . . pkrr |g(ck11 . . . ckrr x)− a|

+
∑

(k1,...,kr)∈Mn

n!
k1! . . . kr!

pk11 . . . pkrr |g(ck11 . . . ckrr x)− a|

≤ η + (BR + |a|)
∑

(k1,...,kr)∈Pn

n!
k1! . . . kr!

pk11 . . . pkrr

≤ η + (BR + |a|)P(‖Yn‖ ≥ δ)−−−→
n→∞

η.

Since x ∈ (0,∞) and η > 0 were arbitrary, we get our assertion.
To prove the remaining part of the assertion it is enough to observe that

if g solves the equation (E) and (B1)–(B3) are satisfied then the function

G(x) := g(1/x), x ∈ (0,∞),

satisfies (E) with ci replaced by Ci := 1/ci, i ∈ {1, . . . , r}, and G,C1, . . . , Cr
satisfy (A1)–(A3), hence G(x) = a, x ∈ (0,∞).

Let us note that the assumptions on g are essential, and even high reg-
ularity of solutions does not guarantee uniqueness.

Example 3.1. The function g : (0,∞)→ R given by g(x) = 1/x satisfies
(B1), (B2) and solves the equation

g(x) =
3
4
g(3x) +

1
4
g

(
x

3

)
, x ∈ (0,∞).

Note that

33/4 ·
(

1
3

)1/4

> 1,

and thus (B3) does not hold.

Example 3.2. The function g := id|(0,∞) solves the equation

g(x) =
1
2
g

(
3
2
x

)
+

1
2
g

(
1
2
x

)
, x ∈ (0,∞).
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and satisfies (A1) and (A2). However,

(3/2)1/2 · (1/2)1/2 < 1

and thus (A3) does not hold.

The above examples also show that Proposition 3.1 does not hold when
(A2) and (A3) are satisfied, but (A1) is not (Example 3.1) or (B2) and (B3)
are satisfied while (B1) is not (Example 3.2). However, observe that in both
cases nonconstant solutions are of the form x → xλ where λ is a nonzero
solution of the respective characteristic equation (λ = −1 for the equation
in Example 3.1, and λ = 1 in Example 3.2). It turns out that this is not
accidental. More exactly, we have the following result concerning the case
where the characteristic equation (3) has a nonzero root (cf. our comment
before Lemma 2.2 on the size of Λ).

Theorem 3.1. Assume that (H) holds and suppose that the set Λ of roots
of the characteristic equation (3) has two elements. Set

µ := minΛ, ν := maxΛ.

Let g : (0,∞)→ R be a solution of equation (E) and define for every λ ∈ R
the function gλ : (0,∞)→ R by

gλ(x) = x−λg(x).

If

gν is bounded in a vicinity of 0 and(α1)
lim
x→∞

gν(x) = a ∈ [−∞,∞],(α2)

then a ∈ R and g(x) = axν , x ∈ (0,∞).
If

gµ is bounded in a vicinity of ∞ and(β1)
lim
x→0+

gµ(x) = a ∈ [−∞,∞],(β2)

then a ∈ R and g(x) = axµ, x ∈ (0,∞).

P r o o f. Suppose that (A3) holds (cf. Proposition 3.1). According to
Lemma 2.2, if Λ consists of two elements then c1 < 1 < cr, and hence
µ < 0 = ν. Conditions (α1) and (α2) mean simply that g satisfies (A1) and
(A2) of Proposition 3.1, and the first part of the assertion follows. To prove
the second part, note (cf. Introduction) that

(E′) gµ(x) =
r∑
i=1

p̃igµ(cix),
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where p̃i = pic
µ
i , i∈{1, . . . , r}. Now, from Lemma 2.2(ii) we infer that p̃i, ci,

i ∈ {1, . . . , r} and gµ satisfy conditions (B1)–(B3) of Proposition 3.1. Hence
the second part of the assertion follows.

The proof in the case where (B3) holds is analogous.

Remark 3.1. The condition (A3) holds in particular if c1 > 1. It turns
out that in this case assumption (A1) is redundant. Indeed, equation (E)
then implies that if (8) holds for x ≥ R then it holds for x ≥ R/c1 > R as
well. An easy induction shows that (8) has to hold for every x > 0, which,
as in the proof of Proposition 3.1, implies that a ∈ R. Now, an analogous
argument shows that |g(x) − a| < ε for every ε > 0 and every x > 0. In
other words, g = a.

Similarly, if cr < 1 then (B3) holds and (B1) is redundant. Thus (cf.
Lemma 2.2) we can state the following.

Theorem 3.2. Assume that (H) holds and suppose that Λ={0}. If either
c1 > 1 and (A2) holds or cr < 1 and (B2) holds then a ∈ R and g(x) = a,
x ∈ (0,∞).

Remark 3.2. Note that the second part of the above theorem was proved
by J. Baker in [1] (Proposition 2), under the assumption that a ∈ R.

The assumption on g may also be relaxed in some other cases, not covered
by our theorems. As an example, we prove a result on solutions of equation
(E) with r = 2 and c2 = c−1

1 .
Consider the equation

(16) g(x) = pg(cx) + (1− p)g
(

1
c
x

)
,

where g : (0,∞)→ R is the unknown function, p ∈ (0, 1) and c ∈ (0,∞)\{1}.
First, we prove the following

Lemma 3.1. If g satisfies equation (16) then for every n ∈ N,

(17) g(x) = png(cnx) + (1− pn)g
(

1
c
x

)
, x ∈ (0,∞),

where

(18) pn =
pn−1p

1− p+ pn−1p
, n ≥ 2, p1 = p.

In particular ,

(19) lim
n→∞

pn = 0, p ∈ (0, 1/2].

P r o o f. A simple proof of (17) and (18) will be omitted. To prove (19)
define for p ∈ (0, 1) the function fp : (0, 1)→ (0, 1) by

fp(t) :=
pt

1− p+ pt
, t ∈ (0, 1).
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We have
fp(pn) = pn+1 = fn+1

p (p), n ∈ N.
If p ∈ (0, 1/2] then for every t ∈ (0, 1) we get

t− fp(t) =
t(1− 2p+ pt)

1− p+ pt
> 0.

Hence fp(t) < t and limn→∞ fnp (t) = 0, which ends the proof of (19).

Using Lemma 3.1 we prove

Theorem 3.3. Let c > 1 and let g : (0,∞)→ R satisfy equation (16). If
either

(i) p ∈ (0, 1/2] and limx→∞ g(x) = A ∈ R, or
(ii) p ∈ [1/2, 1) and limx→0+ g(x) = A ∈ R,

then g = A.

P r o o f. Suppose that (i) holds. From Lemma 2.2 we get

g(x) = g

(
1
c
x

)
, x ∈ (0,∞),

and the assumption on c implies that

g(x) = A, x ∈ (0,∞).

Assume now that (ii) holds. Setting b := 1/c and q := 1−p we can write
equation (16) in the form

g(x) = qg(bx) + (1− q)g
(

1
b
x

)
, x ∈ (0,∞).

Applying Lemma 2.2 to the above equation (with b instead of c and q instead
of p) we get for every x ∈ (0,∞) and n ∈ N,

(20) g(x) = qng(bnx) + (1− q)g
(

1
b
x

)
,

where
qn =

qn−1q

1− q + qn−1q
, n ≥ 2, q1 = q.

Since q ∈ (0, 1/2] we get limn→∞ qn = 0, moreover, limn→∞ bn = 0. Letting
n→∞ in (20) we get

g(x) = g

(
1
b
x

)
, x ∈ (0,∞),

whence g(x) = A, x ∈ (0,∞), follows immediately.
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