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A singular initial value problem for

the equation u(n)(x) = g(u(x))

by Wojciech Mydlarczyk (Wroc law)

Abstract. We consider the problem of the existence of positive solutions u to the
problem

u
(n)(x) = g(u(x)),

u(0) = u′(0) = . . . = u(n−1)(0) = 0 (g ≥ 0, x > 0, n ≥ 2).

It is known that if g is nondecreasing then the Osgood condition

δ\
0

1

s

[

s

g(s)

]1/n

ds <∞

is necessary and sufficient for the existence of nontrivial solutions to the above problem.
We give a similar condition for other classes of functions g.

1. Introduction. In this paper we consider the equation

(1.1) u(n)(x) = g(u(x)) (x > 0),

where g : (0,∞) → (0,∞), n ∈ N, with initial condition

(1.2) u(0) = u′(0) = . . . = u(n−1)(0) = 0.

If g(0) = 0, then u ≡ 0 is a solution to the problem (1.1), (1.2). We are
interested in the existence of solutions u ∈ C[0,M ] ∩ C(n)(0,M), 0 < M
≤ ∞, such that u(x) > 0 for x > 0, which we call nontrivial solutions. For
n = 1 this problem is classical and leads to the well-known Osgood condition,
for n = 2 it is also standard. The case of n = 3 was considered in [5]. When
g is a nondecreasing continuous function, the problem has been solved for
any n (see [2], [4]). In that case, a necessary and sufficient condition for the
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existence of nontrivial continuous solutions is

δ\
0

1

s

[
s

g(s)

]1/n

ds < ∞ (δ > 0).

We are going to obtain a similar condition for some other classes of
functions g satisfying the following conditions:

(1.3) g ∈ C(0,∞), g ≥ 0;

(1.4) xmg(x) is bounded as x → 0+ for some m ≥ 0.

We will rather deal with an integral formulation of the original problem
which reads

(1.5) u(x) =
1

(n − 1)!

x\
0

(x − s)n−1g(u(s)) ds,

and we will seek for nontrivial continuous solutions u ≥ 0 of this integral
equation. We now present our main results which will be proved in Section 4.

Theorem 1.1. Let g satisfy (1.3), (1.4). Then the condition

(1.6)

δ\
0

g(s)s−(n−2)/(n−1) ds < ∞

is necessary for the existence of nontrivial solutions of the equation (1.5).

Before stating our further results we introduce some auxiliary definitions
and notations.

Let g satisfy (1.3), (1.4). We put

g⋆(x) = x−m sup
0<s<x

smg(s) for x > 0.

We easily see that g(x) ≤ g⋆(x) for x > 0 and xmg⋆(x) is nondecreasing.
We define two function classes Kn and K⋆

n (n ≥ 2) as follows:

Kn = {g : g satisfies (1.3), (1.4), (1.6) and xmg(x) is nondecreasing},

K⋆
n =

{
g : g satisfies (1.3), (1.4), (1.6) and sup

0<x

G⋆(x)

G(x)
< ∞

}
,

where

G(x) =

x\
0

g(s)s−(n−2)/(n−1) ds, G⋆(x) =

x\
0

g⋆(s)s−(n−2)/(n−1) ds.

We easily observe that Kn contains nondecreasing functions and that
Kn ⊂ K⋆

n. In contrast to Kn the class K⋆
n admits functions which can oscil-

late at the origin like |sin(1/x)| (see [5]).
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Let u be a nontrivial solution of (1.5). We define

v(x) = u′(u−1(x)) =
1

(u−1)′(x)
(x > 0),

for which we establish some a priori estimates.

Theorem 1.2. Let g ∈ K⋆
n and n ≥ 2. Then there exist constants

c1, c2 > 0 such that

c1x
n−2

(
v(x)n−1

xn−2

)n/(n−1)

≤

x\
0

(x − s)n−2g(s)s−(n−2)/(n−1) ds

≤ c2x
n−2

(
v(x)n−1

xn−2

)n/(n−1)

for x > 0.

As a consequence of the above estimates we obtain the existence result
for (1.1), (1.2).

Theorem 1.3. Let g∈K⋆
n and n ≥ 2. Then the problem (1.1), (1.2) has

a continuous solution u such that u(x) > 0 for x > 0 if and only if

(1.7)

δ\
0

φ(s)−1/(n−1) ds < ∞ (0 < δ),

where

(1.8) φ(x) = xn−2

{Tx
0

(x − s)n−2g(s)s−(n−2)/(n−1) ds

xn−2

}(n−1)/n

(x > 0).

Remark 1.1. Observe that the existence of nontrivial solutions to (1.1),
(1.2) depends only on the behaviour of g in a neighbourhood of zero. There-
fore the assumptions on g could be reformulated to take this fact into ac-
count.

We also give a condition for the blow-up of solutions, which means that
there exists 0 < M < ∞ such that limx→M− u(x) = ∞.

Theorem 1.4. Let g ∈ K⋆
n and n ≥ 2. A continuous solution u to (1.1),

(1.2) positive for x > 0 blows up if and only if

∞\
0

φ(s)−1/(n−1) ds < ∞

where φ is given in (1.8).

We call the condition (1.7) the generalized Osgood condition for the
problem (1.1), (1.2). Such conditions for convolution type integral equations
u(x) =

Tx
0

k(x − s)g(u(s)) ds have been widely studied (see [1], [6]). Unfor-
tunately, only the case of nondecreasing functions g was considered.
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2. Auxiliary lemmas. Let f : (0,∞) → (0,∞) be a continuous locally
integrable function. We will use some properties of the functions

w(x) = cxk−1 +

x\
0

(x − s)k−1f(s) ds (x > 0),

where k ≥ 2 and c ≥ 0 is a constant.

Lemma 2.1. For any x > 0,

(k − 1)−kw′(x)k−1 ≤ cw(x)k−2 +

x\
0

(w(x) − w(s))k−2f(s) ds

≤ (k − 1)−1w′(x)k−1.

P r o o f. We notice first that w′ is nondecreasing. So the mean value
theorem gives the right inequality immediately.

To prove the left inequality we first introduce the Borel measure dµ(s) =
f(s)ds + cδ0 (s ≥ 0). Thus w can be rewritten in the form

w(x) =

x\
0

(x − s)k−1 dµ(s).

Moreover, we see that

w(x) − w(s) ≥

s\
0

{(x − t)k−1 − (s − t)k−1} dµ(t).

Since

(x − t)k−1 − (s − t)k−1 ≥ (x − s)(x − t)k−2 for 0 ≤ s ≤ x,

we get

w(x) − w(s) ≥ (x − s)I(s), where I(s) =

s\
0

(x − t)k−2 dµ(t).

Noting that I ′(s) = (x − s)k−2f(s) and w(x) ≥ cxk−1, I(0) = cxk−2, we
obtain

cw(x)k−2 +

x\
0

(w(x) − w(s))k−2f(s) ds

≥ cw(x)k−2 +

x\
0

I(s)k−2(x − s)k−2f(s) ds

≥ cw(x)k−2 +
1

k − 1
(I(x)k−1 − I(0)k−1) ≥

1

k − 1
I(x)k−1.

Finally, since I(x) = 1
k−1

w′(x), we get our assertion.
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Lemma 2.2. Let µ be a Borel measure on [0,∞). Then the function

Φk,n(x) =
(
Tx
0

(x − s)n dµ(s))n+k

(
Tx
0

(x − s)n+k dµ(s))n
(x > 0),

where k, n ∈ N, is nondecreasing.

P r o o f. By differentiation we verify that for k = 1 and any n ∈ N,

sign Φ′

1,n(x) = sign
( x\

0

(x − s)n−1 dµ(s) ·

x\
0

(x − s)n+1 dµ(s)

−
( x\

0

(x − s)n dµ(s)
)2)

.

Hence the Schwarz inequality yields the required assertion in that case. Now
by an inductive argument based on the relation

Φk+1,n(x) = [Φk,n(x)](n+k+1)/(n+k)[Φ1,n+k(x)]n/(n+k)

we obtain the required assertion for any k, n ∈ N.

We set

(2.1) z(x) =

x\
0

(x − s)n−2g(s)s−(n−2)/(n−1) ds (x > 0, n ≥ 2).

Lemma 2.3. Let g ∈ Kn and w(x) = xz(n−1)(x) + (m + 1)z(n−2)(x),
w(0) = 0. Then w is nondecreasing and continuous. Moreover , there exist

constants c1, c2 > 0 such that

(2.2)
c1

(n − k − 1)!

x\
0

(x − s)n−k−1 dw(s) ≤ (xz)(k)(x)

≤
c2

(n − k − 1)!

x\
0

(x − s)n−k−1 dw(s) (x > 0)

for k = 0, 1, . . . , n − 1.

P r o o f. Define h(x) = xm+2z(n−1)(x) for x > 0 and h(0) = 0. By our
assumptions on g the function h is continuous and nondecreasing. Note also
that

z(n−2)(x2) − z(n−2)(x1) =

x2\
x1

s−m−2h(s) ds

= −
1

m + 1
(x2z

(n−1)(x2) − x1z
(n−1)(x1)) +

1

m + 1

x2\
x1

s−m−1 dh(s)
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for any 0 < x1 < x2, from which it follows immediately that w is nonde-
creasing. Let

γ = lim
x→0+

w(x) = lim
x→0+

xz(n−1)(x).

Then we easily see that γ must be 0. Thus w is continuous at 0 and every-
where else. To get (2.2) we first notice that using the Leibniz rule we can
find some constants c1, c2 > 0 such that

c1w(x) ≤ (xz)(n−1)(x) ≤ c2w(x)

for x > 0. This gives the required assertion immediately if we just observe
that w(x) =

Tx
0

dw(s) for x > 0.

Lemma 2.4. Let g ∈ K⋆
n. Then there exists a constant c > 0 such that

(2.3)

x\
0

(x − s)n−2g(s)φ(s)−1/(n−1) ds ≤ cφ(x) (x > 0),

where φ is defined in (1.8).

P r o o f. First we consider g ∈ Kn and define

Ik(x) =
1

k!

x\
0

(x − s)kg(s)φ(s)−1/(n−1) ds (x ≥ 0)

for k = 0, 1, . . . , n − 2.

For z defined in (2.1) we have

φ(x)−1/(n−1) = x−(n−2)/(n−1)z(x)−1/nx(n−2)/n

and

(n − 2)!Ik(x) =
1

k!

x\
0

(x − s)kz(n−1)(s)z(s)−1/ns(n−2)/n ds (x > 0)

for k = 0, 1, . . . , n − 2.

We shall prove that there exist constants c0, c1, . . . , cn−2 > 0 such that

(2.4) Ik(x) ≤ ckz(n−k−2)(x)z(x)−1/nx(n−2)/n (x > 0)

for k = 0, 1, . . . , n − 2.

Our assertion will follow from (2.4) with k = n − 2. Set

Hk(x) = (xz(n−k−2)(x))n−1(xz(x))−k−1,

Jk(x) = [(xz)(n−k−2)(x)]n−1(xz(x))−k−1 (x > 0),

k = 0, 1, . . . , n − 2. Using the Leibniz rule and monotonicity properties of
the derivatives of z, we can observe that

xz(k)(x) ≤ (xz)(k)(x) ≤ (k + 1)xz(k)(x) (x > 0)
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for k = 0, 1, . . . , n − 2. Hence

(2.5) (n − k − 1)−(n−1)Jk(x) ≤ Hk(x) ≤ Jk(x) (x > 0)

for k = 0, 1, . . . , n − 2.

Lemmas 2.2 and 2.3 yield the following monotonicity property of the
functions Jk:

there exist constants c0, c1, . . . , cn−2 such that

Jk(s) ≤ ckJk(x) for k = 0, 1, . . . , n − 2 and 0 < s < x.

It follows from (2.5) that the functions Hk have the same property. Now,
we are ready to prove (2.4) by induction. Using the above property for H0

we obtain

I0(x) =
1

(n − 2)!

x\
0

z(n−1)(s)z(s)−1/ns(n−2)/n ds

≤
1

(n − 2)!

x\
0

z(n−1)(s)(z(n−2)(s))−(n−1)/nH0(s)1/n ds

≤ nc0
1

(n − 2)!
H0(x)1/n(z(n−2)(x))1/n

= nc0
1

(n − 2)!
z(n−2)(x)z(x)−1/nx(n−2)/n.

Applying the inductive assumption and the relation

(xz(x))−1/n = (z(n−3−k)(x))−
n−1

n(k+2) x−
n−1

n(k+2) Hk+1(x)
1

n(k+2) ,

where k = 0, 1, . . . , n − 3 and x > 0, we get

Ik+1(x) =

x\
0

Ik(s) ds ≤ ck

x\
0

z(n−2−k)(s)(sz(s))−1/ns(n−1)/n ds

≤ ckHk+1(x)
1

n(k+2) x
n−1

n
(1− 1

k+2 )

×

x\
0

z(n−2−k)(s)(z(n−3−k)(s))−
n−1

n(k+2) ds

≤
n(k + 2)

nk + n + 1
ckz(n−3−k)(x)z(x)−1/nx(n−2)/n,

which ends the proof of (2.4).

If g ∈ K⋆
n, then we employ the fact that g⋆ ∈ Kn. From the definitions

of g⋆ and φ it follows that there exists a constant c > 0 such that for φ⋆

corresponding to g⋆ we have

φ(x) ≤ φ⋆(x) ≤ cφ(x) (x > 0).
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Hence

In−2(x) =

x\
0

(x − s)n−2g(s)φ(s)−1/(n−1) ds

≤ c1/(n−1)
x\
0

(x − s)n−2g⋆(s)φ⋆(s)−1/(n−1) ds

for x > 0. Therefore our assertion follows from the inequality in (2.3) just
proved.

3. A perturbed integral equation. Since g admits a singularity at 0,
we are going to obtain a solution u of (1.1), (1.2) as a limit of solutions uε

of more regular problems. We perturb the equation (1.5) to

(3.1) uε(x) = εxn−1 +

x\
0

(x − s)n−1g(uε(s)) ds (x > 0),

where ε ≥ 0 (n ≥ 2). Let uε ≥ 0 (ε ≥ 0) be a continuous solution of (3.1)
such that uε > 0 for x > 0. To give some a priori estimates for uε we
introduce an auxiliary function

vε(x) = u′

ε(u−1
ε (x)) =

1

(u−1
ε )′(x)

(x > 0)

and show that it satisfies a useful integral inequality stated in the following
lemma.

Lemma 3.1. Let g satisfy (1.3), (1.4). Then for any ε ≥ 0,

(n − 1)−nvε(x)n−1 ≤ εxn−2 +

x\
0

(x − s)n−2g(s)
1

vε(s)
ds

≤ (n − 1)−1vε(x)n−1 (x > 0).

P r o o f. This follows from Lemma 2.1 if we take f(s) = g(uε(s)) (s > 0)
and then substitute τ = uε(s).

From this lemma we obtain the following a priori estimates for vε.

Lemma 3.2. Let g ∈ K⋆
n. Then there exist constants c1, c2 > 0 such that

for any ε ≥ 0,

(3.2) c1(εxn−2+ φ(x))1/(n−1) ≤ vε(x) ≤ c2(εxn−2 + φ(x))1/(n−1) (x > 0).

P r o o f. Define

w(x) = εxn−2 +

x\
0

(x − s)n−2g(s)
1

vε(s)
ds.
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Since w(x)/xn−2 is nondecreasing, it follows from Lemma 3.1 that

vε(s)n−1

sn−2
≤ (n − 1)n−1 vε(x)n−1

xn−2
(0 < s ≤ x).

Therefore,

w(x) ≥

x\
0

(x − s)n−2g(s)
1

vε(s)
ds(3.3)

≥
1

n − 1
vε(x)−1x(n−2)/(n−1)

x\
0

(x − s)n−2g(s)s−(n−2)/(n−1) ds.

Since εxn−2 ≤ w(x) ≤ (n− 1)−1vε(x)n−1, the left inequality in (3.2) follows
from (3.3). Now, by the left inequality and the definition of w we have

w(x) ≤ c
(
εxn−2 +

x\
0

(x − s)n−2g(s)φ(s)−1/(n−1) ds
)
,

where c > 0 is some constant. Thus the right inequality is a consequence of
Lemmas 2.2 and 3.1.

As an immediate consequence of Lemma 3.2 we obtain the following
estimates for u−1

ε .

Corollary 3.3. Let g ∈ K⋆
n. Then there exist constants c1, c2 > 0 such

that for any ε ≥ 0,

(3.4) c1

x\
0

(εsn−2 + φ(s))−1/(n−1) ds ≤ u−1
ε (x)

≤ c2

x\
0

(εsn−2 + φ(s))−1/(n−1) ds (x > 0).

Now we study the local existence of solutions to the original problem.
We begin with the consideration of the perturbed equation (3.1) with ε > 0,
for which we prove the following existence result.

Lemma 3.4. Let g ∈ K⋆
n. Then there exists ε0 > 0 such that for any

0 < ε < ε0 the perturbed equation (3.1) has a continuous solution uε(x) > 0
for x > 0 defined locally on [0, δε].

P r o o f. We introduce the operator

Tw(x) = (n − 1)εxn−2 + (n − 1)

x\
0

(x − s)n−2g(w̃(s)) ds,

w̃(s) =

s\
0

w(t) dt,
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considered in the cone (n− 1)εxn−2 ≤ w(x) ≤ 2(n− 1)εxn−2 (x > 0). Since
for w̃ and its inverse w̃−1 we have the estimates

εxn−1 ≤ w̃(x) ≤ 2εxn−1 (x > 0),
(

y

2ε

)1/(n−1)

≤ w̃−1(y) ≤

(
y

ε

)1/(n−1)

(y > 0),

we can find δε > 0 such that for any 0 < x < δε,

x\
0

g(w̃(s)) ds ≤

δ\
0

g(s)
1

w(w̃−1(s))
ds(3.5)

≤ cε

δ\
0

g(s)s−(n−2)/(n−1) ds < ε,

where

δ = w̃(δε) and cε =
1

n − 1
2(n−2)/(n−1)ε−1/(n−1).

Thus T maps the cone Kε = {w : (n−1)εxn−2 ≤ w(x) ≤ 2(n−1)εxn−2,
0 < x < δε} into itself. We can also verify that all the functions of the family
{Tw : w ∈ Kε} are equicontinuous. So T : Kε → Kε is compact in C[0, δε]
topology. Now, by the Schauder fixed point theorem, T has a fixed point
wε. Taking u′

ε(x) = wε(x) (0 < x < δε), we obtain the required solution as
uε(x) =

Tx
0

wε(s) ds.

4. Proofs of theorems. In this section we give the proofs of the theo-
rems of Section 1.

Proof of Theorem 1.1. Let u be a nontrivial solution of (1.5). In view of
Lemma 2.1 we have

(n − 1)−nu′(x)n−1 ≤

x\
0

{u(x) − u(s)}n−2g(u(s)) ds

≤ (n − 1)−1u′(x)n−1 (x > 0),

which can be rewritten for v(x) = u′(u−1(x)) as

(4.1) (n − 1)−nv(x)n−1 ≤

x\
0

(x − s)n−2g(s)
1

v(s)
ds

≤ (n − 1)−1v(x)n−1 (x > 0).

Since
δ\
0

g(s)
1

v(s)
ds =

δ\
0

g(s)s−(n−2)/(n−1)

(
v(s)n−1

sn−2

)
−1/(n−1)

ds,



A singular initial value problem 187

our result follows from the fact that v(x)n−1/xn−2 → 0 as x → 0, easily
obtained from (4.1).

Proof of Theorem 1.2. The required estimates follow from Lemma 3.2
immediately.

Proof of Theorem 1.3. Since
Tx
0

1
v(s) ds = u−1(x) < ∞, the necessity part

follows immediately from the estimates given in Theorem 1.2.

Now, we prove the sufficiency. We first notice that if the condition (1.7)
is satisfied then the a priori estimates for u−1

ε (x) given in Corollary 3.3 can
be modified so as to be independent of ε. Therefore the local solutions uε

(0 < ε < ε0) of the perturbed equation (3.1) obtained in Lemma 3.4 can be
extended to a fixed interval [0,M ], independent of ε (see [3]).

Now, we consider the family {uε(x), 0<x<M}, 0 < ε < ε0, of solutions
to (3.1). From (3.4) it follows that there exists a constant N such that

0 ≤ uε(x) ≤ N for 0 < ε < ε0, 0 < x < M.

Rewrite the perturbed equation (3.1) as follows:

(4.2) uε(x) = εxn−1 + (n − 1)

x\
0

(x − s)n−2

uε(s)\
0

g(t)
1

vε(t)
dt ds,

where vε(t) = u′

ε(u−1
ε (t)). Since only n ≥ 3 is of interest, we can study u′′

ε .
First we notice by the estimates of Lemma 3.2 that

0 ≤
1

vε(t)
< cφ(t)−1/(n−1) (t > 0),

where c > 0 is some constant. Since it follows from (2.4) that

N\
0

g(t)φ(t)−1/(n−1) ≤ c,

where c > 0 is some constant, it is easy to deduce from (4.2) that u′′

ε (x) are
uniformly bounded for 0 < ε < ε0 and x ∈ [0,M ]. Therefore the Arzelà–
Ascoli theorem shows that {uε}, {u′

ε} and {u−1
ε }, 0 < ε < ε0, are relatively

compact families on [0,M ], possibly for a smaller M because of u−1
ε . If we

choose a sequence {uεn
} such that {uεn

}, {u′

εn
}, {u−1

εn
} are simultaneously

uniformly convergent on [0,M ] as εn → 0 and put it into (4.2), then we
can see that the limit function u(x) = limn→∞ uεn

(x), 0 ≤ x < M , is the
required solution to the problem (1.1), (1.2).

Proof of Theorem 1.4. Since the solution u blows up if and only if
u−1(x) ≤ M < ∞ for any x > 0, our assertion follows from the estimates
for v(x) = u′(u−1(x)) given in Theorem 1.2.
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Below we give some examples of functions g in the classes considered in
this paper.

Example 4.1. Let g(s) = s−1/(n−1)(− ln s)−β (0 < s < δ, n ≥ 2).
We easily verify that g ∈ Kn provided β > 1. Since φ(s) behaves at 0
like csn−2(− ln s)γ , where γ = −n−1

n (β − 1) and c > 0 is some constant,
the condition of Theorem 1.2 is satisfied and the problem (1.1), (1.2) has a
nontrivial solution.

Example 4.2. Let g(s)=s(− ln s)β (β >0, 0 < s < δ). In this case φ(s)
behaves at 0 like csn−1(− ln s)β(n−1)/n. Therefore the condition of Theo-
rem 1.2 is satisfied if and only if β > n. In that case the problem (1.1), (1.2)
has a nontrivial solution.

Example 4.3. Let φ(x) = 1−|x| for −1 ≤ x ≤ 1 and φ(x) = 0 for |x| > 1.
We consider the function g(x) =

∑
∞

i=0 φi(x), where φi(x) = φ((x−αi)/βi),
αi = 1/2i, βi = 1/(3 · 2i), i = 0, 1, . . . , defined for 0 < x < 1. We easily see
that the supports of φi, i = 0, 1, . . . , are pairwise disjoint and g(αi) = 1. We
consider the function g⋆ corresponding to g with m = 0:

g⋆(x) = sup
0<s<x

g(s) = 1 (0 < x < 1).

We show that g ∈ K⋆
n for any n ∈ N. First we notice that the integrals

Ai =

∞\
−∞

φi(s)s−(n−2)/(n−1) ds, i = 0, 1, . . . ,

can be estimated as follows:

c12−i/(n−1) ≤ Ai ≤ c22−i/(n−1) i = 0, 1, . . . ,

where c1, c2 > 0 are some constants. Let 1/2k < x ≤ 1/2k−1. Then

G(x) =

x\
0

g(s)s−(n−2)/(n−1) ds =

∞∑

i=0

x\
0

φi(s)s−(n−2)/(n−1) ds ≤

∞∑

i=k−1

Ai.

Finally, we obtain

c1x
1/(n−1) ≤ G(x) ≤ c2x

1/(n−1) (0 < x < 1),

where c1, c2 > 0 are some constants. Since

G⋆(x) =

x\
0

g⋆(s)s−(n−2)/(n−1) ds = (n − 1)x1/(n−1),

we see that g ∈ K⋆
n. Now Theorem 1.3 shows that the problem (1.1), (1.2)

has a nontrivial solution.
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