A singular initial value problem for the equation $u^{(n)}(x)=g(u(x))$

by Wojciech Mydlarczyk (Wrocław)

Abstract. We consider the problem of the existence of positive solutions u to the problem

$$
\begin{gathered}
u^{(n)}(x)=g(u(x)), \\
u(0)=u^{\prime}(0)=\ldots=u^{(n-1)}(0)=0(g \geq 0, x>0, n \geq 2) .
\end{gathered}
$$

It is known that if g is nondecreasing then the Osgood condition

$$
\int_{0}^{\delta} \frac{1}{s}\left[\frac{s}{g(s)}\right]^{1 / n} d s<\infty
$$

is necessary and sufficient for the existence of nontrivial solutions to the above problem. We give a similar condition for other classes of functions g.

1. Introduction. In this paper we consider the equation

$$
\begin{equation*}
u^{(n)}(x)=g(u(x)) \quad(x>0), \tag{1.1}
\end{equation*}
$$

where $g:(0, \infty) \rightarrow(0, \infty), n \in \mathbb{N}$, with initial condition

$$
\begin{equation*}
u(0)=u^{\prime}(0)=\ldots=u^{(n-1)}(0)=0 \tag{1.2}
\end{equation*}
$$

If $g(0)=0$, then $u \equiv 0$ is a solution to the problem (1.1), (1.2). We are interested in the existence of solutions $u \in C[0, M] \cap C^{(n)}(0, M), 0<M$ $\leq \infty$, such that $u(x)>0$ for $x>0$, which we call nontrivial solutions. For $n=1$ this problem is classical and leads to the well-known Osgood condition, for $n=2$ it is also standard. The case of $n=3$ was considered in [5]. When g is a nondecreasing continuous function, the problem has been solved for any n (see [2], [4]). In that case, a necessary and sufficient condition for the

[^0]existence of nontrivial continuous solutions is
$$
\int_{0}^{\delta} \frac{1}{s}\left[\frac{s}{g(s)}\right]^{1 / n} d s<\infty \quad(\delta>0)
$$

We are going to obtain a similar condition for some other classes of functions g satisfying the following conditions:
(1.3) $g \in C(0, \infty), g \geq 0$;
(1.4) $\quad x^{m} g(x)$ is bounded as $x \rightarrow 0+$ for some $m \geq 0$.

We will rather deal with an integral formulation of the original problem which reads

$$
\begin{equation*}
u(x)=\frac{1}{(n-1)!} \int_{0}^{x}(x-s)^{n-1} g(u(s)) d s \tag{1.5}
\end{equation*}
$$

and we will seek for nontrivial continuous solutions $u \geq 0$ of this integral equation. We now present our main results which will be proved in Section 4.

Theorem 1.1. Let g satisfy (1.3), (1.4). Then the condition

$$
\begin{equation*}
\int_{0}^{\delta} g(s) s^{-(n-2) /(n-1)} d s<\infty \tag{1.6}
\end{equation*}
$$

is necessary for the existence of nontrivial solutions of the equation (1.5).
Before stating our further results we introduce some auxiliary definitions and notations.

Let g satisfy (1.3), (1.4). We put

$$
g^{\star}(x)=x^{-m} \sup _{0<s<x} s^{m} g(s) \quad \text { for } x>0
$$

We easily see that $g(x) \leq g^{\star}(x)$ for $x>0$ and $x^{m} g^{\star}(x)$ is nondecreasing. We define two function classes K_{n} and $K_{n}^{\star}(n \geq 2)$ as follows:

$$
\begin{aligned}
& K_{n}=\left\{g: g \text { satisfies }(1.3),(1.4),(1.6) \text { and } x^{m} g(x) \text { is nondecreasing }\right\} \\
& K_{n}^{\star}=\left\{g: g \text { satisfies }(1.3),(1.4),(1.6) \text { and } \sup _{0<x} \frac{G^{\star}(x)}{G(x)}<\infty\right\}
\end{aligned}
$$

where

$$
G(x)=\int_{0}^{x} g(s) s^{-(n-2) /(n-1)} d s, \quad G^{\star}(x)=\int_{0}^{x} g^{\star}(s) s^{-(n-2) /(n-1)} d s
$$

We easily observe that K_{n} contains nondecreasing functions and that $K_{n} \subset K_{n}^{\star}$. In contrast to K_{n} the class K_{n}^{\star} admits functions which can oscillate at the origin like $|\sin (1 / x)|$ (see [5]).

Let u be a nontrivial solution of (1.5). We define

$$
v(x)=u^{\prime}\left(u^{-1}(x)\right)=\frac{1}{\left(u^{-1}\right)^{\prime}(x)} \quad(x>0)
$$

for which we establish some a priori estimates.
Theorem 1.2. Let $g \in K_{n}^{\star}$ and $n \geq 2$. Then there exist constants $c_{1}, c_{2}>0$ such that

$$
\begin{array}{r}
c_{1} x^{n-2}\left(\frac{v(x)^{n-1}}{x^{n-2}}\right)^{n /(n-1)} \leq \int_{0}^{x}(x-s)^{n-2} g(s) s^{-(n-2) /(n-1)} d s \\
\leq c_{2} x^{n-2}\left(\frac{v(x)^{n-1}}{x^{n-2}}\right)^{n /(n-1)}
\end{array}
$$

for $x>0$.
As a consequence of the above estimates we obtain the existence result for (1.1), (1.2).

TheOrem 1.3. Let $g \in K_{n}^{\star}$ and $n \geq 2$. Then the problem (1.1), (1.2) has a continuous solution u such that $u(x)>0$ for $x>0$ if and only if

$$
\begin{equation*}
\int_{0}^{\delta} \phi(s)^{-1 /(n-1)} d s<\infty \quad(0<\delta) \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi(x)=x^{n-2}\left\{\frac{\int_{0}^{x}(x-s)^{n-2} g(s) s^{-(n-2) /(n-1)} d s}{x^{n-2}}\right\}^{(n-1) / n} \quad(x>0) \tag{1.8}
\end{equation*}
$$

Remark 1.1. Observe that the existence of nontrivial solutions to (1.1), (1.2) depends only on the behaviour of g in a neighbourhood of zero. Therefore the assumptions on g could be reformulated to take this fact into account.

We also give a condition for the blow-up of solutions, which means that there exists $0<M<\infty$ such that $\lim _{x \rightarrow M-} u(x)=\infty$.

Theorem 1.4. Let $g \in K_{n}^{\star}$ and $n \geq 2$. A continuous solution u to (1.1), (1.2) positive for $x>0$ blows up if and only if

$$
\int_{0}^{\infty} \phi(s)^{-1 /(n-1)} d s<\infty
$$

where ϕ is given in (1.8).
We call the condition (1.7) the generalized Osgood condition for the problem (1.1), (1.2). Such conditions for convolution type integral equations $u(x)=\int_{0}^{x} k(x-s) g(u(s)) d s$ have been widely studied (see [1], [6]). Unfortunately, only the case of nondecreasing functions g was considered.
2. Auxiliary lemmas. Let $f:(0, \infty) \rightarrow(0, \infty)$ be a continuous locally integrable function. We will use some properties of the functions

$$
w(x)=c x^{k-1}+\int_{0}^{x}(x-s)^{k-1} f(s) d s \quad(x>0)
$$

where $k \geq 2$ and $c \geq 0$ is a constant.
Lemma 2.1. For any $x>0$,

$$
\begin{aligned}
&(k-1)^{-k} w^{\prime}(x)^{k-1} \leq c w(x)^{k-2}+\int_{0}^{x}(w(x)-w(s))^{k-2} f(s) d s \\
& \leq(k-1)^{-1} w^{\prime}(x)^{k-1}
\end{aligned}
$$

Proof. We notice first that w^{\prime} is nondecreasing. So the mean value theorem gives the right inequality immediately.

To prove the left inequality we first introduce the Borel measure $d \mu(s)=$ $f(s) d s+c \delta_{0}(s \geq 0)$. Thus w can be rewritten in the form

$$
w(x)=\int_{0}^{x}(x-s)^{k-1} d \mu(s)
$$

Moreover, we see that

$$
w(x)-w(s) \geq \int_{0}^{s}\left\{(x-t)^{k-1}-(s-t)^{k-1}\right\} d \mu(t)
$$

Since

$$
(x-t)^{k-1}-(s-t)^{k-1} \geq(x-s)(x-t)^{k-2} \quad \text { for } 0 \leq s \leq x
$$

we get

$$
w(x)-w(s) \geq(x-s) I(s), \quad \text { where } \quad I(s)=\int_{0}^{s}(x-t)^{k-2} d \mu(t)
$$

Noting that $I^{\prime}(s)=(x-s)^{k-2} f(s)$ and $w(x) \geq c x^{k-1}, I(0)=c x^{k-2}$, we obtain

$$
\begin{aligned}
c w(x)^{k-2} & +\int_{0}^{x}(w(x)-w(s))^{k-2} f(s) d s \\
& \geq c w(x)^{k-2}+\int_{0}^{x} I(s)^{k-2}(x-s)^{k-2} f(s) d s \\
& \geq c w(x)^{k-2}+\frac{1}{k-1}\left(I(x)^{k-1}-I(0)^{k-1}\right) \geq \frac{1}{k-1} I(x)^{k-1}
\end{aligned}
$$

Finally, since $I(x)=\frac{1}{k-1} w^{\prime}(x)$, we get our assertion.

Lemma 2.2. Let μ be a Borel measure on $[0, \infty)$. Then the function

$$
\Phi_{k, n}(x)=\frac{\left(\int_{0}^{x}(x-s)^{n} d \mu(s)\right)^{n+k}}{\left(\int_{0}^{x}(x-s)^{n+k} d \mu(s)\right)^{n}} \quad(x>0)
$$

where $k, n \in \mathbb{N}$, is nondecreasing.
Proof. By differentiation we verify that for $k=1$ and any $n \in \mathbb{N}$,

$$
\begin{aligned}
& \operatorname{sign} \Phi_{1, n}^{\prime}(x)=\operatorname{sign}\left(\int_{0}^{x}(x-s)^{n-1} d \mu(s) \cdot \int_{0}^{x}(x-s)^{n+1} d \mu(s)\right. \\
&\left.-\left(\int_{0}^{x}(x-s)^{n} d \mu(s)\right)^{2}\right) .
\end{aligned}
$$

Hence the Schwarz inequality yields the required assertion in that case. Now by an inductive argument based on the relation

$$
\Phi_{k+1, n}(x)=\left[\Phi_{k, n}(x)\right]^{(n+k+1) /(n+k)}\left[\Phi_{1, n+k}(x)\right]^{n /(n+k)}
$$

we obtain the required assertion for any $k, n \in \mathbb{N}$.
We set

$$
\begin{equation*}
z(x)=\int_{0}^{x}(x-s)^{n-2} g(s) s^{-(n-2) /(n-1)} d s \quad(x>0, n \geq 2) . \tag{2.1}
\end{equation*}
$$

Lemma 2.3. Let $g \in K_{n}$ and $w(x)=x z^{(n-1)}(x)+(m+1) z^{(n-2)}(x)$, $w(0)=0$. Then w is nondecreasing and continuous. Moreover, there exist constants $c_{1}, c_{2}>0$ such that

$$
\begin{align*}
& \frac{c_{1}}{(n-k-1)!} \int_{0}^{x}(x-s)^{n-k-1} d w(s) \leq(x z)^{(k)}(x) \tag{2.2}\\
& \quad \leq \frac{c_{2}}{(n-k-1)!} \int_{0}^{x}(x-s)^{n-k-1} d w(s) \quad(x>0)
\end{align*}
$$

for $k=0,1, \ldots, n-1$.
Proof. Define $h(x)=x^{m+2} z^{(n-1)}(x)$ for $x>0$ and $h(0)=0$. By our assumptions on g the function h is continuous and nondecreasing. Note also that

$$
\begin{aligned}
& z^{(n-2)}\left(x_{2}\right)-z^{(n-2)}\left(x_{1}\right)=\int_{x_{1}}^{x_{2}} s^{-m-2} h(s) d s \\
& \quad=-\frac{1}{m+1}\left(x_{2} z^{(n-1)}\left(x_{2}\right)-x_{1} z^{(n-1)}\left(x_{1}\right)\right)+\frac{1}{m+1} \int_{x_{1}}^{x_{2}} s^{-m-1} d h(s)
\end{aligned}
$$

for any $0<x_{1}<x_{2}$, from which it follows immediately that w is nondecreasing. Let

$$
\gamma=\lim _{x \rightarrow 0+} w(x)=\lim _{x \rightarrow 0+} x z^{(n-1)}(x) .
$$

Then we easily see that γ must be 0 . Thus w is continuous at 0 and everywhere else. To get (2.2) we first notice that using the Leibniz rule we can find some constants $c_{1}, c_{2}>0$ such that

$$
c_{1} w(x) \leq(x z)^{(n-1)}(x) \leq c_{2} w(x)
$$

for $x>0$. This gives the required assertion immediately if we just observe that $w(x)=\int_{0}^{x} d w(s)$ for $x>0$.

Lemma 2.4. Let $g \in K_{n}^{\star}$. Then there exists a constant $c>0$ such that

$$
\begin{equation*}
\int_{0}^{x}(x-s)^{n-2} g(s) \phi(s)^{-1 /(n-1)} d s \leq c \phi(x) \quad(x>0) \tag{2.3}
\end{equation*}
$$

where ϕ is defined in (1.8).
Proof. First we consider $g \in K_{n}$ and define

$$
I_{k}(x)=\frac{1}{k!} \int_{0}^{x}(x-s)^{k} g(s) \phi(s)^{-1 /(n-1)} d s \quad(x \geq 0)
$$

for $k=0,1, \ldots, n-2$.
For z defined in (2.1) we have

$$
\phi(x)^{-1 /(n-1)}=x^{-(n-2) /(n-1)} z(x)^{-1 / n} x^{(n-2) / n}
$$

and

$$
(n-2)!I_{k}(x)=\frac{1}{k!} \int_{0}^{x}(x-s)^{k} z^{(n-1)}(s) z(s)^{-1 / n} s^{(n-2) / n} d s \quad(x>0)
$$

for $k=0,1, \ldots, n-2$.
We shall prove that there exist constants $c_{0}, c_{1}, \ldots, c_{n-2}>0$ such that

$$
\begin{equation*}
I_{k}(x) \leq c_{k} z^{(n-k-2)}(x) z(x)^{-1 / n} x^{(n-2) / n} \quad(x>0) \tag{2.4}
\end{equation*}
$$

for $k=0,1, \ldots, n-2$.
Our assertion will follow from (2.4) with $k=n-2$. Set

$$
\begin{aligned}
H_{k}(x) & =\left(x z^{(n-k-2)}(x)\right)^{n-1}(x z(x))^{-k-1}, \\
J_{k}(x) & =\left[(x z)^{(n-k-2)}(x)\right]^{n-1}(x z(x))^{-k-1} \quad(x>0),
\end{aligned}
$$

$k=0,1, \ldots, n-2$. Using the Leibniz rule and monotonicity properties of the derivatives of z, we can observe that

$$
x z^{(k)}(x) \leq(x z)^{(k)}(x) \leq(k+1) x z^{(k)}(x) \quad(x>0)
$$

for $k=0,1, \ldots, n-2$. Hence

$$
\begin{equation*}
(n-k-1)^{-(n-1)} J_{k}(x) \leq H_{k}(x) \leq J_{k}(x) \quad(x>0) \tag{2.5}
\end{equation*}
$$

for $k=0,1, \ldots, n-2$.
Lemmas 2.2 and 2.3 yield the following monotonicity property of the functions J_{k} :
there exist constants $c_{0}, c_{1}, \ldots, c_{n-2}$ such that

$$
J_{k}(s) \leq c_{k} J_{k}(x) \quad \text { for } k=0,1, \ldots, n-2 \text { and } 0<s<x
$$

It follows from (2.5) that the functions H_{k} have the same property. Now, we are ready to prove (2.4) by induction. Using the above property for H_{0} we obtain

$$
\begin{aligned}
I_{0}(x) & =\frac{1}{(n-2)!} \int_{0}^{x} z^{(n-1)}(s) z(s)^{-1 / n} s^{(n-2) / n} d s \\
& \leq \frac{1}{(n-2)!} \int_{0}^{x} z^{(n-1)}(s)\left(z^{(n-2)}(s)\right)^{-(n-1) / n} H_{0}(s)^{1 / n} d s \\
& \leq n c_{0} \frac{1}{(n-2)!} H_{0}(x)^{1 / n}\left(z^{(n-2)}(x)\right)^{1 / n} \\
& =n c_{0} \frac{1}{(n-2)!} z^{(n-2)}(x) z(x)^{-1 / n} x^{(n-2) / n} .
\end{aligned}
$$

Applying the inductive assumption and the relation

$$
(x z(x))^{-1 / n}=\left(z^{(n-3-k)}(x)\right)^{-\frac{n-1}{n(k+2)}} x^{-\frac{n-1}{n(k+2)}} H_{k+1}(x)^{\frac{1}{n(k+2)}},
$$

where $k=0,1, \ldots, n-3$ and $x>0$, we get

$$
\begin{aligned}
I_{k+1}(x)= & \int_{0}^{x} I_{k}(s) d s \leq c_{k} \int_{0}^{x} z^{(n-2-k)}(s)(s z(s))^{-1 / n} s^{(n-1) / n} d s \\
\leq & c_{k} H_{k+1}(x)^{\frac{1}{n(k+2)}} x^{\frac{n-1}{n\left(1-\frac{1}{k+2}\right)}} \\
& \times \int_{0}^{x} z^{(n-2-k)}(s)\left(z^{(n-3-k)}(s)\right)^{-\frac{n-1}{n(k+2)}} d s \\
\leq & \frac{n(k+2)}{n k+n+1} c_{k} z^{(n-3-k)}(x) z(x)^{-1 / n} x^{(n-2) / n}
\end{aligned}
$$

which ends the proof of (2.4).
If $g \in K_{n}^{\star}$, then we employ the fact that $g^{\star} \in K_{n}$. From the definitions of g^{\star} and ϕ it follows that there exists a constant $c>0$ such that for ϕ^{\star} corresponding to g^{\star} we have

$$
\phi(x) \leq \phi^{\star}(x) \leq c \phi(x) \quad(x>0)
$$

Hence

$$
\begin{aligned}
I_{n-2}(x) & =\int_{0}^{x}(x-s)^{n-2} g(s) \phi(s)^{-1 /(n-1)} d s \\
& \leq c^{1 /(n-1)} \int_{0}^{x}(x-s)^{n-2} g^{\star}(s) \phi^{\star}(s)^{-1 /(n-1)} d s
\end{aligned}
$$

for $x>0$. Therefore our assertion follows from the inequality in (2.3) just proved.
3. A perturbed integral equation. Since g admits a singularity at 0 , we are going to obtain a solution u of (1.1), (1.2) as a limit of solutions u_{ε} of more regular problems. We perturb the equation (1.5) to

$$
\begin{equation*}
u_{\varepsilon}(x)=\varepsilon x^{n-1}+\int_{0}^{x}(x-s)^{n-1} g\left(u_{\varepsilon}(s)\right) d s \quad(x>0), \tag{3.1}
\end{equation*}
$$

where $\varepsilon \geq 0(n \geq 2)$. Let $u_{\varepsilon} \geq 0(\varepsilon \geq 0)$ be a continuous solution of (3.1) such that $u_{\varepsilon}>0$ for $x>0$. To give some a priori estimates for u_{ε} we introduce an auxiliary function

$$
v_{\varepsilon}(x)=u_{\varepsilon}^{\prime}\left(u_{\varepsilon}^{-1}(x)\right)=\frac{1}{\left(u_{\varepsilon}^{-1}\right)^{\prime}(x)} \quad(x>0)
$$

and show that it satisfies a useful integral inequality stated in the following lemma.

Lemma 3.1. Let g satisfy (1.3), (1.4). Then for any $\varepsilon \geq 0$,

$$
\begin{aligned}
&(n-1)^{-n} v_{\varepsilon}(x)^{n-1} \leq \varepsilon x^{n-2}+\int_{0}^{x}(x-s)^{n-2} g(s) \frac{1}{v_{\varepsilon}(s)} d s \\
& \leq(n-1)^{-1} v_{\varepsilon}(x)^{n-1} \quad(x>0) .
\end{aligned}
$$

Proof. This follows from Lemma 2.1 if we take $f(s)=g\left(u_{\varepsilon}(s)\right)(s>0)$ and then substitute $\tau=u_{\varepsilon}(s)$.

From this lemma we obtain the following a priori estimates for v_{ε}.
Lemma 3.2. Let $g \in K_{n}^{\star}$. Then there exist constants $c_{1}, c_{2}>0$ such that for any $\varepsilon \geq 0$,

$$
\begin{equation*}
c_{1}\left(\varepsilon x^{n-2}+\phi(x)\right)^{1 /(n-1)} \leq v_{\varepsilon}(x) \leq c_{2}\left(\varepsilon x^{n-2}+\phi(x)\right)^{1 /(n-1)} \quad(x>0) . \tag{3.2}
\end{equation*}
$$

Proof. Define

$$
w(x)=\varepsilon x^{n-2}+\int_{0}^{x}(x-s)^{n-2} g(s) \frac{1}{v_{\varepsilon}(s)} d s .
$$

Since $w(x) / x^{n-2}$ is nondecreasing, it follows from Lemma 3.1 that

$$
\frac{v_{\varepsilon}(s)^{n-1}}{s^{n-2}} \leq(n-1)^{n-1} \frac{v_{\varepsilon}(x)^{n-1}}{x^{n-2}} \quad(0<s \leq x)
$$

Therefore,

$$
\begin{align*}
w(x) & \geq \int_{0}^{x}(x-s)^{n-2} g(s) \frac{1}{v_{\varepsilon}(s)} d s \tag{3.3}\\
& \geq \frac{1}{n-1} v_{\varepsilon}(x)^{-1} x^{(n-2) /(n-1)} \int_{0}^{x}(x-s)^{n-2} g(s) s^{-(n-2) /(n-1)} d s
\end{align*}
$$

Since $\varepsilon x^{n-2} \leq w(x) \leq(n-1)^{-1} v_{\varepsilon}(x)^{n-1}$, the left inequality in (3.2) follows from (3.3). Now, by the left inequality and the definition of w we have

$$
w(x) \leq c\left(\varepsilon x^{n-2}+\int_{0}^{x}(x-s)^{n-2} g(s) \phi(s)^{-1 /(n-1)} d s\right)
$$

where $c>0$ is some constant. Thus the right inequality is a consequence of Lemmas 2.2 and 3.1.

As an immediate consequence of Lemma 3.2 we obtain the following estimates for u_{ε}^{-1}.

Corollary 3.3. Let $g \in K_{n}^{\star}$. Then there exist constants $c_{1}, c_{2}>0$ such that for any $\varepsilon \geq 0$,

$$
\begin{align*}
& c_{1} \int_{0}^{x}\left(\varepsilon s^{n-2}+\phi(s)\right)^{-1 /(n-1)} d s \leq u_{\varepsilon}^{-1}(x) \tag{3.4}\\
& \quad \leq c_{2} \int_{0}^{x}\left(\varepsilon s^{n-2}+\phi(s)\right)^{-1 /(n-1)} d s \quad(x>0)
\end{align*}
$$

Now we study the local existence of solutions to the original problem. We begin with the consideration of the perturbed equation (3.1) with $\varepsilon>0$, for which we prove the following existence result.

Lemma 3.4. Let $g \in K_{n}^{\star}$. Then there exists $\varepsilon_{0}>0$ such that for any $0<\varepsilon<\varepsilon_{0}$ the perturbed equation (3.1) has a continuous solution $u_{\varepsilon}(x)>0$ for $x>0$ defined locally on $\left[0, \delta_{\varepsilon}\right]$.

Proof. We introduce the operator

$$
\begin{aligned}
T w(x) & =(n-1) \varepsilon x^{n-2}+(n-1) \int_{0}^{x}(x-s)^{n-2} g(\widetilde{w}(s)) d s \\
\widetilde{w}(s) & =\int_{0}^{s} w(t) d t
\end{aligned}
$$

considered in the cone $(n-1) \varepsilon x^{n-2} \leq w(x) \leq 2(n-1) \varepsilon x^{n-2}(x>0)$. Since for \widetilde{w} and its inverse \widetilde{w}^{-1} we have the estimates

$$
\begin{aligned}
\varepsilon x^{n-1} & \leq \widetilde{w}(x) \leq 2 \varepsilon x^{n-1} \quad(x>0) \\
\left(\frac{y}{2 \varepsilon}\right)^{1 /(n-1)} & \leq \widetilde{w}^{-1}(y) \leq\left(\frac{y}{\varepsilon}\right)^{1 /(n-1)} \quad(y>0)
\end{aligned}
$$

we can find $\delta_{\varepsilon}>0$ such that for any $0<x<\delta_{\varepsilon}$,

$$
\begin{align*}
\int_{0}^{x} g(\widetilde{w}(s)) d s & \leq \int_{0}^{\delta} g(s) \frac{1}{w\left(\widetilde{w}^{-1}(s)\right)} d s \tag{3.5}\\
& \leq c_{\varepsilon} \int_{0}^{\delta} g(s) s^{-(n-2) /(n-1)} d s<\varepsilon
\end{align*}
$$

where

$$
\delta=\widetilde{w}\left(\delta_{\varepsilon}\right) \quad \text { and } \quad c_{\varepsilon}=\frac{1}{n-1} 2^{(n-2) /(n-1)} \varepsilon^{-1 /(n-1)}
$$

Thus T maps the cone $K_{\varepsilon}=\left\{w:(n-1) \varepsilon x^{n-2} \leq w(x) \leq 2(n-1) \varepsilon x^{n-2}\right.$, $\left.0<x<\delta_{\varepsilon}\right\}$ into itself. We can also verify that all the functions of the family $\left\{T w: w \in K_{\varepsilon}\right\}$ are equicontinuous. So $T: K_{\varepsilon} \rightarrow K_{\varepsilon}$ is compact in $C\left[0, \delta_{\varepsilon}\right]$ topology. Now, by the Schauder fixed point theorem, T has a fixed point w_{ε}. Taking $u_{\varepsilon}^{\prime}(x)=w_{\varepsilon}(x)\left(0<x<\delta_{\varepsilon}\right)$, we obtain the required solution as $u_{\varepsilon}(x)=\int_{0}^{x} w_{\varepsilon}(s) d s$.
4. Proofs of theorems. In this section we give the proofs of the theorems of Section 1.

Proof of Theorem 1.1. Let u be a nontrivial solution of (1.5). In view of Lemma 2.1 we have

$$
\begin{array}{rl}
(n-1)^{-n} u^{\prime}(x)^{n-1} \leq \int_{0}^{x}\{u(x)-u(s)\}^{n-2} & g(u(s)) d s \\
& \leq(n-1)^{-1} u^{\prime}(x)^{n-1} \quad(x>0)
\end{array}
$$

which can be rewritten for $v(x)=u^{\prime}\left(u^{-1}(x)\right)$ as

$$
\begin{array}{rl}
(n-1)^{-n} v(x)^{n-1} \leq \int_{0}^{x}(x-s)^{n-2} & g(s) \frac{1}{v(s)} d s \tag{4.1}\\
& \leq(n-1)^{-1} v(x)^{n-1} \quad(x>0)
\end{array}
$$

Since

$$
\int_{0}^{\delta} g(s) \frac{1}{v(s)} d s=\int_{0}^{\delta} g(s) s^{-(n-2) /(n-1)}\left(\frac{v(s)^{n-1}}{s^{n-2}}\right)^{-1 /(n-1)} d s
$$

our result follows from the fact that $v(x)^{n-1} / x^{n-2} \rightarrow 0$ as $x \rightarrow 0$, easily obtained from (4.1).

Proof of Theorem 1.2. The required estimates follow from Lemma 3.2 immediately.

Proof of Theorem 1.3. Since $\int_{0}^{x} \frac{1}{v(s)} d s=u^{-1}(x)<\infty$, the necessity part follows immediately from the estimates given in Theorem 1.2.

Now, we prove the sufficiency. We first notice that if the condition (1.7) is satisfied then the a priori estimates for $u_{\varepsilon}^{-1}(x)$ given in Corollary 3.3 can be modified so as to be independent of ε. Therefore the local solutions u_{ε} ($0<\varepsilon<\varepsilon_{0}$) of the perturbed equation (3.1) obtained in Lemma 3.4 can be extended to a fixed interval $[0, M]$, independent of ε (see [3]).

Now, we consider the family $\left\{u_{\varepsilon}(x), 0<x<M\right\}, 0<\varepsilon<\varepsilon_{0}$, of solutions to (3.1). From (3.4) it follows that there exists a constant N such that

$$
0 \leq u_{\varepsilon}(x) \leq N \quad \text { for } 0<\varepsilon<\varepsilon_{0}, 0<x<M
$$

Rewrite the perturbed equation (3.1) as follows:

$$
\begin{equation*}
u_{\varepsilon}(x)=\varepsilon x^{n-1}+(n-1) \int_{0}^{x}(x-s)^{n-2} \int_{0}^{u_{\varepsilon}(s)} g(t) \frac{1}{v_{\varepsilon}(t)} d t d s \tag{4.2}
\end{equation*}
$$

where $v_{\varepsilon}(t)=u_{\varepsilon}^{\prime}\left(u_{\varepsilon}^{-1}(t)\right)$. Since only $n \geq 3$ is of interest, we can study $u_{\varepsilon}^{\prime \prime}$. First we notice by the estimates of Lemma 3.2 that

$$
0 \leq \frac{1}{v_{\varepsilon}(t)}<c \phi(t)^{-1 /(n-1)} \quad(t>0)
$$

where $c>0$ is some constant. Since it follows from (2.4) that

$$
\int_{0}^{N} g(t) \phi(t)^{-1 /(n-1)} \leq c,
$$

where $c>0$ is some constant, it is easy to deduce from (4.2) that $u_{\varepsilon}^{\prime \prime}(x)$ are uniformly bounded for $0<\varepsilon<\varepsilon_{0}$ and $x \in[0, M]$. Therefore the ArzelàAscoli theorem shows that $\left\{u_{\varepsilon}\right\},\left\{u_{\varepsilon}^{\prime}\right\}$ and $\left\{u_{\varepsilon}^{-1}\right\}, 0<\varepsilon<\varepsilon_{0}$, are relatively compact families on $[0, M]$, possibly for a smaller M because of u_{ε}^{-1}. If we choose a sequence $\left\{u_{\varepsilon_{n}}\right\}$ such that $\left\{u_{\varepsilon_{n}}\right\},\left\{u_{\varepsilon_{n}}^{\prime}\right\},\left\{u_{\varepsilon_{n}}^{-1}\right\}$ are simultaneously uniformly convergent on $[0, M]$ as $\varepsilon_{n} \rightarrow 0$ and put it into (4.2), then we can see that the limit function $u(x)=\lim _{n \rightarrow \infty} u_{\varepsilon_{n}}(x), 0 \leq x<M$, is the required solution to the problem (1.1), (1.2).

Proof of Theorem 1.4. Since the solution u blows up if and only if $u^{-1}(x) \leq M<\infty$ for any $x>0$, our assertion follows from the estimates for $v(x)=u^{\prime}\left(u^{-1}(x)\right)$ given in Theorem 1.2.

Below we give some examples of functions g in the classes considered in this paper.

EXAmple 4.1. Let $g(s)=s^{-1 /(n-1)}(-\ln s)^{-\beta}(0<s<\delta, n \geq 2)$. We easily verify that $g \in K_{n}$ provided $\beta>1$. Since $\phi(s)$ behaves at 0 like $c s^{n-2}(-\ln s)^{\gamma}$, where $\gamma=-\frac{n-1}{n}(\beta-1)$ and $c>0$ is some constant, the condition of Theorem 1.2 is satisfied and the problem $(1.1),(1.2)$ has a nontrivial solution.

Example 4.2. Let $g(s)=s(-\ln s)^{\beta}(\beta>0,0<s<\delta)$. In this case $\phi(s)$ behaves at 0 like $c s^{n-1}(-\ln s)^{\beta(n-1) / n}$. Therefore the condition of Theorem 1.2 is satisfied if and only if $\beta>n$. In that case the problem (1.1), (1.2) has a nontrivial solution.

Example 4.3. Let $\phi(x)=1-|x|$ for $-1 \leq x \leq 1$ and $\phi(x)=0$ for $|x|>1$. We consider the function $g(x)=\sum_{i=0}^{\infty} \phi_{i}(x)$, where $\phi_{i}(x)=\phi\left(\left(x-\alpha_{i}\right) / \beta_{i}\right)$, $\alpha_{i}=1 / 2^{i}, \beta_{i}=1 /\left(3 \cdot 2^{i}\right), i=0,1, \ldots$, defined for $0<x<1$. We easily see that the supports of $\phi_{i}, i=0,1, \ldots$, are pairwise disjoint and $g\left(\alpha_{i}\right)=1$. We consider the function g^{\star} corresponding to g with $m=0$:

$$
g^{\star}(x)=\sup _{0<s<x} g(s)=1 \quad(0<x<1)
$$

We show that $g \in K_{n}^{\star}$ for any $n \in \mathbb{N}$. First we notice that the integrals

$$
A_{i}=\int_{-\infty}^{\infty} \phi_{i}(s) s^{-(n-2) /(n-1)} d s, \quad i=0,1, \ldots
$$

can be estimated as follows:

$$
c_{1} 2^{-i /(n-1)} \leq A_{i} \leq c_{2} 2^{-i /(n-1)} \quad i=0,1, \ldots
$$

where $c_{1}, c_{2}>0$ are some constants. Let $1 / 2^{k}<x \leq 1 / 2^{k-1}$. Then

$$
G(x)=\int_{0}^{x} g(s) s^{-(n-2) /(n-1)} d s=\sum_{i=0}^{\infty} \int_{0}^{x} \phi_{i}(s) s^{-(n-2) /(n-1)} d s \leq \sum_{i=k-1}^{\infty} A_{i}
$$

Finally, we obtain

$$
c_{1} x^{1 /(n-1)} \leq G(x) \leq c_{2} x^{1 /(n-1)} \quad(0<x<1)
$$

where $c_{1}, c_{2}>0$ are some constants. Since

$$
G^{\star}(x)=\int_{0}^{x} g^{\star}(s) s^{-(n-2) /(n-1)} d s=(n-1) x^{1 /(n-1)}
$$

we see that $g \in K_{n}^{\star}$. Now Theorem 1.3 shows that the problem (1.1), (1.2) has a nontrivial solution.

References

[1] P. J. Bushell and W. Okrasiński, Uniqueness of solutions for a class of nonlinear Volterra integral equations with convolution kernel, Math. Proc. Cambridge Philos. Soc. 106 (1989), 547-552.
[2] G. Gripenberg, Unique solutions of some Volterra integral equations, Math. Scand. 48 (1981), 59-67.
[3] R. K. Miller, Nonlinear Volterra Integral Equations, Benjamin, 1971.
[4] W. Mydlarczyk, The existence of nontrivial solutions of Volterra equations, Math. Scand. 68 (1991), 83-88.
[5] -, An initial value problem for a third order differential equation, Ann. Polon. Math. 59 (1994), 215-223.
[6] W. Okrasiński, Nontrivial solutions to nonlinear Volterra integral equations, SIAM J. Math. Anal. 22 (1991), 1007-1015.

Mathematical Institute
University of Wrocław
Pl. Grunwaldzki $2 / 4$
50-384 Wrocław, Poland
E-mail: mydlar@math.uni.wroc.pl

[^0]: 1991 Mathematics Subject Classification: Primary 34A12, 45D05, 45G10.
 Key words and phrases: singular initial value problems for ordinary differential equations, Volterra type integral equations, blowing up solutions.

