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A fixed point method in dynamic processes

for a class of elastic-viscoplastic materials

by A. Amassad (Perpignan)

Abstract. Two problems are considered describing dynamic processes for a class
of rate-type elastic-viscoplastic materials with or without internal state variable. The
existence and uniqueness of the solution is proved using classical results of linear elasticity
theory together with a fixed point method.

1. Introduction. This work concerns two initial and boundary value
problems describing dynamic processes for materials modeled by rate-type
constitutive equations of the form

(1.1) σ̇ = E ε̇ + G(σ, ε)

or

(1.2) σ̇ = E ε̇ + G(σ, ε, κ)

where σ is the stress tensor, ε is the linearized strain tensor and κ is an inter-
nal state variable. (In (1.1), (1.2) and everywhere in this paper the dot above
a quantity represents the time derivative of that quantity). Such equations
are used in order to model the behaviour of real bodies like rubbers, metals,
rocks and so on (see for example Cristescu and Suliciu [1]). Existence and
uniqueness results for quasistatic problems involving (1.1) and (1.2) were
obtained by Ionescu and Sofonea [5] and by Djabi and Sofonea [2]. In [5],
a Cauchy–Lipschitz method is used while in [2] fixed point arguments are
utilized. Dynamic problems for models of the form (1.1) and (1.2) were al-
ready studied by Ionescu [4] and by Ionescu and Sofonea [5] using semigroup
arguments.

The aim of this paper is to establish some results of [5] using only classical
results of linear elasticity theory together with a fixed point technique. So,
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the fixed point method already used for quasistatic problem in [2] is here
adopted in the case of a dynamic problem.

The paper is structured as follows: in Section 2, two mechanical problems
(P1) and (P2) are stated and some preliminaries are given. In Section 3 we
prove an existence and uniqueness result for the problem (P1) (Theorem 3.1)
and finally in Section 4 we use the same technique in order to obtain an
existence and uniqueness result for the problem (P2) (Theorem 4.1).

2. Statements of problems and preliminaries. Let Ω ⊂ R
N be a

bounded domain with a smooth boundary Γ = ∂Ω and let Γ1 be an open
subset of Γ . We denote by Γ2 = Γ \ Γ 1 and let T > 0 be a time interval.

Let us consider the following dynamic problem:

Problem (P1). Find the displacement function u : [0, T ]×Ω → R
N and

the stress function σ : [0, T ] × Ω → SN such that

̺ü = div σ + b in Ω × (0, T ),(2.1)

σ̇ = Eε(u̇) + G(σ, ε(u)) in Ω × (0, T ),(2.2)

u = g on Γ1 × (0, T ),(2.3)

σν = h on Γ2 × (0, T ),(2.4)

u(0) = u0, u̇(0) = v0, σ(0) = σ0 in Ω.(2.5)

Here SN is the set of second order symmetric tensors in R
N , ε(u) = 1

2
(∇u+

∇T u) defines the small strain tensor and ν is the exterior unit normal at Γ .
This problem represents a dynamic problem for rate-type models of the

form (2.2) in which E is a fourth order tensor and G is a given constitutive
function. In the motion equation (2.1), ̺ : Ω → R+ is the mass density, div σ

represents the divergence of the vector-valued function σ and b : [0, T ]×Ω →
R

N is the given body force. The functions g and h in (2.3), (2.4) are the
given boundary data and finally the functions u0, v0, σ0 in (2.5) are the
initial data.

Let M be a natural number. We also consider the following dynamic
problem defined as follows:

Problem (P2). Find the displacement function u : [0, T ] × Ω → R
N ,

the stress function σ : [0, T ] × Ω → SN and the internal state variable
κ : [0, T ] × Ω → R

M such that

̺ü = div σ + b in Ω × (0, T ),(2.6)

σ̇ = Eε(u̇) + G(σ, ε(u), κ) in Ω × (0, T ),(2.7)

κ̇ = ϕ(σ, ε(u), κ) in Ω × (0, T ),(2.8)

u = g on Γ1 × (0, T ),(2.9)

σν = h on Γ2 × (0, T ),(2.10)
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u(0) = u0, u̇(0) = v0, σ(0) = σ0, κ(0) = κ0 in Ω.(2.11)

This problem represents a dynamic problem for rate-type viscoplastic
models of the form (2.7), (2.8) in which κ is an internal state variable whose
evolution is described by (2.8). Here E is a fourth order tensor while G and
ϕ are given constitutive functions.

In (2.6)–(2.11) we used similar notation as in the problem (2.1)–(2.5): ̺

is the mass density, b is the given body force, g and h are the given boundary
data and finally u0, v0, σ0 and κ0 are the initial data.

In the sequel, we denote by “·” the inner product in the spaces R
N ,

R
M and SN and by | · | the Euclidean norm of these spaces. The following

notation is also used:

H = {v = (vi) | vi ∈ L2(Ω), i = 1, . . . , N},

H1 = {v = (vi) | vi ∈ H1(Ω), i = 1, . . . , N},

H = {τ = (τij) | τij = τji ∈ L2(Ω), i, j = 1, . . . , N},

H1 = {τ ∈ H | div τ ∈ H},

Y = {κ = (κi) | κi ∈ L2(Ω), i = 1, . . . ,M}.

The spaces H, H1, H, H1 and Y are real Hilbert spaces endowed with the
canonical inner products denoted by 〈·, ·〉H , 〈·, ·〉H1

, 〈·, ·〉H, 〈·, ·〉H1
and 〈·, ·〉Y

given by

〈u, v〉H =
\
Ω

uivi dx ∀u, v ∈ H,

〈σ, τ〉H =
\
Ω

σijτij dx ∀σ, τ ∈ H,

〈u, v〉H1
= 〈u, v〉H + 〈ε(u), ε(v)〉H ∀u, v ∈ H1,

〈σ, τ〉H1
= 〈σ, τ〉H + 〈div σ,div τ〉H ∀σ, τ ∈ H1,

〈κ, θ〉Y =
\
Ω

κiθi dx ∀κ, θ ∈ Y.

Let

V = {v ∈ H1 | γ1v = 0 on Γ1}

be a closed subset of H1 endowed with the norm of H1 where γ1 : H1 → HΓ

is the trace map and HΓ = H1/2(Γ )N .

Let us also recall that if τ ∈ H1, then there exists γ2τ ∈ H ′
Γ such that

(2.12) 〈γ2τ, γ1v〉 = 〈τ, ε(v)〉H + 〈div τ, v〉H ∀v ∈ H1.

Here H ′
Γ = [H−1/2(Γ )]N and 〈·, ·〉 represents the duality map between H ′

Γ

and HΓ . By τν|Γ2
we mean the restriction of γ2τ to γ1(V ) and we denote
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by V the closed subspace of H1 defined by

V = {τ ∈ H1 | τν = 0 on Γ2}.

So, using (2.12) we have

(2.13) 〈τ, ε(v)〉H + 〈div τ, v〉H = 0 ∀v ∈ V, τ ∈ V.

Here we consider V and V as real Hilbert spaces endowed with the inner
products of H1 and H1, respectively.

Finally, notice that if X is one of the above real spaces, k ∈ N, 1 ≤ p ≤ ∞
and T > 0, we use the classical notation L∞(0, T,X), W k,p(0, T,X) and
we denote by | · |∞,X , | · |k,p,X the norms on the spaces L∞(0, T,X) and
W k,p(0, T,X), respectively.

3. The first existence and uniqueness result. In order to prove the
existence and uniqueness of the solution for problem (2.1)–(2.5) the following
assumptions will be used:

(3.1) ̺ ∈ L∞(Ω) and there exists ̺0 > 0 such that ̺(x) ≥ ̺0 a.e. in Ω,

(3.2) E : Ω × SN → SN is a symmetric and positive definite tensor, i.e.:

(a) Eijkh ∈ L∞(Ω) ∀i, j, k, h = 1, . . . , N ,
(b) Eσ · τ = σ · Eτ ∀σ, τ ∈ SN , a.e. in Ω,
(c) there exists α > 0 such that Eσ · σ ≥ α|σ|2 ∀σ ∈ SN ,

(3.3) G : Ω × SN × SN → SN and

(a) there exists L > 0 such that |G(x, σ1, ε1) − G(x, σ2, ε2)| ≤
L(|σ1 − σ2| + |ε1 − ε2|) ∀σ1, σ2, ε1, ε2 ∈ SN , a.e. in Ω,

(b) x 7→ G(x, σ, ε) is a measurable function with respect to the
Lebesgue measure on Ω, for all σ, ε ∈ SN ,

(c) x 7→ G(x, 0, 0) ∈ H,

b ∈ W 1,1(0, T,H),(3.4)

g ∈ W 3,1(0, T,HΓ ),(3.5)

h ∈ W 2,1(0, T,H ′
Γ ),(3.6)

u0 ∈ H1, v0 ∈ H1, σ0 ∈ H1,(3.7)

u0 = g(0), v0 = ġ(0) on Γ1, σ0ν = h(0) on Γ2.(3.8)

The main result of this section is the following:

Theorem 3.1. Let (3.1)–(3.8) hold. Then there is a unique solution (u, σ)
of (2.1)–(2.5) having the regularity u ∈ W 2,∞(0, T,H) ∩ W 1,∞(0, T,H1),
σ ∈ W 1,∞(0, T,H) ∩ L∞(0, T,H1).

The proof of Theorem 3.1 will be obtained in several steps. So, we sup-
pose in the sequel that the assumptions of Theorem 3.1 are fulfilled.
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Let η ∈ L∞(0, T,H) and let zη ∈ W 1,∞(0, T,H) be the function given
by

(3.9) zη(t) =

t\
0

η(s) ds + z0 for all t ∈ [0, T ]

where

(3.10) z0 = σ0 − Eε(u0).

We have:

Lemma 3.1. There exists a unique pair of functions uη ∈ W 2,∞(0, T,H)∩
W 1,∞(0, T,H1), ση ∈ W 1,∞(0, T,H) ∩ L∞(0, T,H1) such that

̺üη = div ση + b in Ω × (0, T ),(3.11)

ση = Eε(uη) + zη in Ω × (0, T ),(3.12)

uη = g on Γ1 × (0, T ),(3.13)

σην = h on Γ2 × (0, T ),(3.14)

uη(0) = u0, u̇η(0) = v0, ση(0) = σ0 in Ω.(3.15)

P r o o f. The proof will be btained using standard arguments of elasticity
as in [2]. However, for convenience of the reader we present here a sketch of
the proof in which the Galerkin method is used.

Let X be the product Hilbert space X = H ×H with inner product

(3.16) 〈x, y〉X = 〈̺u, v〉H + 〈E−1σ, τ〉H

for all x = (u, σ), y = (v, τ) ∈ X. Let D(A) = V × V ⊂ X. We also use the
notation [D(A)] for the real Hilbert space D(A) endowed with the canonical
inner product of the space H1 ×H1 and let A : X ⊃ D(A) → X be given by

(3.17) Ax = (̺−1 div σ, Eε(u)) ∀x = (u, σ) ∈ X.

By (3.5) and (3.6), there exist ũ ∈ W 3,1(0, T,H1) and σ̃ ∈ W 2,1(0, T,H1)
such that

ũ = g on Γ1 × (0, T ), σ̃ν = h on Γ2 × (0, T ).

Let us introduce the following notation:

uη = uη − ũ, vη = u̇η, ση = ση − σ̃,

u0 = u0 − ũ(0), v0 = v0 − ˙̃u(0), σ0 = σ0 − σ̃(0),

xη = (vη, ση),(3.18)

x0 = (v0, σ0),(3.19) {
aη : [0, T ] → X,

aη(t) = (̺−1b(t) − ¨̃u(t) + ̺−1 div σ̃(t), η + Eε( ˙̃u(t)) − ˙̃σ(t)).
(3.20)
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It is easy to verify that the pair (uη, ση) is a solution of (3.11)–(3.15) hav-
ing the regularity uη ∈ W 2,∞(0, T,H)∩W 1,∞(0, T,H1), ση ∈ W 1,∞(0, T,H)
∩ L∞(0, T,H1) if and only if

xη ∈ W 1,∞(0, T,X) ∩ L∞(0, T, [D(A)]),(3.21)

ẋη(t) = Axη(t) + aη(t),(3.22)

xη(0) = x0.(3.23)

Let (em)m be a base of X and for a given m ∈ N let Xm denote the linear
subspace of X spanned by the vectors {e1, . . . , em}. Also let (xm

0 )m∈N ⊂ X

be such that

(3.24) xm
0 ∈ Xm ∀m ∈ N, xm

0 → x0 as m → ∞ in X.

By standard arguments of ordinary differential equations there exists
xm

η ∈ C1(0, T,Xm) such that

〈ẋm
η (t), y〉X = 〈Axm

η (t), y〉X + 〈aη(t), y〉X ∀y ∈ Xm, t ∈ [0, T ],(3.25)

xm
η (0) = xm

0 .(3.26)

From (3.25), by differentiating with respect to t we have

(3.27)

{
〈ẍm

η (t), y〉X = 〈Aẋm
η (t), y〉X + 〈ȧη(t), y〉X

∀y ∈ Xm, a.e. t ∈ (0, T ).

From (3.25)–(3.27) it follows that

(xm
η )m is a bounded sequence in L∞(0, T,X),(3.28)

(ẋm
η )m is a bounded sequence in L∞(0, T,X).(3.29)

From (3.28)–(3.29) and using standard compactness arguments we see
that there exists an element xη ∈ W 1,∞(0, T,X) such that, passing to a
subsequence again denoted by (xm

η )m, we have

xm
η → xη in L∞(0, T,X) weak*,(3.30)

ẋm
η → ẋη in L∞(0, T,X) weak*.(3.31)

From (3.24)–(3.26), (3.30) and (3.31) it results that xη is a solution of (3.22)–
(3.23) having the regularity (3.21).

Using (3.3), we can define the operator Λ : L∞(0, T,H) → L∞(0, T,H)
as follows:

(3.32) Λη(t) = G(ση(t), ε(uη(t)))

for all t ∈ [0, T ] and η ∈ L∞(0, T,H) where (uη, ση) denotes the solution
obtained in Lemma 3.1.

We have the following result:

Lemma 3.2. The operator Λ has a unique fixed point η∗ ∈ L∞(0, T,H).
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P r o o f. Let η1, η2 ∈ L∞(0, T,H). Using (3.9)–(3.15) we may define the
functions zηi

, uηi
and σηi

for i = 1, 2. For simplicity we set: zη1
= z1, zη2

=
z2, uη1

= u1, uη2
= u2, ση1

= σ1, ση2
= σ2 and let v1 = u̇1, v2 = u̇2.

We also introduce the following notation: z = z1 − z2, u = u1 − u2,
v = u̇, σ = σ1 − σ2, η = η1 − η2.

From (3.11)–(3.15) we see that u, v, σ satisfy:

u̇ = v in Ω × (0, T ),(3.33)

̺v̇ = div σ in Ω × (0, T ),(3.34)

σ̇ = Eε(v) + η in Ω × (0, T ),(3.35)

u = 0 on Γ1 × (0, T ),(3.36)

σν = 0 on Γ2 × (0, T ),(3.37)

u(0) = 0, v(0) = 0, σ(0) = 0 in Ω.(3.38)

It results that u(t) ∈ V and σ(t) ∈ V for all t ∈ [0, T ]. So, from (2.13), (3.2)
and (3.34)–(3.37) it follows that

〈σ, E−1σ̇〉H + 〈̺v̇, v〉H = 〈σ, E−1η〉H a.e. on (0, T ).

Using now (3.38), after integration and some algebra we deduce

1

2
|σ(t)|2H +

1

2
|v(t)|2H ≤ C

t\
0

|σ(s)|H|η(s)|H ds ∀t ∈ [0, T ],

hence we obtain

(3.39)
1

2
|σ(t)|2H ≤ C

t\
0

|σ(s)|H|η(s)|H ds ∀t ∈ [0, T ].

Here and everywhere in this paper C > 0 represents strictly positive generic
constants which may depend only on Ω, Γ1, Γ2, E and G and do not depend
on time or the input data b, g, h, u0 and σ0.

Using (3.39) and a Gronwall type lemma we obtain

(3.40) |σ(t)|H ≤ C

t\
0

|η(s)|H ds ∀t ∈ [0, T ],

and, from (3.32) and (3.3) it follows that

(3.41) |Λη1(t) − Λη2(t)|H ≤ L(|σ1(t) − σ2(t)|H + |ε(u1(t)) − ε(u2(t))|H)

for all t ∈ [0, T ]. Since

ε(ui) = E−1σi − E−1zi for i = 1, 2 and t ∈ [0, T ],

from (3.41) and (3.2) we deduce that

(3.42) |Λη1(t)−Λη2(t)|H ≤ C(|σ1(t)−σ2(t)|H+|z1(t)−z2(t)|H) ∀t ∈ [0, T ].
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Then, from (3.9), (3.40) and (3.42) it results that

|Λη1(t) − Λη2(t)|H ≤ C

t\
0

|η1(s) − η2(s)|H ds ∀t ∈ [0, T ].

By recurrence we can verify that this inequality leads to

|Λpη1 − Λpη2|∞,H ≤
CpT p

p!
|η1 − η2|∞,H ∀p ∈ N,

which implies that, for p large enough, a power Λp of Λ is a contraction in
L∞(0, T,H). So, there exists a unique η∗ ∈ L∞(0, T,H) such that Λpη∗ =
η∗. Moreover, η∗ is the unique fixed point of Λ.

Proof of Theorem 3.1. The existence part. Let η∗ ∈ L∞(0, T,H) be the
fixed point of Λ and let uη∗ ∈ W 2,∞(0, T,H) ∩ W 1,∞(0, T,H1), ση∗ ∈
W 1,∞(0, T,H) ∩ L∞(0, T,H1) be the functions given by Lemma 3.1 for
η = η∗. We shall prove that (uη∗ , ση∗) is a solution for the problem (P1).
For this, we have to prove (2.2). This equality follows from (3.12), (3.9) and
(3.32) since

{
σ̇η∗(t) = Eε(u̇η∗(t)) + żη∗(t),

żη∗(t) = η∗(t) = Λη∗(t) = G(ση∗(t), ε(uη∗ (t))),
a.e. on (0, T ).

The uniqueness part . In order to prove the uniqueness part in The-
orem 3.1, let (uη∗ , ση∗) be the solution of (P1) obtained above and let
(u, σ) be another solution of (P1) having the same regularity, i.e. u ∈
W 2,∞(0, T,H) ∩ W 1,∞(0, T,H1), σ ∈ W 1,∞(0, T,H) ∩ L∞(0, T,H1). We
denote by η ∈ L∞(0, T,H) the function defined by

(3.43) η(t) = G(σ(t), ε(u(t))) ∀t ∈ [0, T ]

and let zη ∈ W 1,∞(0, T,H) be given by (3.9), (3.10). Since from (2.1)–
(2.5) it results that (u, σ) satisfy (3.11)–(3.15) and since this problem has a
unique solution uη ∈ W 2,∞(0, T,H)∩W 1,∞(0, T,H1), ση ∈ W 1,∞(0, T,H)∩
L∞(0, T,H1), it results that

(3.44) u = uη, σ = ση.

Using now (3.32), (3.43) and (3.44) we get Λη = η and by the uniqueness of
the fixed point of Λ we have

(3.45) η = η∗.

The uniqueness part of Theorem 3.1 is now a consequence of (3.44) and
(3.45).

4. The second existence and uniqueness result. In order to study
the problem (2.6)–(2.11) we also consider the following assumptions:
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(4.1) G : Ω × SN × SN × R
M → SN and

(a) there exists L > 0 such that |G(x, σ1, ε1, κ1) − G(x, σ2, ε2, κ2)|
≤ L(|σ1 − σ2| + |ε1 − ε2| + |κ1 − κ2|) ∀σ1, σ2, ε1, ε2 ∈ SN ,

κ1, κ2 ∈ R
M a.e. in Ω,

(b) x 7→ G(x, σ, ε, κ) is a measurable function with respect to the
Lebesgue measure on Ω, for all σ, ε ∈ SN , κ ∈ R

M ,

(c) x 7→ G(x, 0, 0, 0) ∈ H,

(4.2) ϕ : Ω × SN × SN × R
M → R

M and

(a) there exists L′ > 0 such that |ϕ(x, σ1, ε1, κ1) − ϕ(x, σ2, ε2, κ2)|
≤ L′(|σ1 − σ2| + |ε1 − ε2| + |κ1 − κ2|) ∀σ1, σ2, ε1, ε2 ∈ SN ,

κ1, κ2 ∈ R
M a.e. in Ω,

(b) x 7→ ϕ(x, σ, ε, κ) is a measurable function with respect to the
Lebesgue measure on Ω, for all σ, ε ∈ SN , κ ∈ R

M ,

(c) x 7→ ϕ(x, 0, 0, 0) ∈ Y ,

(4.3) κ0 ∈ Y.

The main result of this section is the following:

Theorem 4.1. Let (3.1), (3.2), (3.4)–(3.8), (4.1)–(4.3) hold. Then there

exists a unique solution of the problem (2.6)–(2.11) having the regularity

u ∈ W 2,∞(0, T,H)∩W 1,∞(0, T,H1), σ ∈ W 1,∞(0, T,H)∩L∞(0, T,H1) and

κ ∈ W 1,∞(0, T, Y ).

P r o o f. We use a similar technique to the proof of Theorem 3.1. Let Z

be the product Hilbert space Z = H× Y , let η = (η1, η2) ∈ L∞(0, T, Z), let
zη = (zη

1, zη
2) ∈ W 1,∞(0, T, Z) be the function given by

(4.4) zη(t) =

t\
0

η(s) ds + z0 for all t ∈ [0, T ]

where

(4.5) z0 = (σ0 − Eε(u0), κ0).

Using arguments similar to Lemma 3.1 we obtain the existence and unique-
ness of uη ∈ W 2,∞(0, T,H) ∩ W 1,∞(0, T,H1) and ση ∈ W 1,∞(0, T,H) ∩
L∞(0, T,H1) such that

̺üη = div ση + b in Ω × (0, T ),(4.6)

ση = Eε(uη) + z1
η in Ω × (0, T ),(4.7)

uη = g on Γ1 × (0, T ),(4.8)

σην = h on Γ2 × (0, T ),(4.9)

uη(0) = u0, u̇η(0) = v0, ση(0) = σ0 in Ω.(4.10)
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Let κη ∈ W 1,∞(0, T, Y ) be the function defined by

(4.11) κη = z2
η.

Using (4.1) and (4.2) we can define the operator Λ : L∞(0, T, Z) →
L∞(0, T, Z) as follows:

(4.12) Λη(t) = (G(ση(t), ε(uη(t)), κη(t)), ϕ(ση(t), ε(uη(t)), κη(t)))

for all t ∈ [0, T ] and η ∈ L∞(0, T, Z).

We shall prove that the operator Λ has a unique fixed point η∗ ∈
L∞(0, T, Z).

Indeed, let η1 = (η1
1 , η2

1), η2 = (η1
2 , η2

2) ∈ L∞(0, T, Z). Using (4.4), (4.6)–
(4.11) we may define the functions zηi

, uηi
, σηi

and κηi
for i = 1, 2. For

simplicity we define zη1
= z1, zη2

= z2, uη1
= u1, uη2

= u2, ση1
= σ1, ση2

=
σ2, κη1

= κ1, κη2
= κ2. We also introduce the following notation: η1 =

η1
1 − η1

2 , η2 = η2
1 − η2

2 , z1 = z1
1 − z1

2 , u = u1 − u2, v = u̇, σ = σ1 − σ2,
κ = κ1 − κ2.

From (4.6)–(4.9) we get

̺(ü) = div σ in Ω × (0, T ),(4.13)

σ = Eε(u) + z1 in Ω × (0, T ),(4.14)

u = 0 on Γ1 × (0, T ),(4.15)

σν = 0 on Γ2 × (0, T ),(4.16)

u(0) = 0, v(0) = 0, σ(0) = 0 in Ω.(4.17)

From (2.13), (4.14)–(4.16) it follows that

(4.18) |σ(t)|H ≤ C

t\
0

|η1(s)|H ds ∀t ∈ [0, T ].

Since

ε(u) = E−1σ − E−1z1 ∀t ∈ [0, T ]

from (4.18) and (4.4) we have

(4.19) |ε(u(t))|H ≤ C

t\
0

|η1(s)|H ds ∀t ∈ [0, T ]

and using (4.11) we obtain

(4.20) |κ(t)|Y ≤ C

t\
0

|η2(s)|Y ds ∀t ∈ [0, T ].

Using (4.12), (4.1) and (4.2) it follows that

(4.21) |Λη1(t) − Λη2(t)|Z ≤ C(|σ(t)|H + |ε(u(t))|H + |κ(t)|Y ).
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Then from (4.21), (4.18)–(4.20) it results that

|Λη1(t) − Λη2(t)|Z

≤ C

t\
0

(|η1
1(s) − η1

2(s)|H + |η2
1(s) − η2

2(s)|Y ) ds for all t ∈ [0, T ]

where C depends only on Ω, Γ1, E , G and ϕ.
By recurrence we can verify that this inequality leads to

|Λpη1 − Λpη2|∞,Z ≤
CpT p

p!
|η1 − η2|∞,Z ∀p ∈ N,

which implies that, for p large enough, a power Λp of Λ is a contraction
in L∞(0, T, Z). Then, there exists a unique η∗ ∈ L∞(0, T, Z) such that
Λpη∗ = η∗. Moreover, η∗ is the unique fixed point of Λ.

Using now (4.4)–(4.11) and (4.12) we see that uη∗ ∈ W 2,∞(0, T,H) ∩
W 1,∞(0, T,H1), ση∗ ∈ W 1,∞(0, T,H) ∩ L∞(0, T,H1), κη∗ ∈ W 1,∞(0, T, Y )
is a solution of (2.6)–(2.11).

The uniqueness part of Theorem 4.1 follows from the uniqueness of the
fixed point of Λ using the same technique as in the proof of Theorem 3.1 or
by standard arguments for evolution equations.
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