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Convexity of sublevel sets

of plurisubharmonic extremal functions

by Finnur Lárusson (London, Ont.), Patrice Lassere (Toulouse),
and Ragnar Sigurdsson (Reykjav́ık)

Abstract. Let X be a convex domain in C
n and let E be a convex subset of X.

The relative extremal function uE,X for E in X is the supremum of the class of plurisub-
harmonic functions v ≤ 0 on X with v ≤ −1 on E. We show that if E is either open or
compact, then the sublevel sets of uE,X are convex. The proof uses the theory of envelopes
of disc functionals and a new result on Blaschke products.

1. Introduction. If X is a complex manifold and E is a subset of X,
then the relative extremal function for E in X is defined as

uE,X = sup{v ∈ PSH(X) : v ≤ −χE},

where PSH(X) denotes the class of plurisubharmonic functions on X and
χE is the characteristic function of E, i.e., χE = 1 on E and χE = 0 on
X \E. The main result of this paper is the following theorem.

Theorem 1. Let X be a convex domain in C
n and let E be a convex

subset of X. If E is either open or compact , then the sublevel sets

{ζ ∈ X : uE,X(ζ) < α}

of the relative extremal function for E in X are convex for all α ∈ [−1, 0].

Convexity of sublevel sets of various extremal functions has been studied
by several authors. If X is a domain in C and E ⊂ X is compact, then uE,X
is harmonic in X \ E, and satisfies the boundary conditions uE,X = 0 on
∂X and uE,X = −1 on ∂E. The convexity of the level sets of the solution of
the boundary value problem ∆u = 0 on X \E, u = 0 on ∂X, and u = −1 on
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∂E, where X is a bounded convex domain in R
n and E is a compact convex

subset of X, has been proved by several authors. See Papadimitrakis [1992],
Rosay and Rudin [1989], and the references therein.

The pluricomplex Green function G of a domain X in C
n with a pole at

p in X is the supremum of the class of negative plurisubharmonic functions
v on X such that v − log | · −p| is bounded above near p. If X is bounded
and convex, then the sublevel sets of G are convex. See Momm [1994].

The pluricomplex Green function of a subset E of C
n with a logarithmic

pole at infinity is defined by the formula VE = sup{v ∈ L : v ≤ 0 on E},
where L denotes the set of plurisubharmonic functions v on C

n such that
v − log+ | · | is bounded above. Lempert has proved that the sublevel sets
of VE are convex if E is convex, compact, and non-pluripolar. See Momm
[1996].

The proof of Theorem 1 is based on the theory of envelopes of disc
functionals, which we will discuss in Section 2, and the following result on
Blaschke products, which is of independent interest and will be proved in
Section 3.

Theorem 2. Let S1 and S2 be Borel subsets of the unit circle with

λ(S1), λ(S2) > β. Then there are Blaschke products ϕ1 and ϕ2 preserv-

ing the origin with

λ(ϕ̌−1
1 (S1) ∩ ϕ̌

−1
2 (S2)) > β.

Here, λ denotes the arc length measure on the unit circle T. Also, for a
bounded holomorphic function ϕ on the unit disc D in C, we denote by ϕ̌
the Borel measurable function on T whose value at almost every x ∈ T is
the non-tangential limit of ϕ at x.

Roughly speaking, Theorem 2 states that two Borel sets of equal length
on T can almost be expressed as the images of a single Borel set on T by
two Blaschke products preserving the origin.

The preprint of Edigarian and Poletsky [1997], which came to our atten-
tion after we completed this paper, essentially contains a proof of Theorem 2,
very similar to ours.

After this paper was submitted for publication, we received a preprint
from J. Duval, entitled Sur la fonction extrémale plurisousharmonique rel-

ative à deux convexes, containing a different proof of Theorem 1.

2.Extremal functions as envelopes of disc functionals. Let X be
a domain in C

n. An analytic disc in X is a holomorphic map f : D → X.
We say that f is closed if f can be extended to a holomorphic map on some
neighbourhood of the closure D of D with values in X, and we say that f
is bounded if f(D) is relatively compact in X. We let AX denote the set of
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all closed analytic discs in X and BX denote the set of all bounded analytic
discs in X. Clearly, AX ⊂ BX .

If f ∈ BX , then f has a non-tangential limit at almost every point
in T, and the limits define a Borel measurable function f̌ : T → X. If
f ∈ AX , then f̌ = g|T, where g is a holomorphic extension of f to some
neighbourhood of D.

For every upper semicontinuous function ϕ : X → R ∪ {−∞} we define
the disc functional Hϕ : BX → R ∪ {−∞} by the formula

Hϕ(f) =
1

2π

\
T

ϕ ◦ f̌ dλ, f ∈ BX .

If v ∈ PSH(X), v ≤ ϕ, f ∈ BX , and f(0) = ζ, then for r ∈ (0, 1),

(2.1) v(ζ) ≤
1

2π

2π\
0

v ◦ f(reiθ) dθ ≤
1

2π

\
T

v ◦ f̌ dλ ≤ Hϕ(f).

The envelope of the functional Hϕ is the function EHϕ : X → R ∪ {−∞}
defined by the formula

EHϕ(ζ) = inf{Hϕ(f) : f ∈ AX , f(0) = ζ}, ζ ∈ X.

The inequality (2.1) implies that sup{v ∈ PSH(X) : v ≤ ϕ} ≤ EHϕ, and by
taking for f the constant ζ, we see that EHϕ ≤ ϕ. By a theorem of Polet-
sky [1991, 1993], EHϕ is plurisubharmonic for every upper semicontinuous
function ϕ, so we have

sup{v ∈ PSH(X) : v ≤ ϕ} = EHϕ.

See Lárusson and Sigurdsson [1996] for an alternative proof of Poletsky’s
theorem with generalizations to manifolds.

If E is an open subset of X, then ϕ = −χE is upper semicontinuous and\
T

χE ◦ f̌ dλ = λ(f̌−1(E)),

so by (2.1) and Poletsky’s theorem,

uE,X(ζ) = −
1

2π
sup{λ(f̌−1(E)) : f ∈ BX , f(0) = ζ}(2.2)

= −
1

2π
sup{λ(f̌−1(E)) : f ∈ AX , f(0) = ζ}, ζ ∈ X.

In particular, uE,X is plurisubharmonic on X. (When E is not open, uE,X
may fail to be upper semicontinuous.)

The proof of Theorem 1 is based on the formula (2.2) for uE,X . Namely,
assume that X is a convex domain in C

n and E is an open convex subset
of X. Take two points ζ1 and ζ2 in X such that uE,X(ζj) < α, j = 1, 2. By
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(2.2), there are holomorphic maps fj : U → X, j = 1, 2, defined in some
neighbourhood U of D, such that fj(0) = ζj and λ(f̌−1

j (E)) > −2πα.

By Theorem 2, there are Blaschke products ϕj : D → D, j = 1, 2, such
that ϕj(0)=0 and S = ϕ̌−1

1 (f̌−1
1 (E))∩ ϕ̌−1

2 (f̌−1
2 (E)) has λ(S) > −2πα. Let

0 < t < 1. Since X is convex,

f = t f1 ◦ ϕ1 + (1 − t) f2 ◦ ϕ2

is a bounded analytic disc in X with f(0) = tζ1 + (1 − t)ζ2. Since E is
convex, S ⊂ f̌−1(E), so by (2.2),

uE,X(tζ1 + (1 − t)ζ2) ≤ −
1

2π
λ(S) < α.

This proves Theorem 1 in case E is open. Assume now that E is compact.
Let (Vn) be a decreasing basis of convex open neighbourhoods for E. Then
E =

⋂

Vn, so by Klimek [1991, Proposition 4.5.10], uVn,X
ր uE,X , and

hence uVn,X ր uE,X . Therefore,

u−1
E,X [−1, α) =

∞
⋃

m=1

∞
⋂

n=1

u−1
Vn,X

[−1, α− 1/m)

is convex, and Theorem 1 is proved.

3. Boundary preimages under Blaschke products. Let us begin
by observing that if (a, b) is an interval on the real axis, then the bounded
harmonic function v in the upper half plane H, which has boundary values
equal to 1 on (a, b) and 0 on R\ [a, b], is given at z ∈ H as the angle between
b− z and a− z divided by π, i.e.,

v(z) =
1

π
Arg

z − b

z − a
,

where Arg : C \ (−∞, 0] → (−π, π) is the principal branch of the argument.

Let A 6= T be the union of a finite number of non-empty open arcs
Ij , j = 1, . . . ,m, m ≥ 1, in T, whose closures are mutually disjoint, with
endpoints aj 6= bj listed counterclockwise. Let σ : D → H be a biholomor-
phic map which sends a point in T \A to ∞. Then σ maps the arcs Ij onto
bounded open intervals in R. From the above formula for v we see that the
harmonic function uA in D having boundary values 1 on A and 0 on T \ A
is given by the formula

uA(z) =
\
T

P (z, ·)χA dλ =
1

π

m
∑

j=1

Arg
σ(z) − σ(bj)

σ(z) − σ(aj)
, z ∈ D,

where P denotes the Poisson kernel for D. Observe that uA(0) = λ(A)/(2π).
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If z ∈ D, then the complex numbers

σ(z) − σ(bj)

σ(z) − σ(aj)
, j = 1, . . . ,m,

are in H and the sum of their arguments is less than π. Hence their product
is also in H, and we can write uA = ReFA, where

FA =
1

iπ
Log

(

cA

m
∏

j=1

σ − σ(bj)

σ − σ(aj)

)

∈ O(D).

Here, Log denotes the principal branch of the logarithm, and we take

cA =

∣

∣

∣

∣

m
∏

j=1

σ(0) − σ(aj)

σ(0) − σ(bj)

∣

∣

∣

∣

> 0,

so that ImFA(0) = 0. Note that FA depends only on A, and not on σ.
The rational function

BA = σ−1 ◦

(

cA

m
∏

j=1

σ − σ(bj)

σ − σ(aj)

)

= σ−1 ◦ eiπFA

is a finite Blaschke product, for it maps D into D and T into T. Observe that

BA(0) = σ−1(eiλ(A)/2),

and

A = (eiπFA)−1(−∞, 0) = B−1
A (J),

where J is the arc σ−1(−∞, 0) in T.
By Sard’s theorem, there are automorphisms ψ of D arbitrarily close to

the identity such that uA(ψ(0)) is a regular value for uA. Then uA(ψ(0)) is
a regular value for uA ◦ψ = uψ−1(A). This shows that for every ε > 0, there
is a finite union A′ of open arcs in T as above with λ(A △ A′) < ε, such
that uA′(0) is a regular value for uA′ , and hence BA′(0) is a regular value
for BA′ . Here, △ denotes the symmetric difference.

Turning now to the proof of Theorem 2, let S1 and S2 be Borel sets in T.
Without loss of generality, we may assume that λ(S1) = λ(S2). By regularity
of the arc length measure, there are finite unions A1 and A2 of open arcs
in T as above such that λ(Sj △ Aj), j = 1, 2, are arbitrarily small, and
λ(A1) = λ(A2). Let B1 and B2 be the finite Blaschke products associated
with A1 and A2 as above. Since λ(A1) = λ(A2), we have B1(0) = B2(0).
Let C be the set of critical values of B1 in D, which is a finite subset of D.
By the above, we may assume that B1(0) 6∈ C.

Let ϕ2 : D → D\B−1
2 (C) be a universal covering map with ϕ2(0) = 0. We

claim that ϕ2 is a Blaschke product. It is then an infinite Blaschke product,
unless C = ∅, which means that A2 consists of a single arc. First of all,
ϕ̌−1

2 (B−1
2 (C)) is null, because ϕ̌2 cannot be constant on a set of non-zero



272 F. Lárusson et al.

measure. Let us show that the non-tangential boundary values of ϕ2 lie in
the boundary of D \ B−1

2 (C). Generally, let U be a bounded domain in C

and ϕ : D → U be the universal covering map. Suppose x ∈ T has ϕ̌(x) ∈ U .
Let V be a compact disc in U containing ϕ̌(x). Then there is a line segment
L = x(1− ε, 1), ε > 0, such that ϕ(L) ⊂ V and L ⊂ ϕ−1(V ). But ϕ−1(V ) is
a disjoint union of compact domains in D, so it cannot contain L. Hence, all
the non-tangential boundary values of ϕ lie in the boundary of U . This shows
that ϕ2 is an inner function. Also, 0 is not a non-tangential boundary value
of ϕ2 because 0 6∈ B−1

2 (C). Hence, ϕ2 is a Blaschke product by Frostman’s
theorem. See Noshiro [1960, p. 33].

Now the composition B2 ◦ ϕ2 : D → D \ C lifts by the covering map
B1 : D \B−1

1 (C) → D \C to a holomorphic map ϕ1 : D → D \B−1
1 (C) with

ϕ1(0) = 0, as shown in the following diagram.

D D \B−1
1 (C)

D \B−1
2 (C) D \ C

ϕ2

��

ϕ1 //

B1

��
B2 //

Since the non-tangential boundary values of B2 ◦ ϕ2 lie in T ∪ C, the non-
tangential boundary values of ϕ1 lie in T∪B−1

1 (C). Hence, ϕ1 is inner, and
0 is not a non-tangential boundary value of ϕ1, so by Frostman’s theorem,
ϕ1 is a Blaschke product. Furthermore,

ϕ̌−1
1 (A1) = ϕ̌−1

1 (B−1
1 (J)) = ϕ̌−1

2 (B−1
2 (J)) = ϕ̌−1

2 (A2).

To conclude the proof of Theorem 2, we shall show that if ϕ is an inner
function with ϕ(0) = 0, and S is a Borel set in T, then λ(ϕ̌−1(S)) = λ(S).
In other words, ϕ̌∗λ = λ. For an L∞ function g on T, we let H[g] denote the
bounded harmonic function on D with non-tangential limit g(x) at almost
every x ∈ T.

First we consider the case when S is an arc. Suppose ϕ has a non-
tangential limit in T at x ∈ T, and let zn → x non-tangentially in D. Then
ϕ(zn) → ϕ̌(x) ∈ T. If ϕ̌(x) is not an endpoint of S, then χS is continuous
at ϕ̌(x), so

(H[χS ] ◦ ϕ)(zn) → χS(ϕ̌(x)) = χϕ̌−1(S)(x).

Now ϕ̌ cannot be constant on a set of non-zero measure, so the preimage
under ϕ̌ of the endpoints of S is a nullset. Therefore, the bounded harmonic
functionH[χS ]◦ϕ has non-tangential limit χϕ̌−1(S)(x) at almost every x ∈ T,
so H[χS] ◦ ϕ = H[χϕ̌−1(S)]. Hence,

λ(S)

2π
= H[χS ](0) = (H[χS ] ◦ ϕ)(0) = H[χϕ̌−1(S)](0) =

λ(ϕ̌−1(S))

2π
.
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This shows that λ(ϕ̌−1(S)) = λ(S) for open sets and hence for compact sets.
In the general case,

λ(S) = supλ(K) = supλ(ϕ̌−1(K))

≤ λ(ϕ̌−1(S)) ≤ inf λ(ϕ̌−1(U)) = inf λ(U) = λ(S),

where the supremum is taken over compact subsets K of S, and the infimum
is taken over open supersets U of S.

References

A. Edigar ian and E. A. Poletsky, Product property of the relative extremal function,
preprint, 1997.

M. Kl imek, Pluripotential Theory , Oxford Univ. Press, 1991.
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