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On weak minima of certain integral functionals

by Gioconda Moscariello (Salerno)

Abstract. We prove a regularity result for weak minima of integral functionals of the
form

T
Ω
F (x,Du) dx where F (x, ξ) is a Carathéodory function which grows as |ξ|p with

some p > 1.

1. Introduction. This paper is concerned with the variational function-
als of the form

(1.1) F(u) =
\
Ω

F (x,Du) dx

where Ω is an open subset of R
n, n ≥ 2, u : Ω → R

m, m ≥ 1, and
F : Ω × R

mn → R is a Carathéodory function such that

(1.2) |ξ|p ≤ F (x, ξ) ≤ α|ξ|p, p > 1.

The notion of the weak minimizer makes sense if F satisfies the following
Lipschitz type condition:

(1.3) |F (x, ξ) − F (x, η)| ≤ β|ξ − η|(|ξ|p−1 + |ξ − η|p−1)

for some constant β.

Definition 1.1. A mapping u ∈ W 1,r
loc (Ω, Rm), max{1, p − 1} ≤ r < p,

is called a weak minimizer of the integral (1.1) if\
Ω

[F (x,Du + DΦ) − F (x,Du)] dx ≥ 0

for all Φ ∈ W 1,r/(r−p+1)(Ω, Rm) with compact support.

If we assume that F is differentiable with respect to the variable ξ ∈ R
nm,

we can write the Euler–Lagrange system for the functional (1.1). Then it
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turns out that any weak minimizer of (1.1) solves the equation

(1.4)
\
Ω

A(x,Du)DΦ dx = 0

for all Φ∈ W
1,r/(r−p+1)
0 , where A(x, ξ) = DξF (x, ξ). Note that r/(r − p + 1)

> p for r < p. For this reason we say that u is a very weak solution of the
Euler–Lagrange system.

The theory of very weak solutions of equations of type (1.4) has been
initiated by T. Iwaniec and C. Sbordone. In [IS] they gave various results
concerning existence and regularity of such solutions. Among other things
they prove that if r is close to p, then every W 1,r

loc -solution is in fact a W 1,p
loc -

solution. These results rely on new estimates for the Hodge decomposition
which were introduced by T. Iwaniec in [Iw]. For related results see also
[GLS], [Mo].

Later, J. Lewis [Le] offered another approach to the same problem using
the theory of Ap-weights of Muckenhoupt.

In this paper we study the regularity of weak minimizers of integrals of
type (1.1), under hypotheses (1.2) and (1.3). Special emphasis will be placed
on the integrands F (x, ξ) which are not necessarily differentiable. The main
result is

Theorem 1. There exists an exponent r1 = r1(m,n, p, α, β) with

max{1, p − 1} < r1 < p such that if u ∈ W 1,r
loc (Ω, Rm), r1 ≤ r < p, is

a weak minimizer of the integral (1.1), then u ∈ W 1,p
loc (Ω, Rm).

In the case r = p regularity results for minimizers of F(u) have been
established in [GG], [Gi]. To prove Theorem 1 we follow the technique intro-
duced by J. Lewis [Le]. Some results on the maximal functions and reverse
Hölder inequalities will also be used.

2. Preliminaries. Let B(x, r) = {y ∈ R
n : |y − x| < r} and |B(x, r)|

denote its Lebesgue measure. For a measurable function f on R
n we set

fx,r =
<

B(x,r)

|f(y)| dy =
1

|B(x, r)|

\
B(x,r)

|f(y)| dy.

Denote the Hardy–Littlewood maximal function of f by

Mf(x) = sup
r>0

<
B(x,r)

|f(y)| dy

and set

Mkf(x) = Mk−1(Mf)(x) for k ≥ 2.
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Definition 2.1. For 1 < p < ∞, we say that a nonnegative measurable
function a ∈ L1

loc(R
n) is in the Muckenhoupt class Ap, or is an Ap-weight iff

Ap(a) = sup
x∈Rn, r>0

( <
B(x,r)

a
)( <

B(x,r)

a−1/(p−1)
)p−1

< ∞.

The following lemma can be proved (see [Le] and [Do]).

Lemma 2.2. Let 1 < p < ∞. There exists a positive constant c = c(n, p)
such that for any 0 < 2δ < p− 1, the function (Mf)−δ is an Ap-weight and

Ap((Mf)−δ) ≤ c for all f ∈ L1(Rn), f 6= 0.

Let us recall the fundamental result about Ap-weights due to Mucken-
houpt (see [Mu]).

Theorem 2.3. For 1 < p < ∞ and a ∈ Ap, there exists a positive

constant c = c(p, n,Ap(a)) such that\
Rn

a(x)(Mf(x))p dx ≤ c
\

Rn

a(x)|f(x)|p dx

for all f ∈ Lp(Rn, a).

If a(x) = 1 a.e., then the previous result is just the Hardy–Littlewood
maximal theorem.

We shall need several lemmas.

Lemma 2.4. Let 1 < p < ∞, x0 ∈ R
n, r > 0 and B = B(x0, r). If

f ∈ W 1,p(B) then there exists c = c(n, p) such that for any x ∈ B,

|f(x) − fx0,r| ≤ crM(|Df |χB)(x)

where χB is the characteristic function of B.

For the proof see Lemma 2.1 of [Le].

Lemma 2.5. Let λ > 0, 1 < q < ∞, x0 ∈ R
n and r > 0. Suppose

f ∈ W 1,q(Rn), supp f ⊂ B(x0, r) and

F (λ) = {x : M(|Df |)(x) ≤ λ} ∩ B(x0, 2r) 6= ∅.

Then f|F (λ) has an extension to R
n, denoted by v = v(·, λ), such that

(i) v = f on F (λ),

(ii) supp v ⊂ B(x0, 2r),

(iii) v ∈ W 1,∞(Rn) with ‖v‖∞ ≤ cλr and ‖Dv‖∞ ≤ cλ.

This is a slight modification of a lemma due to J. Lewis (see [Le] and
also [AF] and [Do]).

Finally, we shall need an amended form of a theorem of Gehring [G]
quoted in [Gi] and [Gu].
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Theorem 2.6. Let R > 0, q > 1 and g ∈ Lq(B(x0, R)) be such that<
B(x,r/8)

|g|q dy ≤ c
( <

B(x,r)

|g| dy
)q

+ ϑ
<

B(x,r)

|g|q dy

for 0 < ϑ < 1 and x ∈ B(x0, R/2), 0 < r ≤ R/8. Then there exist c′ =
c′(n, ϑ, c, q) and η = η(n, ϑ, c, q) > 0 such that if τ = q(1 + η) then

( <
B(x,R/4)

|g|τ dy
)1/τ

≤ c′
( <

B(x,R/2)

|g|q dy
)1/q

.

3. Proof of Theorem 1. Assume that F : Ω × R
mn → R is a Cara-

théodory function satisfying (1.2) and (1.3).

In the following we denote by c a constant that depends only on n, m,
α, β, p but may change from line to line.

Let B = B(x0, R) ⊂ Ω for some R ≤ 1. For fixed y0 ∈ B(x0, R/2) and
0 < ̺ < R/8, let B̺ = B(y0, ̺) and ϕ ∈ C∞

0 (B2̺) such that ϕ = 1 on
B̺, 0 ≤ ϕ ≤ 1 on B2̺ and |Dϕ| ≤ c̺−1. Set

u4̺ =
<

B4̺

u(x) dx

and ũ = (u − u4̺)ϕ, E(λ) = {x ∈ R
n : M(|Dũ|) ≤ λ} and Fλ = Eλ ∩ B4̺.

Since supp ũ ⊂ B2̺, for x ∈ R
n − B3̺ we observe that

(3.1) M(|Dũ|)(x) ≤ c̺−n
\

B2̺

|Dũ|(y) dy = λ0.

Therefore F (λ) is not empty for λ > λ0 and we may apply Lemma 2.5 with
f = ũ and r = 2̺ to extend ũ|F (λ) to R

n. The extended function, denoted
by v, will satisfy conditions (i)–(iii).

We use v as a test function in Definition 1.1. Then from Lemma 2.5 and
condition (1.2) we get\

F (λ)

[F (x,Du) − F (x,Du − Dũ)] dx

≤
\

B4̺−F (λ)

[F (x,Du − Dv) − F (x,Du)] dx

≤ β
\

B4̺−F (λ)

|Dv|(|Du|p−1 + |Dv|p−1) dx

≤ cλ
\

B4̺−F (λ)

|Du|p−1 + c
\

B4̺−F (λ)

|Dv|p) dx.
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We multiply both sides of this inequality by λ−(1+δ) where δ = p− r will be
chosen at the end of the proof, and integrate from λ0 to ∞:

(3.2)

∞\
λ0

λ−(1+δ) dλ
\

B4̺

[F (x,Du) − F (x,Du − Dũ)]χ{M(|Dũ|)≤λ} dx

≤ c

∞\
λ0

λ−δ dλ
\

B4̺−F (λ)

|Du|p−1 dx +

∞\
λ0

λ−(1+δ) dλ
\

B4̺−F (λ)

|Dv|p dx.

After interchanging the order of integration, the left hand side of (3.2) be-
comes

(3.3)
\

B4̺−E(λ0)

[F (x,Du) − F (x,Du − Dũ)] dx

∞\
M(|Dũ|)

λ−(1+δ) dλ

+

∞\
λ0

λ−(1+δ) dλ
\

E(λ0)

[F (x,Du) − F (x,Du − Dũ)] dx

=
1

δ

\
B4̺−E(λ0)

[F (x,Du) − F (x,Du − Dũ)]M(|Dũ|)−δ dx

+
λ−δ

0

δ

\
E(λ0)

[F (x,Du) − F (x,Du − Dũ)] dx

≡
1

δ
J1 +

λ−δ
0

δ
J2.

Since supp ũ ⊂ B2̺ and B4̺ − E(λ0) = B4̺ − F (λ0), we obtain

J1 =
( \

B4̺

−
\

F (λ0)

)
[F (x,Du) − F (x,Du − Dũ)]M(|Dũ|)−δ dx(3.4)

=
( \

B2̺

−
\

F (λ0)

)
[F (x,Du) − F (x,Du − Dũ)]M(|Dũ|)−δ dx.

Now, using the fact that ũ = u on B̺ and F (x, 0) = 0, from the previous
relation we get

J1 =
\

B̺

F (x,Du)M(|Dũ|)−δ dx(3.5)

+
\

B2̺−B̺

[F (x,Du) − F (x,Du − Dũ)]M(|Dũ|)−δ dx

−
\

F (λ0)

[F (x,Du) − F (x,Du − Dũ)]M(|Dũ|)−δ dx.
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Then from (3.2), (3.3) and (3.5),

1

δ

\
B̺

F (x,Du)M(|Dũ|)−δ dx

≤
1

δ

\
F (λ0)

[F (x,Du) − F (x,Du − Dũ)]M(|Dũ|)−δ dx

+
1

δ

\
B2̺−B̺

[F (x,Du − Dũ) − F (x,Du)]M(|Dũ|)−δ dx

+
λ−δ

0

δ

\
E(λ0)∩B2̺

[F (x,Du − Dũ) − F (x,Du)] dx

+ c

∞\
λ0

λ−δdλ
\

B4̺−F (λ)

|Du|p−1 dx + c

∞\
λ0

λp−1−δ|B4̺ − F (λ)| dλ.

Let us use (1.2) to estimate the left hand side from below, and the
Lipschitz condition (1.3) to estimate the integrals on the right hand side.
Since λ−δ

0 ≤ M(|Dũ|)−δ on E(λ0) we obtain\
B̺

|Du|pM(|Dũ|)−δ dx ≤ c
\

E(λ0)∩B2̺

|Dũ|(|Du|p−1 + |Dũ|p−1)M(|Dũ|)−δ dx

+ c
\

B2̺−B̺

|Dũ|(|Du|p−1 + |Dũ|p−1)M(|Dũ|)−δ dx

+ cδ

∞\
λ0

λ−δdλ
\

B4̺

|Du|p−1χ{M(|Dũ|)>λ} dx

+ cδ

∞\
λ0

λp−1−δ|B4̺ − F (λ)|dλ.

We write this as

(3.6) I0 ≤ c[I1 + I2] + cδ[I3 + I4].

To estimate Ii, i = 0, 1, . . . , 4, we remark that by Lemma 2.4,

|u(x) − u4̺
| ≤ c̺[M(|Du|χB4̺

)] for any x ∈ B4̺;

therefore,

(3.7) |Dũ| ≤ |Du| + c[M(|Du|χB4̺
)].
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To simplify the presentation we have collected the estimates of Ii, i =
1, 2, 3, 4, in the Appendix at the end of the paper.

By those estimates, (3.6) becomes

I0 ≤ c

(
η1−δ + δ1−δ +

δ

1 − δ

) \
B4̺

|Du|p−δ dx(3.8)

+ c(η1/(1−p) + η1−p)̺n
( <

B4̺

|Du|t dx
)(p−δ)/t

+ cδ−δ
\

B2̺−B̺

|Du|p−δ dx

where (p − δ)∗ ≤ t < p − δ, c = c(m,n, p, α, β) and η is a constant to be
chosen at the end. Since ũ = u on B̺, by (3.7) we see that at x ∈ B̺/2,

M(|Dũ|) ≤ M(|Du|χB̺
) + c

<
B4̺

|Dũ| dx

≤ M(|Du|χB̺
) + c

<
B4̺

M(|Du|χB4̺
) dx.

Let

G =
{
x ∈ B̺/2 : M(|Du|χB̺

)(x) ≥ c
<

B4̺

M(|Du|χB4̺
) dy

}
.

Then M(|Dũ|) ≤ cM(|Du|χB̺
) on G and so, by Lemma 2.2 and Theo-

rem 2.3, if 0 < 2δ < p − 1 then

I0 ≥ c−1
\

B̺

M(|Dũ|)−δM(|Du|χB̺
)p dx(3.9)

≥ c−1
\
G

M(|Du|χB̺
)p−δ dx

= c−1
[ \

B̺/2

M(|Du|χB̺
)p−δ dx −

\
B̺/2−G

M(|Du|χB̺
)p−δ dx

]

≥ c−1
\

B̺/2

|Du|p−δ dx − c̺n
( <

B4̺

M(|Du|χB4̺
) dx

)p−δ

≥ c−1
\

B̺/2

|Du|p−δ dx − c̺n
( <

B4̺

|Du|t dx
)(p−δ)/t

where (p − δ)∗ ≤ t < p − δ.
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From (3.8) and (3.9) we conclude that\
B̺/2

|Du|p−δ dx ≤ c

(
η1−δ + δ1−δ +

δ

1 − δ

) \
B4̺

|Du|p−δ dx(3.10)

+ c(η1−p + η1/(1−p))̺n
( <

B4̺

|Du|t dx
)(p−δ)/t

+ cδ−δ
\

B2̺−B̺/2

|Du|p−δ dx.

Now, we apply the “hole filling” method. Adding cδ−δ
T
B̺/2

|Du|p−δ dx

to both sides of (3.10) we get<
B̺/2

|Du|p−δ dx ≤
c

cδ−δ + 1

(
η1−δ + δ1−δ + δ−δ +

δ

1 − δ

) <
B4̺

|Du|p−δ dx

+
c

c + 1
(η1−p + η1/(1−p))

( <
B4̺

|Du|t dx
)(p−δ)/t

.

Notice that there exists 0 < δ1 < 1 such that if 0 < δ < δ1 then

c

cδ−δ + 1

(
δ1−δ + δ−δ +

δ

1 − δ

)
<

c

c + 1/2
.

Obviously δ1 depends on c and therefore on α, β, p,m, n.

If we choose 0 < η < 1 such that

cη

c + 1
< ϑ where

c

c + 1/2
< ϑ < 1,

from the estimates above we have for 0 < δ < δ1,

(3.11)
<

B̺/2

|Du|p−δ dx ≤ ϑ
<

B4̺

|Du|p−δ dx + ĉ
( <

B4̺

|Du|t dx
)(p−δ)/t

where ĉ depends on α, β,m, n, p but not on δ. The result follows from The-
orem 2.6 with an argument similar to the one of [GLS].

4. Appendix. We now proceed to the estimates of Ii, i = 1, 2, 3, 4.

Estimate of I1. We have

I1 ≤
\

E(λ0)∩B2̺

|Dũ|pM(|Dũ|)−δ dx

+
\

E(λ0)∩B2̺

|Du|p−1M(|Dũ|)1−δ dx.
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If x ∈ E(λ0), then M(|Dũ|) ≤ λ0 and so at x we find

(4.1) |Dũ|pM(|Dũ|)−δ ≤ M(|Dũ|)p−δ ≤ λp−δ
0 .

Now suppose 0 < η ≤ 1/2 and |Du| ≥ η−1λ0. Then at x ∈ E(λ0),

M(|Dũ|) ≤ λ0 ≤ |Du|η

and so

(4.2) |Du|p−1M(|Dũ|)1−δ ≤ η1−δ |Du|p−δ.

On the other hand, if x ∈ E(λ0) and |Du| < η−1λ0 we get

(4.3) |Du|p−1M(|Dũ|)1−δ ≤ η1−pλp−δ
0 .

Then from (4.1)–(4.3), at x ∈ E(λ0) ∩ B2̺,

(4.4) |Dũ|pM(|Dũ|)−δ + |Du|p−1M(|Dũ|)1−δ

≤ c(η1−pλp−δ
0 + η1−δ|Du|p−δ).

Using the definition of λ0 given in (3.1) and relation (3.7), we remark
that

η1−pλp−δ
0 ≤ cη1−p

( <
B4̺

M(|Du|χB4̺
) dx

)p−δ

≤ cη1−p
( <

B4̺

M(|Du|χB4̺
)t dx

)(p−δ)/t

where (p − δ)∗ ≤ t < p − δ.

Finally, by (4.4) and the previuos remark, applying the Hardy–Little-
wood theorem we get

I1 ≤ cη1−δ
\

B4̺

|Du|p−δ dx + cη1−p̺n
( <

B4̺

|Du|t dx
)(p−δ)/t

where c = c(β,m, n, p).

Estimate of I2. From the definition of ũ,

I2 ≤ c
\

B2̺−B̺

|Dũ| · |Du|p−1M(|Dũ|)−δ dx(4.5)

+ c
\

B2̺−B̺

|Dũ|

(
|u − u̺|

̺

)p−1

M(|Dũ|)−δ dx

= c(I + II).

Let D1 be the set of all x ∈ B2̺ − B̺ such that

M(|Dũ|)(x) ≤ δM(|Du|χB4̺
)(x)
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and set D2 = (B2̺ − B̺) − D1. Then

I ≤
\

D1

|Dũ| · |Du|p−1M(|Dũ|)−δ dx

+
\

D2

|ϕ| · |Du|pM(|Dũ|)−δ dx

+
c

̺

\
D2

|u − u4̺| · |Du|p−1M(|Dũ|)−δ dx.

Next, from the definition of D1 and the Hardy–Littlewood maximal theorem,
we get \

D1

|Dũ| · |Du|p−1M(|Dũ|)−δ dx ≤
\

D1

M(|Dũ|)1−δ |Du|p−1 dx

≤ cδ1−δ
\

B4̺

|Du|p−δ dx.

On the other hand, since M(|Du|χB4̺
)(x) ≥ (|Du|χB4̺

)(x), we get\
D2

|ϕ| · |Du|pM(|Dũ|)−δ dx ≤ δ−δ
\

D2

|Du|p−δ dx ≤ δ−δ
\

B2̺−B̺

|Du|p−δ dx.

Finally, by Young’s inequality,\
D2

|u − u4̺|

̺
|Du|p−1M(|Dũ|)−δ dx

≤ δ−δ
\

D2

|u − u4̺|

̺
|Du|p−1−δ dx

≤ δ−δ

( \
D2

|Du|p−δ dx +
\

B4̺

(
|u − u4̺|

̺

)p−δ

dx

)

≤ δ−δ
\

B2̺−B̺

|Du|p−δ dx + c̺n
( <

B4̺

|Du|t dx
)(p−δ)/t

where (p − δ)∗ ≤ t < p − δ.

By the above estimates we can conclude that

I ≤ cδ1−δ
\

B4̺

|Du|p−δ dx + cδ−δ
\

B2̺−B̺

|Du|p−δ dx(4.6)

+ c̺n
( \

B4̺

|Du|t dx
)(p−δ)/t

.
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To estimate II we remark that

II ≤
\

B2̺−B̺

M(|Dũ|)1−δ

(
|u − u4̺|

̺

)p−1

dx.

Then by relation (3.7) and Young’s inequality we get

II ≤ η1−δ
\

B2̺−B̺

M(|Dũ|)p−δ dx

+ cη−(1−δ)2/(p−1)
\

B2̺−B̺

M

(
|u − u4̺|

̺

)p−δ

dx

≤ cη1−δ
\

B2̺−B̺

[M2(|Du|χB4̺
)]p−δ dx

+ cη−(1−δ)2/(p−1)̺n
( \

B4̺

|Du|t dx
)(p−δ)/t

where 0 < η < 1/2 and (p − δ)∗ ≤ t < p − δ.

Finally, from the Hardy–Littlewood maximal theorem we deduce that

(4.7) II ≤ cη1−δ
\

B4̺

|Du|p−δ dx + c̺nη1/(1−p)
( <

B4̺

|Du|t dx
)(p−δ)/t

.

Then from (4.5)–(4.7),

I2 ≤ c(δ1−δ + η1−δ)
\

B4̺

|Du|p−δ dx + c̺nη1/(1−p)(4.8)

×
( \

B4̺

|Du|t dx
)(p−δ)/t

+ cδ−δ
\

B2̺−B̺/2

|Du|p−δ dx.

Estimate of I3 and I4. By using (3.7) and the Hardy–Littlewood maxi-
mal theorem, we get

I3 =
\

B4̺

|Du|p−1 dx

M(|Dũ|)\
λ0

λ−δ dλ(4.9)

≤
1

1 − δ

\
B4̺

|Du|p−1M(|Dũ|)1−δ dx

≤
c

1 − δ

\
B4̺

|Du|p−δ dx.
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On the other hand, also by (3.7),

I4 =
c

p − δ

\
B4̺

|Dũ|p−δ dx ≤
c

p − δ

\
B4̺

|Du|p−δ dx(4.10)

≤
c

1 − δ

\
B4̺

|Du|p−δ dx.
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