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Hammerstein equations

with an integral over a noncompact domain

by Robert Stańczy ( Lódź)

Abstract. The existence of solutions of Hammerstein equations in the space of
bounded and continuous functions is proved. It is obtained by the Schauder fixed point
theorem using a compactness theorem. The result is applied to Wiener–Hopf equations
and to ODE’s.

1. Introduction. In 1929 Hammerstein published paper [4] concerning
nonlinear integral equations with integral operators of the form

(1) Sx(t) =
\
T

G(t, s)r(x(s), s) ds.

If the domain of integration is compact and the functions G and r are con-
tinuous, then equation (1) can be considered in the space C(T ) of continuous
functions. It can also be considered in the space Lp(T ) of integrable func-
tions (where T has a finite or an infinite measure).

In this paper, a noncompact domain of integration is considered. We
work in the space of bounded and continuous functions. Therefore, to apply
the Schauder theorem, we need sufficient conditions for compactness in this
space. Some of them are presented in [1]. In our paper, however, necessary
and sufficient conditions are stated. The main theorem gives conditions for
the complete continuity of the Hammerstein operator. It is the extension of
the results of [5] where T = (−∞,∞). Some applications to the Wiener–
Hopf equation on a half-line or on a half-space are given. The theorem can
also be applied to ODE’s of second order with boundedness as a boundary
condition since the Green function is continuous.

2. Preliminaries and auxiliary lemmas. Let X be a Banach space
with norm ‖ · ‖ and let T be a locally compact metric space countable at
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infinity, i.e. T =
⋃∞

i=1 Ki where (Ki)i∈N are compact and satisfy Ki ⊂
int(Ki+1) for any i ∈ N.

For V ⊂ X let conv V denote the smallest convex, closed set of X con-
taining V . We write K ⋐ T if K ⊂ T is compact.

We shall also use the following function spaces:

• L(X) — the space of bounded linear operators from X to X,
• BC(T,X) — the space of bounded continuous functions from T to X

with sup norm ‖ · ‖∞,
• C(K,X) (where K ⋐ T ) — the space of continuous functions with sup

norm denoted as above,
• CC(X,X)−the space of completely continuous functions from X to

X, i.e. continuous and compact (mapping bounded subsets of X into
relatively compact ones), with metric

d(f, g) =

∞∑

n=1

2−n
sup‖x‖≤n ‖f(x) − g(x)‖

1 + sup‖x‖≤n ‖f(x) − g(x)‖
.

The space CC(X,X) thus defined is a Fréchet space, i.e. locally convex
and completely metrizable. The convergence in this space is the uniform
convergence on bounded subsets of X.

For y ∈ X and x ∈ BC(T,X), we write limt→∞ x(t) = y if

∀ε>0∃K⋐T∀t∈T\K ‖x(t) − y‖ < ε

or one can understand it in terms of the Alexander compactification of the
space T with the point ∞.

We shall also use the Bochner integral over the domain T . Let µ denote
a measure on B(T ) (the σ-algebra of Borel subsets of T ), finite on compact
subsets of T . For the Bochner integral of vector-valued functions see [3, pp.
44–52] or [6, pp. 132–136].

Let us recall a property of the Bochner integral to be used in the sequel.

Theorem 1. Let x : T → X be a Bochner integrable function. Then, for

each set K ⊂ T of finite measure, we have\
K

x(t) dt ∈ µ(K) conv(x(K)).

P r o o f. See [3, Corollary 8, p. 48].

Now, we prove some auxiliary lemmas concerning the Nemytskĭı opera-
tor. Let r : X × T → X.

Lemma 1. Suppose that the mapping T ∋ t 7→ r(·, t) ∈ CC(X,X) is well

defined and continuous. Then r : X × T → X is continuous.

P r o o f. Fix t1 ∈ T , x1 ∈ X and ε > 0. There exist δ, γ > 0 such that
d(t, t1) < δ implies d(r(·, t), r(·, t1)) < ε/2, whence ‖r(x, t1) − r(x1, t1)‖
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< ε/2 for any ‖x−x1‖ < γ. Then, for ‖x−x1‖ < γ and d(t, t1) < δ, we get

‖r(x, t) − r(x1, t1)‖ ≤ ‖r(x, t) − r(x, t1)‖ + ‖r(x, t1) − r(x1, t1)‖

≤ ε/2 + ε/2 = ε.

Lemma 2. Suppose r : X × T → X is continuous. Let K ⋐ T , x ∈
C(K,X) and ε > 0. Then there exists δ > 0 such that , for any t ∈ Kand

y ∈ C(K,E) satisfying ‖y(t)−x(t)‖ < δ, we have ‖r(y(t), t)−r(x(t), t)‖ < ε.

P r o o f. Suppose that, on the contrary, there exist x0 ∈ C(K,X), ε0 > 0,
tn ∈ K and yn ∈ C(K,X) such that ‖yn(tn) − x0(tn)‖ < 1/n and

‖r(yn(tn), tn) − r(x(tn), tn)‖ ≥ ε0.

From the sequence tn ∈ K we can extract a convergent subsequence
tnk

→ t0, whence x0(tnk
) → x0(t0) and ‖ynk

(tnk
)− x(tnk

)‖ < 1/nk. Hence
ynk

(tnk
) → x0(t0). Thus r(ynk

(tnk
), tnk

) − r(x0(tnk
), tnk

) → 0, which con-
tradicts our assumption.

Lemma 3. Let the mapping T ∋ t 7→ r(·, t) ∈ CC(X,X) be continuous.

Then, for any M > 0 and any K ⋐ T , the set {r(x, t) : ‖x‖ ≤ M, t ∈ K}
is relatively compact.

P r o o f. Fix M > 0. By the complete continuity of r(·, t) for any t ∈ K,
we can choose an ε/2-net (r(xt

i, t))
kt

i=1 of the set {r(x, t) : ‖x‖ ≤ M} . Define
r̃ : T → CC(X,X) by r̃(t) = r(·, t). Since r̃|K is uniformly continuous,
we may choose δ > 0 such that d(s, s′) < δ implies d(r̃(s), r̃(s′)) < ε/2.

Let s1, . . . , sp be a δ-net of K. Then (r(x
sj

i , sj))
ksj

i=1
p
j=1 is an ε-net of the set

{r(x, t) : ‖x‖ ≤ M, t ∈ K}. Indeed, for any s ∈ K and ‖x‖ ≤ M , we may
choose sj such that d(s, sj) < δ and x

sj

i such that

‖r(x
sj

i , sj) − r(x, sj)‖ ≤ ε/2.

Then

‖r(x
sj

i , sj) − r(x, s)‖ ≤ ‖r(x
sj

i , sj) − r(x, sj)‖ + ‖r(x, sj) − r(x, s)‖

≤ ε/2 + ε/2 = ε.

Lemma 4. Let M > 0. Suppose that the mapping T ∋ t 7→ r(·, t) ∈
CC(X,X) is continuous, and that there exists b ∈ BC(T,X) such that

lim
t→∞

sup
‖x‖≤M

‖r(x, t) − b(t)‖ = 0.

Then r(B(0,M)×T ) is bounded in X (B(0,M) is the closed ball with centre

0 and radius M > 0).

P r o o f. Fix ε > 0 and choose K ⋐ T such that ‖x‖ ≤ M , t 6∈ K imply

‖r(x, t) − b(t)‖ ≤ ε‖r(x, t)‖ ≤ ε + ‖b(t)‖.
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By Lemma 3, TK,M = sup‖x‖≤M,t∈K ‖r(x, t)‖ < ∞, whence

‖r(x, t)‖ ≤ max{ε + ‖b‖∞, TK,M}.

3. Main results

Theorem 2. Let T be a metric, locally compact space countable at ∞
and let X be a Banach space. Then the relative compactness of the set

F ⊂ BC(T,X) is equivalent to the conjunction of three conditions:

1o The set {x(t) : x ∈ F} is relatively compact in X for each t ∈ T .

2o For each K ⋐ T the functions in FK = {x|K : x ∈ F} are equicon-

tinuous.

3o For each ε > 0, there exist δ > 0 and K ⋐ T such that , for any

x, y ∈ F , if ‖x|K − y|K‖∞ ≤ δ, then ‖x − y‖∞ ≤ ε.

P r o o f. Necessity . If F ⊂ BC(T,X) is relatively compact then the
Ascoli–Arzelà theorem implies 1◦ and 2◦. If 3◦ were not satisfied, there
would be ε0 > 0 and sequences (xn), (yn), (Kn) such that

‖xn|Kn − yn|Kn‖∞ ≤
1

n
and ‖xn − yn‖∞ > ε0.

We may extract a convergent subsequence xnk
− ynk

→ x − y. But then
x|Kn = y|Kn for each n ∈ N, which contradicts ‖x − y‖∞ ≥ ε0.

Sufficiency . Take ε > 0 and choose K ⋐ T from condition 3◦. By the
Ascoli–Arzelà theorem the set {x|K} has a finite δ-net: {x1|K, . . . , xl|K}.
Then, from 3◦ we see that {x1, . . . , xl} is an ε-net for F .

Remark 1. The above theorem, with a similar proof, can be extended
to the case of X being a complete, metric space.

Remark 2. For T = [0,∞), some sufficient conditions for compactness
in BC([0,∞) are stated in [1] with the use of measures of noncompactness.

Remark 3. Condition 3o is satisfied if, for any x, y ∈ F ,

lim
t→∞

‖x(t) − y(t)‖ = 0.

Example. Let T = X = R, F = {sin(x), cos(x)}. Then F is compact
in BC(T,X) though the condition of Remark 3 is not satisfied.

Theorem 3. Let T be a metric, locally compact space countable at ∞
and let X be a Banach space. Suppose T is equipped with a measure on the

σ-algebra of Borel subsets of T , finite on compact sets. Define an integral

operator S on BC(T,X) by

Sx(t) =
\
T

G(t, s)r(x(s), s) ds.
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Assume that

(i) G : T × T → L(X) is continuous,

(ii) supt∈T

T
T
‖G(t, s)‖ ds < ∞,

(iii) ∀K⋐T limt→∞

T
K
‖G(t, s)‖ ds = 0,

(iv) ∀ε>0∀K̂⋐T
∃K⋐T∀t∈K̂

T
T\K

‖G(t, s)‖ ds < ε,

(v) the map t 7→ r(·, t) ∈ CC(X,X) is continuous,

(vi) there exists a function b ∈ BC(T,X) such that , for each M > 0,

lim
t→∞

sup
‖x‖≤M

‖r(x, t) − b(t)‖ = 0.

Then S maps BC(T,X) into BC(T,X) and is completely continuous.

P r o o f. Define L = supt∈T

T
T
‖G(t, s)‖ ds. By (ii), L < ∞. The as-

sumptions on r imply its boundedness. Hence we get the existence of the
integral

T
T

G(t, s)r(x(s), s) ds and the boundedness of the operator S on any
bounded set.

To get the continuity of Sx, we divide T into a compact set K and apply
the continuity of the function G there, and the noncompact set T \K where
we use (iv). Similarly, using (vi) on the noncompact set and (v) on the
compact one, we estimate the norm ‖Sx(t) − Sy(t)‖. Taking into account
(ii) we get the continuity of the operator S.

Now, we show that S is compact, i.e. for each M > 0, the set S(B(0,M))
is relatively compact. In order to use the compactness criterion in BC(T,X),
we have to show that conditions 1o–3o are satisfied.

1o Fix t0 ∈ T and ε > 0. We shall find a finite ε-net for A := {Sx(t0) :
‖x‖ < M}. Choose K ⋐ T such that ‖r(x, t) − b(t)‖ ≤ ε/(2L) for ‖x‖ < M
and t ∈ T \ K. Set x0 =

T
T\K

G(t0, s)b(s) ds. Consider

B :=
{ \

K

G(t0, s)r(x(s), s) ds : ‖x‖∞ ≤ M
}

.

From Lemma 3 we see that the set Zt0 := {G(t0, s)r(x, s) : s ∈ K, ‖x‖ ≤ M}
is relatively compact in X. But the integrals in B belong to the convex
hull µ(K) conv Zt0 , so by the Mazur theorem, there exists a finite ε/2-net
x1, . . . , xp of B. We have thus obtained an ε-net x0 + x1, . . . , x0 + xp of A.
Indeed,

‖Sx(t0) − (x0 + xj)‖ ≤
∥∥∥
\
K

G(t0, s)r(x(s), s) ds − xj

∥∥∥

+
\

T\K

‖G(t0, s)‖ · ‖r(x(s), s) − b(s)‖ ds

≤
ε

2
+ L

ε

2L
= ε.
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2◦ Let ε > 0 and K̂ ⋐ T . Choose, by (iv) and (vi), K ⋐ T such that

‖r(x, s) − b(s)‖ ≤ ‖b‖∞,

whence
‖r(x, s)‖ ≤ 2‖b‖∞

and \
T\K

‖G(t, s)‖ ds ≤ ε/(8‖b‖∞) for any t ∈ K̂.

Moreover, using the uniform continuity of G on K̂×K, we can choose some
δ > 0 such that, for any t, t1 ∈ K̂ with d(t, t1) < δ we have ‖G(t, s) −
G(t1, s)‖ ≤ ε/(2µ(K)T ). Then

‖Sx(t) − Sx(t1)‖

≤
\
K

‖G(t, s) − G(t1, s)‖ · ‖r(x(s), s)‖ ds

+
\

T\K

‖G(t, s) − G(t1, s)‖ · ‖r(x(s), s)‖ ds

≤ ((µ(K) · ε)/(2µ(K)T )) · T + (2ε/(8‖b‖∞)) · 2‖b‖∞ = ε.

3◦ Let ε>0. From (vi), we can choose K ⋐T such that, for any s ∈ T \K
and ‖x‖ ≤ M we have ‖r(x, s) − b(s)‖ ≤ ε/(4L). Moreover, from (iii) we

can choose K̂ ⋐ T such that
T
K
‖G(t, s)‖ ds ≤ ε/(4T ) for t ∈ T \ K̂. Then,

for those t and ‖x‖∞ ≤ M, ‖y‖∞ ≤ M , we get

‖Sx(t) − Sy(t)‖

≤
\
K

‖G(t, s)‖ · ‖r(x(s), s) − r(y(s), s)‖ ds

+
\

T\K

‖G(t, s)‖(‖r(x(s), s) − b(s)‖ + ‖r(y(s), s) − b(s)‖) ds

≤ (ε/(4T )) · 2T + 2L · (ε/(4L)) = ε.

Theorem 4. Let G and r satisfy the assumptions of the previous theo-

rem. Moreover , suppose that

(2) R = lim sup
‖x‖→∞

sup
t∈T

‖r(x, t)‖

‖x‖
< 1/L

where L = supt∈T

T
T
‖G(t, s)‖ ds. Then the integral equation Sx = x has a

solution in the space BC(T,X).

P r o o f. By assumption (2), for ε = 1/L − R > 0, choose M > 0 such
that ‖r(x, t)‖/‖x‖ < R + ε = 1/L for any t ∈ T and ‖x‖ > M . Define
T = sup‖x‖≤M, t∈T ‖r(x, t)‖. Using Lemma 4, we get T < ∞. Hence, for



Hammerstein equations 55

‖x‖∞ ≤ max{LT,M},

‖Sx‖∞ ≤ sup
t∈T

( \
{s:‖x(s)‖≤M}

‖G(t, s)‖ · ‖r(x(s), s)‖ ds

+
\

{s:‖x(s)‖>M}

‖G(t, s)‖ · ‖r(x(s), s)‖ ds
)

≤ sup
t∈T

( \
{s:‖x(s)‖≤M}

‖G(t, s)‖max{T,M/L} ds

+
\

{s:‖x(s)‖>M}

‖G(t, s)‖(max{LT,M}/L) ds
)

= sup
t∈T

\
T

‖G(t, s)‖max{T,M/L} ds

≤ L max{T,M/L} = max{TL,M}.

Then S : B(0, max{TL,M}) → B(0, max{TL,M}) and, by the Schauder
theorem, using Theorem 3, we obtain a fixed point for S.

Corollary. Let T be a closed cone in a Banach space and let r : X ×
T → X satisfy conditions (v), (vi) of Theorem 3 and condition (2). Let

G : T × T → L(X) be of the form G(t, s) = H(t − s) for any t, s ∈ T ,
where H : T −T → L(X) (− stands for algebraic difference here) is a given

continuous function such that the integral
T
T−T

‖H(t)‖ dt is finite. Then the

integral equation Sx = x has a solution in the space BC(T,X).

4.Applications to Wiener–Hopf equations. The last corollary from
the previous section can be easily applied to nonlinear Wiener–Hopf equa-
tions on a half-line (T = [0,∞)) or on a closed half-space (T = R

k−1 ×
[0,∞)), which will be illustrated by the following theorems.

Theorem 5. Consider the equation

(3)

∞\
0

H(t − s)r(x(s), s) ds = x(t)

where H : R → R is continuous and integrable, and r : R × [0,∞) → R is

continuous. Moreover , if r satisfies (vi) of Theorem 3 and

lim sup
|x|→∞

sup
t∈[0,∞)

|r(x, t)|

|x|
<

1

L
where L =

∞\
−∞

|H(t)| dt,

then equation (3) has a bounded and continuous solution x.

Remark. The conditions imposed on r are, in particular, satisfied if
r(x, t) = f(x)c(t)+b(t) where f : R → R and c, b : [0,∞) → R are continuous
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and satisfy limt→∞ ‖c(t)‖ = 0 and lim‖x‖→∞ ‖f(x)‖/‖x‖ = 0.

Theorem 6. Let R
k
+ = {t = (t1, . . . , tk) ∈ R

k : tk ≥ 0}. Consider the

equation

(4)
\

Rk
+

H(t − s)r(x(s), s) ds = x(t)

where r : R × R
k
+ → R and H : R

k → R are continuous. Moreover , if r
satisfies (vi) of Theorem 3 and

lim sup
|x|→∞

sup
t∈[0,∞)

|r(x, t)|

|x|
<

1

L
where L =

\
Rk

|H(t)| dt < ∞,

then equation (4) has a bounded and continuous solution x.

Remark. The conditions imposed on r are satisfied if, in particular,
r(x, t) = f(x)c(t) + b(t) where f : R → R and b, c : R

k
+ → R are continuous

and satisfy limt→∞ |c(t)| = 0 and lim|x|→∞ |f(x)|/|x| = 0.

5. Applications to ODE’s. Let T = R and let X be a Banach space.
Assume that r : X × R → X is continuous and A ∈ L(X) is such that
Sp(A) ∩ {α ∈ R : α ≤ 0} = ∅. Consider the following boundary value
problem in X:

(5)
x′′ = Ax + r(x, t),

x bounded on R.

The boundedness of solutions plays here the role of a boundary condition.
Under some additional assumptions on r, problem (5) will be transformed

to an integral equation of Hammerstein type and, for the latter, Theorem 4
will be applied to obtain the existence of solutions.

First, let us recall the notion of the Green function for problem (5).
The Green function for (5) is a function G : R × R → L(X) satisfying the
following conditions:

(i) For any s ∈ R, G(·, s) satisfies the linear equation, i.e. ∂2G
∂t2

(t, s) =
AG(t, s) for any t 6= s,

(ii) lims→t−
∂G
∂t

(t, s) − lims→t+
∂G
∂t

(t, s) = I for any t ∈ R,

(iii) G(·, s) satisfies the boundary condition for any s ∈ R (i.e. is bounded
on R).

If we have such a function it is easy to see that any solution of the integral
equation

(6) x(t) =

∞\
−∞

G(t, s)r(x(s), s) ds
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satisfies the boundary value problem (5).
Indeed, integrating and using the properties of the Green function, we

obtain

x′′(t) =
∂

∂t

( t\
−∞

∂G

∂t
(t, s)r(x(s), s) ds +

∂

∂t

(∞\
t

∂G

∂t
(t, s)r(x(s), s) ds

))

=

∞\
−∞

∂2G

∂t2
(t, s)r(x(s), s) ds

+

(
lim

s→t−

∂G

∂t
(t, s) − lim

s→t+

∂G

∂t
(t, s)

)
r(x(t), t)

= Ax(t) + r(x(t), t).

The Green function for (5) will now be constructed. Using the Dunford
operational calculus from [6, pp. 225–228], we can define the operators

A−1/2 = −
1

2πi

\
Γ

λ−1/2(A − λI)−1 dλ,

−A1/2 =
1

2πi

\
Γ

λ1/2(A − λI)−1 dλ,

exp(−A1/2) = −
1

2πi

\
Γ

exp(−λ1/2)(A − λI)−1 dλ,

where Γ is a Jordan curve around Sp(A) with counterclockwise orientation.
Now, we define

G(t, s) = −
1

2
A−1/2 exp(−A1/2|t − s|).

From [6, Corollary 3, pp. 245–246] one gets

∂2G

∂t2
(t, s) = −

1

2
A1/2 exp(−A1/2(t − s)) = AG(t, s) for t 6= s.

Since Sp(−A1/2) ⊂ {α ∈ C : Re α < 0}, from [2, Theorem 4.1, pp. 42–43]
we get

(7) ‖G(t, s)‖ ≤ Ne−v|t−s|

for some constants N, v > 0. This implies the boundedness of the function
G(·, s) for any s ∈ T . Finally, from [6, Theorem, p. 226] and [6, Corollary 3,
pp. 245–246] we obtain

lim
s→t−

∂G

∂t
(t, s) − lim

s→t+

∂G

∂t
(t, s) = lim

s→t−

∂

∂t

(
− 1

2
A−1/2 exp(−A1/2(t − s))

)

− lim
s→t+

∂

∂t

(
− 1

2
A−1/2 exp(−A1/2(s − t))

)
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= lim
s→t−

1
2

exp(−A1/2(t − s)) − lim
s→t+

− 1
2

exp(−A1/2(s − t))

= 1
2I + 1

2I = I.

We have thus shown that G is the Green function for problem (5) and any
solution of the integral equation (6) satisfies the boundary value problem
(5). Now, we are ready to formulate the existence theorem for (5).

Theorem 7. Assume that A ∈ L(X) is such that Sp(A) ∩ {α ∈ R :
α ≤ 0} = ∅ and r(x, t) = c(t)f(x) + b(t) where c : R → R is continuous,
lim|t|→∞ |c(t)| = 0, b : R → X is continuous and bounded , and f : X → X
is completely continuous. Then BVP (5) has at least one solution provided

(8) lim sup
‖x‖→∞

‖f(x)‖

‖x‖
<

v

2N‖c‖∞
.

P r o o f. To prove the existence of solutions for the integral equation (6),
we have to show that the integral operator S defined by the right-hand side
of (6) satisfies the assumptions of Theorem 4.

First, we show that the assumptions of Theorem 3, implying the complete
continuity of S, are satisfied.

From inequality (7) it follows that conditions (ii)–(iv) of Theorem 3
are satisfied. Assumption (v) is also satisfied since the functions b, c are
continuous and f maps bounded subsets of X into relatively compact ones.
The last assumption (vi) is satisfied since

lim
t→∞

sup
‖x‖≤M

‖r(x, t) − b(t)‖ = lim
t→∞

sup
‖x‖≤M

‖c(t)f(x)‖

≤ sup
‖x‖≤M

‖f(x)‖ lim
t→∞

|c(t)| = 0.

Now, we show that condition (2) of Theorem 4 is satisfied. From inequal-
ity (7) we get

L = sup
t∈R

∞\
−∞

‖G(t, s)‖ ds ≤ N sup
t∈R

( t\
−∞

e−v(t−s) ds +

∞\
t

e−v(s−t) ds
)

=
2N

v
.

Then

lim
‖x‖→∞

sup
t∈T

‖c(t)f(x) + b(t)‖

‖x‖
≤ ‖c‖∞ lim

‖x‖→∞

‖f(x)‖

‖x‖
<

v

2N
=

1

L
.

From Theorem 4 we get the assertion.

Analogously we obtain the existence of a solution of the boundary value
problem on a half-line.

Let T = [t0,∞) and let X be a Banach space. Assume that r : X ×
[t0,∞) → X is continuous and A ∈ L(X) satisfies Sp(A) ∩ {α ∈ R :
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α ≤ 0} = ∅. Consider the boundary value problem

x′′ = Ax + r(x, t),

x(t0) = 0,(9)

x bounded on [t0,∞).

Define

G(t, s) = 1
2
A−1/2((exp(−A1/2(s + t − 2t0)) − exp(−A1/2|t − s|)).

From [2, Theorem 4.1, pp. 42–43] we get

(10) ‖G(t, s)‖ ≤ N1e
−v(t+s−2t0) + N2e

−w|t−s|

for some constants N1, N2, v, w > 0. As in the previous case, one can verify
that G is the Green function for problem (9), so any solution of the integral
equation

(11) x(t) =

∞\
t0

G(t, s)r(x(s), s) ds

satisfies the boundary value problem (9). Now, we can state

Theorem 8. Assume that A ∈ L(X) is such that Sp(A) ∩ {α ∈ R :
α ≤ 0} = ∅ and r(x, t) = c(t)f(x)+b(t) where c : [t0,∞) → R is continuous,
lim|t|→∞ ‖c(t)‖ = 0, b : [t0,∞) → X is continuous and bounded , and f :
X → X is completely continuous. Then BVP (9) has at least one solution

provided

(12) lim sup
‖x‖→∞

‖f(x)‖

‖x‖
<

vw

‖c‖∞(N1w + N2v)
.

P r o o f. From inequality (10) we see that assumptions (ii)–(iv) of The-
orem 3 are satisfied. As in the previous theorem assumptions (v), (vi) are
satisfied, so the operator S defined by the right-hand side of (11) is com-
pletely continuous.

Now, we show that it satisfies condition (2) of Theorem 4. By inequality
(10),

L= sup
t∈[t0,∞)

∞\
t0

‖G(t, s)‖ ds ≤ sup
t∈[t0,∞)

∞\
t0

(N1e
−v(t+s−2t0) + N2e

−w|t−s|) ds

= sup
t∈[t0,∞)

(
−

N1

v
e−v(t+s−2t0)|∞s=t0 +

N2

w
e−w(t−s)|ts=t0 −

N2

w
e−w(s−t)|∞s=t

)

= sup
t∈[t0,∞)

(
N1

v
e−v(t−t0) +

N2

w
−

N2

w
e−w(t−t0) +

N2

w

)
=

N1

v
+

N2

w
,
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whence, by (12),

lim sup
‖x‖→∞

sup
t∈T

‖c(t)f(x) + b(t)‖

‖x‖
≤ ‖c‖∞ lim sup

‖x‖→∞

‖f(x)‖

‖x‖
<

vw

N1w + N2v
<

1

L
.

Then from Theorem 4 we obtain the assertion.
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