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On the method of lines for a non-linear

heat equation with functional dependence

by H. Leszczyński (Gdańsk)

Abstract. We consider a heat equation with a non-linear right-hand side which de-
pends on certain Volterra-type functionals. We study the problem of existence and con-
vergence for the method of lines by means of semi-discrete inverse formulae.

1. Introduction. Let a > 0, τ0, τ1, . . . , τn∈R+ and [−τ, τ ] = [−τ1, τ1]×
. . .× [−τn, τn]. Define E = [0, a]×R

n, E0 = [−τ0, 0]×R
n, E+ = (0, a]×R

n

and B = [−τ0, 0]× [−τ, τ ]. If u : E0 ∪E → R and (t, x) ∈ E, then we define
the Hale-type functional u(t,x) : B → R by u(t,x)(s, y) = u(t + s, x + y) for
(s, y) ∈ B. Because we also take into account the functional dependence on
the gradient Dxu = (Dx1

u, . . . ,Dxn
u), we write

(Dxu)(t,x) = ((Dx1
u)(t,x), . . . , (Dxn

u)(t,x)).

Denote by ∆ the Laplacian, that is, ∆ = Dx1x1
+ . . . + Dxnxn

. Define

Ω := E × C(B, R) × C(B, Rn).

Given f : Ω → R and φ : E0 → R, we consider the Cauchy problem

Dtu(t, x) = ∆u(t, x) + f(t, x, u(t,x), (Dxu)(t,x)),(1)

u(t, x) = φ(t, x) for (t, x) ∈ E0.(2)

Two specific examples of (1) are equations with Volterra integral and
delayed (deviated) dependence:

Dtu(t, x) = ∆u(t, x) + f̃
(
t, x,
\
B

u(t + s, x + y) dy ds,

0\
τ0

Dxu(t + s, x) ds
)

(integral dependence),

Dtu(t, x) = ∆u(t, x) + f̃
(
t, x, u

(
1
2 t, x

)
,Dxu(t − τ0, x + τ)

)
(delays),

where f̃ : E × R × R
n → R.
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Define

f [u](t, x) := f(t, x, u(t,x), (Dxu)(t,x)).

The following system of integral-functional equations is equivalent to the
differential-functional problem (1), (2):

u(t, x) = L0[u](t, x),(3)

Dxu(t, x) = L′[u](t, x),(4)

for (t, x) ∈ E0 ∪ E, where L′ = (L1, . . . ,Ln), and

L0[u](t, x) :=
\

Rn

H(t, x − y)φ(0, y) dy

+

t\
0

\
Rn

H(t − s, x − y)f [u](s, y) dy ds,

Li[u](t, x) :=
\

Rn

H(t, x − y)Dyi
φ(0, y) dy

+

t\
0

\
Rn

Dxi
H(t − s, x − y)f [u](s, y) dy ds,

for (t, x) ∈ E+ := (0, a] × R
n (i = 1, . . . , n), where

H(t, x) =





1

(2
√

πt)n
exp

(
− ‖x‖2

4t

)
for (t, x) ∈ (0,∞) × R

n,

0 for (t, x) ∈ (−∞, 0] × R
n,

is the Green function H : R
1+n → R, and

L0[u](t, x) := φ(t, x), Li[u](t, x) := Dxi
φ(t, x) (i = 1, . . . , n),

for (t, x) ∈ E0.
We intend to formulate a semi-discrete problem which corresponds to

(1), (2), and next to find a semi-discrete version of (3), (4). This seems to
be a new approach to the error analysis of the method of lines. We study
so-called C0,1 solutions to (1), (2), that is, u∈C(E0 ∪ E, R) satisfying (2)
in E0 and (3) in E with the continuous gradient Dxu. However, it will oc-
cur that consistency requirements lead to classical, even sufficiently regular,
solutions.

In [12] we obtained some existence results by means of the Banach con-
traction principle and discussed the question of their continuous differen-
tiability in the set E+, getting C0,1 and classical solutions to the Cauchy
problem. Fundamental notions, ideas and existence results in the theory of
parabolic equations can be found in [8, 10].

Theoretical search for some iterative methods, esp. monotone iterative
techniques (cf. [3, 9]), reveals certain advantages of Chaplygin’s method (see
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[2, 4]). This method can guarantee the second-order convergence under some
natural assumptions.However, one would like to avoid using it because of the
inevitable necessity to solve quasi-linear Cauchy problems with functional
dependence at each stage of the iterative method. There are well known and
frequently applied finite difference methods (FDM) (cf. [5, 6, 11, 13–16]).
Explicit FDMs for parabolic equations require a very specific condition on
the time and space steps, whereas there appear large non-linear systems at
each stage of any implicit FDM.

Enormous progress in parallel software has pointed to semi-discrete
methods such as the Rothe method and the method of lines. The latter gives
a large-scale structured system of non-linear ordinary differential equations
which can be solved by means of an effective Runge–Kutta method (see
[17]). Since the early sixties, the method of lines has become very attractive
for many mathematicians and engineers. We draw the reader’s attention
to some references on parabolic differential and differential-functional equa-
tions such as [7, 18, 19]. Because these papers develop a sort of maximum
principle as a main tool of their convergence proof, the present paper essen-
tially differs from them. Namely our method can be extended not only to
parabolic equations with functional dependence at spatial derivatives, but
also to strongly coupled systems of parabolic differential-functional equa-
tions. The assumptions in the present paper correspond to those in the
existence results.

Now, we introduce a natural mesh and a family of semi-discrete schemes.
First, we take the steps h = (h1, . . . , hn) ∈ R

n
+. Define xβ = h ⋆ β :=

(h1β1, . . . , hnβn) for β ∈ Z
n. Let

Zh = {xβ | β ∈ Z
n}.

Define some discrete sets associated with the sets E0 and E:

E0
h = [−τ0, 0]×Zh, Eh = [0, a]×Zh, Ẽh = E0

h ∪Eh, E+
h = (0, a]×Zh.

If u : E0 ∪ E → R, then we write uβ(t) = u(t, xβ) for (t, xβ) ∈ Ẽh.

We also need some further notation. Let el = (δ1,l, . . . , δn,l), where δj,l

is the Kronecker symbol. Define the difference operators

∆h = (∆1,h, . . . ,∆n,h), ∆2
h = ∆2

1,h + . . . + ∆2
n,h,

as follows:

∆l,huβ(t) = (2hl)
−1(uβ+el(t) − uβ−el(t)),

∆2
l,huβ(t) = h−2

l (uβ+el(t) − 2uβ(t) + uβ−el(t)) (l = 1, . . . , n),

for (t, xβ) ∈ Ẽh.
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Suppose that we are given the interpolation operators Th : C(Ẽh, R) →
C(E0 ∪ E, R) and T ′

h = (T 1
h , . . . , Tn

h ) : C(Ẽh, Rn) → C(E0 ∪ E, Rn), where

(Thu)(t, x) =
∑

xβ∈Zh

uβ(t)pβ
h(x),

(T ′
hU)(t, x) = ((Thu1)(t, x), . . . , (Thun)(t, x))

for (t, x) ∈ E0∪E and u ∈ C(E0∪E, R), U = (u1, . . . , un) ∈ C(E0∪E, Rn),

where pβ
h(t) ∈ C(Rn, R) for h ∈ R

n
+ and β ∈ Z

n.
We formulate the method of lines:

d

dt
uβ(t) = ∆2

huβ(t) + f(t, xβ, (Thu)(t,xβ), (T
′
h∆u)(t,xβ)) on E+

h ,(5)

uβ(t) = φβ(t) on E0
h,(6)

where φ : Ẽh → R is a discrete perturbed counterpart of the function φ.
Finite difference schemes for parabolic problems were considered in [1,

11, 16]. The convergence theorems were proved there by means of difference
inequalities or a sort of maximum principle. In [13] we prove a convergence
theorem for finite difference schemes that approximate unbounded solutions
to parabolic problems with differential-functional dependence by means of
a comparison lemma, which was possible in absence of functionals acting
on partial derivatives. Nevertheless, there were some technical problems.
The present paper shows new ways to solve parabolic equations with more
complex functional dependence, such as delay and Volterra type integrals,
esp. acting also on partial derivatives.

Define the set Fβ
p for p = 1, 2, . . . and β ∈ Z

n as follows:

σ ∈ Fβ
p if σ = (σ1, . . . , σp) and σ1, . . . , σp ∈ {±ek| k = 1, . . . , n}.

Set

Cβ
0,h =

{
1 for β = 0,
0 for β 6= 0,

Cβ
p,h =

∑

σ∈F
β
p

h−2
σ1

. . . h−2
σp

(p = 1, 2, . . .),

and

[h]2 =

n∑

j=1

h−2
j for h ∈ R

n
+.

Define

(7)

(8)
Hβ

p (t) =

{
Cβ

p,h exp(−2tn[h]2)t
p/p! for t > 0, p = 0, 1, . . . ,

0 for t ≤ 0, p = 0, 1, . . . ,

If u : Ẽh → R satisfies the equation

(9)
d

dt
uβ(t) = ∆2

huβ(t) + gβ(t) on E+
h ,
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where g : E+
h → R, then we can rewrite (9) as follows:

d

dt
(uβ(t) exp(2tn[h]2))

=
{ n∑

l=1

h−2
l (uβ+el(t) + uβ−el(t)) + gβ(t)

}
exp(2tn[h]2)

and next integrating from 0 to t we obtain

uβ(t) = uβ(0) exp(−2tn[h]2)

+

t\
0

{ n∑

l=1

h−2
l (uβ+el (s) + uβ−el(s)) + gβ(s)

}
exp(−2(t − s)n[h]2) ds,

or, in explicit form,

uβ(t) =
∞∑

p=0

∑

η∈Zn

Hβ−η
p (t)uη(0) +

∞∑

p=0

∑

η∈Zn

t\
0

Hβ−η
p (t − s)gη(s) ds on Eh,

where Hβ
p (t) are defined by (7)–(8).

If we take gβ(t) := f(t, xβ , . . .) in (9), then we get the following discrete
inverse formula for the scheme (5), (6):

uβ(t) =
∞∑

p=0

∑

η∈Zn

Hβ−η
p (t)φη(0)

+

∞∑

p=0

∑

η∈Zn

t\
0

Hβ−η
p (t − s)fη[u](s)ds on Eh,

where

fβ[u](t) = f(t, xβ , (Thu)(t,xβ), (T
′
h∆u)(t,xβ)).

Define the residual expression

(10) Θβ [u;h](t) =
d

dt
uβ(t) − ∆2

huβ(t) − fβ [u](t)

for (t, xβ) ∈ E+
h and u ∈ C(Ẽh, R) differentiable with respect to t. Observe

that fβ[u](t) is a semi-discrete version of the Nemytskĭı’s operator.

2. Existence and convergence results. We use the symbol CB to
indicate classes of bounded continuous functions. Write

X [φ] := {(u,U) ∈ CB(E0 ∪ E, R1) × CB(E0 ∪ E, Rn) |
u(t, x) = φ(t, x), U(t, x) = Dxφ(t, x) for (t, x) ∈ E0}.

Denote by ‖ · ‖0 the supremum norm.
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Assumption 1. Suppose that:

1) φ, φ ∈ CB(E0, R), Dxφ,Dxφ ∈ CB(E0, R), f(·, ·, 0, 0) ∈ CB(E, R).
2) There are L1, L2 ∈ R+ such that

|f(t, x, w,W ) − f(t, x,w,W )| ≤ L1‖w − w‖0 + L2‖W − W‖0

for (t, x, w,W ), (t, x,w,W ) ∈ Ω (recall that Ω = E ×C(B, R)×C(B, Rn)).

Assumption 2. For every step h and for all xβ ∈ Zh we have pβ
h ∈

C(Rn, R), and there are λ ≥ 1 and M ∈ R+ such that

pβ
h(x) = 0 for ‖x − xβ‖0 > hλ,

∑

xβ∈Zh

pβ
h(x) = 1 and ‖pβ

h(x)‖0 ≤ M on R
n.

Assumption 3. Suppose that v ∈ CB(E0∪E, R) is a classical solution to
the problem (1), (2) such that (v,Dxv) ∈ X [φ] and Dxixi

v ∈ CB(E0 ∪E, R)
for i = 1, . . . , n. Assume that the function Dxv is uniformly continuous with
respect to x in E0 ∪ E, and Dxixi

v is uniformly continuous with respect
to xi for i = 1, . . . , n. Denote their moduli of continuity by σx and σxx,
respectively.

First, we formulate a lemma on global estimates for a system of integral
equations.

Lemma 1. Suppose that ε0, ε1, P , Q, L, L′, Qj , Sj , S′
j ∈ R+ for

j = 1, . . . , n. If

L′S < 1 for S := max
j=1,...,n

(
Sj

Q
+ 2

S′
j

Q3
j

)
,

and W0,Wj ∈ C([0, a], R+), where

W0(t) = ε0 +

t\
0

{P + LW0(s) + L′W1(s)} ds,(11)

Wj(t) = ε1 +

t\
0

{Sje
−Q(t−s) + S′

j(t − s)2e−Qj(t−s)}(12)

× {P + LW0(s) + L′W1(s)} ds (j = 1, . . . , n),

then

W0(t) ≤ ε0 +
ε̃

L

{
exp

(
tL

1 − L′S

)
− 1

}
,

Wj(t) ≤ ε1 + ε̃

{
Sj

exp
(

tL
1−L′S

)
− exp(−Qt)

(1 − L′S)Q + L
+

2S′
j exp

(
tL

1−L′S

)
(
Qj + L

1−L′S

)3

}

(j = 1, . . . , n),

where ε̃ = P + Lε0 + L′ε1.
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P r o o f. Define

W̃ (t) = P + LW0(t) + L′ max
j=1,...,n

Wj(t) (t ∈ [0, a]).

Then W̃ satisfies the integral inequality

W̃ (t) ≤ ε̃ + max
j=1,...,n

{ t\
0

W̃ (s){L + L′(Sje
−Q(t−s) + S′

j(t − s)2e−Qj(t−s))} ds
}

≤ ε̃ +

t\
0

W̃ (s)Lds

+ max
j=1,...,n

{ t\
0

W̃ (t)L′(Sje
−Q(t−s) + S′

j(t − s)2e−Qj(t−s)) ds
}

≤ ε̃ +

t\
0

W̃ (s)Lds + W̃ (t)L′ max
j=1,...,n

{ ∞\
0

Sj

Q
e−ξ dξ +

∞\
0

S′
j

Q3
j

ξ2e−ξ dξ

}
.

Hence (by the Gronwall lemma) we get

(13) W̃ (t) ≤ ε̃

1 − L′S
exp

(
tL

1 − L′S

)
.

From (11)–(13), we get the assertions of our lemma.

Lemma 2 (Existence). If Assumptions 1–2 are satisfied , then there exists

a unique bounded and continuous solution to (5), (6).

P r o o f. The right-hand side of the system satisfies the Lipschitz condi-
tion in the Banach space of all bounded continuous functions. Apply the
Banach contraction principle.

We say that a particular method of lines (e.g. (5)) is stable if small per-
turbations of its right-hand side and initial data result in a correspondingly
small variation of its solutions. The method (5) will be called consistent

with the differential equation if, given a regular solution v to (1), we get

|fβ [v](t) − f [v](t, xβ)| ≤ C ′
h

for all (t, xβ) ∈ E+
h , where R+ ∋ C ′

h → 0 as ‖h‖0 → 0.
Given K ∈ R+ and h ∈ R

n
+, define

IK(h) = {h ∈ R
n
+ | h ≤ h, hj/hl ≤ K (j, l = 1, . . . , n)}.

Lemma 3 (Stability). Suppose that u, v ∈ CB(Ẽh, R) and there are

Ch, Ch, Ph ∈ R+ such that

|vβ(t) − uβ(t)| ≤ Ch → 0 on E0
h,

‖∆hvβ(t) − ∆huβ(t)‖0 ≤ Ch → 0 on E0
h,
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Θβ [u;h](t) = 0, |Θβ [v;h](t)| ≤ Ph → 0 on E+
h .

If Assumptions 1–2 are satisfied and K ≥ 1, h ∈ R
n
+, then

sup
β∈Zn

‖(vβ − uβ ,∆h(v − u)β)‖0 → 0 as ‖h‖0 → 0, h ∈ IK(h).

P r o o f. Set ωβ(t) := vβ(t) − uβ(t). Then

|Θβ [v;h](t)| ≤ Ph on E+
h ,

|ωβ(t)| ≤ Ch, ‖∆hωβ(t)‖0 ≤ Ch on E0
h,

and

ωβ(t) =

∞∑

p=0

∑

η∈Zn

Hβ−η
p (t)ωη(0)(14)

+

∞∑

p=0

∑

η∈Zn

t\
0

Hβ−η
p (t − s)

× {(fη[v](s) − fη[u](s)) + Θη[v;h](s)} ds,

∆j,hωβ(t) =

∞∑

p=0

∑

η∈Zn

∆j,hHβ−η
p (t)ωη(0)(15)

+
∞∑

p=0

∑

η∈Zn

t\
0

∆j,hHβ−η
p (t − s)

× {(fη[v](s) − fη[u](s)) + Θη[v;h](s)} ds

for (t, xβ) ∈ Eh and j = 1, . . . , n. Observe that

(16)

∞∑

p=0

∑

η∈Zn

Hβ−η
p (t) = 1 on E+

h ,

(17)
∞∑

p=0

∑

η∈Zn

|∆j,hHβ−η
p (t)|

≤ h−1
j

∞∑

p=0

exp(−2t[h]2)
tp

p!

×
{

2n−1([h]2)
p + p(p − 1)(2[h]2 − h−2

j )p−2
∣∣∣h−4

j −
n∑

l=1, l 6=j

h−4
l

∣∣∣
}

= h−1
j

{
2n−1 exp(−t[h]2) + t2 exp(−th−2

j )
∣∣∣h−4

j −
n∑

l=1, l 6=j

h−4
l

∣∣∣
}

on E+
h (j = 1, . . . , n).
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Define Mλ = M(2λ + 1)n and

‖γ‖0(t) = sup
s≤t, xη∈Zh

‖γη(s)‖0 for γ ∈ CB(Ẽh, Rk).

It follows from Assumption 2 that

‖(Thω)(t,xβ)‖0 = sup
(s,y)∈B

|(Thω)(s + t, y + xβ)|

≤
∑

xβ∈Zh

|ωβ(s)| |pη
h(s + t, y + xβ)|

≤ M(2λ + 1)n sup
s, xη∈Zh

|ωη(s)| = Mλ‖ω‖0(t).

Hence

‖(Th∆j,hω)(t,xβ)‖0 ≤ Mλ‖∆hω‖0(t) (j = 1, . . . , n),

for (t, xβ) ∈ Ẽh. Taking supremum on both sides of (14), (15) and applying
(16), (18), we obtain the integral estimates

‖ω‖0(t) ≤ Ch +

t\
0

{Ph + MλL1‖ω‖0(s) + MλL2‖∆hω‖0(s)} ds,

‖∆j,hω‖0(t) ≤ Ch +

t\
0

h−1
j {Ph + MλL1‖ω‖0(s) + MλL2‖∆hω‖0(s)}

×
{

2n−1 exp(−(t − s)[h]2)

+ t2 exp(−(t − s)h−2
j )

∣∣∣h−4
j −

n∑

l=1, l 6=j

h−4
l

∣∣∣
}

ds

(j = 1, . . . , n),

for 0 ≤ t ≤ a. Take W0,Wj (j = 1, . . . , n) given by (11), (12) with

L = MλL1, L′ = MλL2, Q = [h]2,

P = Ph, ε0 = Ch, ε1 = Ch,

Qj = h−2
j , Sj = h−1

j 2n−1,

S′
j = h−1

j

∣∣∣h−4
j −

n∑

l=1, l 6=j

h−4
l

∣∣∣ (j = 1, . . . , n).

There exists h′ ∈ IK(h) such that

θK(h) := MλL2 max
j=1,...,n

{
h−1

j 2n−1

[h]2
+ 2h5

j

∣∣∣∣h
−4
j −

n∑

l=1, l 6=j

h−4
l

∣∣∣∣
}

< 1
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for each h ∈ IK(h), h ≤ h′. In view of Lemma 1, there is a global estimate
for the comparison problem, thus we have the estimates

(18) ‖ω‖0(t) ≤ W0(t) ≤ Ch +
C̃h

MλL1

{
exp

(
tMλL1

1 − MλL2θK(h)

)
− 1

}
,

(19) ‖∆j,hω‖0(t)

≤ Wj(t) ≤ Ch + C̃h

{
h−1

j 2n−1
exp

(
tMλL1

1−MλL2θK(h)

)
− exp(−t[h]2)

(1 − MλL2θK(h))[h]2 + MλL1

+
2h−1

j exp
(

tMλL1

1−MλL2θK(h)

)
(
h−2

j + MλL1

1−MλL2θK(h)

)3

∣∣∣h−4
j −

n∑

l=1, l 6=j

h−4
l

∣∣∣
}

(j = 1, . . . , n),

for h ∈ IK(h′), where

(20) C̃h = Ph + L1Ch + L2Ch.

It is clear that ‖Wj‖0 → 0 as ‖h‖0 → 0, h ∈ IK(h′) (j = 0, . . . , n), which
completes the proof.

Lemma 4 (Consistency). If Assumptions 1–3 are satisfied , then the

scheme (5) is consistent with the differential-functional problem.

P r o o f. Take v as in Assumption 3. Suppose that σx and σxx are the
moduli of continuity for Dxv and Dxixi

v respectively. Let (t, xβ) ∈ E+
h and

(s, y) ∈ B. Then we can use the Taylor expansion at x = xβ + y to derive

(Thv)(t,xβ)(s, y) − v(t + s, x)

=
∑

xη∈Zh

pη
h(x)(vη(t + s) − v(t + s, x))

=
∑

xη∈Zh

pη
h(x)

1\
0

Dxv(t + s, ζxη + (1 − ζ)x) ◦ (xη − x) dζ,

where z ◦ z denotes the scalar product in R
n, and

(Th∆j,hv)(t,xβ)(s, y) − Dxj
v(t + s, x)

=
∑

xη∈Zh

pη
h(x){[(∆j,hv)η(t + s) − Dxj

v(t + s, xη)]

+ [Dxj
v(t + s, xη) − Dxj

v(t + s, x)]}

=
∑

xη∈Zh

pη
h(x)

{
[Dxj

v(t + s, xη) − Dxj
v(t + s, x)]
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+
1

2hj

1\
0

(1 − ζ)[Dxjxj
v(t + s, xη + ζhjej)h

2
j

− Dxjxj
v(t + s, xη − ζhjej)h

2
j ] dζ

}

for j = 1, . . . , n. Thus, we get

‖(Thv)(t,xβ ) − v(t,xβ)‖0 ≤ Mλ‖Dxv‖0nλ‖h‖0,

‖(T ′
h∆hv)(t,xβ) − (Dxv)(t,xβ)‖0

≤ Mλ

{
σx(λ‖h‖0) +

1

2

1\
0

(1 − ζ)σxx(2‖h‖0)‖h‖0 dζ
}
.

Finally, we obtain

|fβ [v](t) − f [v](t, xβ)|

≤ Mλ

{
L1‖Dxv‖0nλ‖h‖0 + L2

[
σx(λ‖h‖0) + σxx(2‖h‖0)

‖h‖0

4

]}

and

|∆2
j,hvβ(t) − Dxjxj

v(t, xβ)| ≤ σxx(hj) (j = 1, . . . , n).

These estimates complete the proof.

Theorem 1 (Convergence result). Suppose that Assumptions 1–3 are

satisfied , and there are Ch, Ch ∈ R+ such that

|φβ(t) − φβ(t)| ≤ Ch → 0 on E0
h,

‖∆hφβ(t) − ∆hφβ(t)‖0 ≤ Ch → 0 on E0
h.

Let K ≥ 1, h ∈ IK(h) and θK(h) < 1. If u ∈ CB(Ẽh, R) is a solution to

(5), (6), then

(21) sup
β∈Zn

‖(vβ − uβ ,∆h(v − u)β)‖0 → 0 as ‖h‖0 → 0, h ∈ IK(h).

P r o o f. The existence of bounded solutions to (5), (6) is a consequence
of Lemma 2. It is obvious that Ch → 0 and Ch → 0 as ‖h‖0 → 0. In view
of Lemma 4, we can define

Ph = σxx(‖h‖0) + Mλ

{
L1‖Dxv‖0nλ‖h‖0(22)

+ L2

[
σx(λ‖h‖0) + σxx(2‖h‖0)

‖h‖0

4

]}
.

Then Ph and C̃h, defined by (20), tend to 0 as ‖h‖0 → 0. Assertion (21)
follows immediately from estimates (18), (19) in the proof of Lemma 3 and
from the evident fact that ‖Dxv − ∆hv‖0 → 0 as ‖h‖0 → 0.
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The right-hand sides of estimates (18), (19), show that the convergence
rate depends on Ch, Ch, Ph. We formulate a higher-order convergence state-
ment.

Corollary 1. Suppose that the assumptions of Theorem 1 are satisfied ,
and

1) Ch/‖h‖2
0 and Ch/‖h‖2

0 are uniformly bounded.

2) For every x ∈ R
n and for every h ∈ R

n
+, we have

∑

xβ∈Zh

pβ
h(x)(xβ − x) = 0

3) There are bounded and continuous derivatives Dxxxv in E0 ∪ E and

Dxjxjxjxj
v in E (j = 1, . . . , n).

Then the second-order convergence of the method of lines holds true.

P r o o f. We verify the estimates of the two terms which appear in the
proof of Lemma 4, that is,
∣∣∣

∑

xη∈Zh

pη
h(x){Dxj

v(t + s, xη) − Dxj
v(t + s, x)}

∣∣∣

=
∣∣∣Dxjxv(t + s, x) ◦ (xη − x)

+

1\
0

(Dxjxv(t + s, x + ζ(xη − x)) − Dxjxv(t + s, x)) ◦ (xη − x) dζ
∣∣∣

≤ Mλ‖Dxxxv‖0(λ‖h‖0)
2,

where z ◦ x is the scalar product of the vectors z and x, and

|Dxj
v(t, xβ) − ∆j,hvβ(t)| ≤

h2
j

6
‖Dxjxjxj

v‖0 (j = 1, . . . , n).

The second-order approximation of the Laplacian by its difference counter-
part is standard. These estimates are crucial for getting the second-order
consistency statement, hence the same convergence rate.

Remark 1. The stability and convergence results of the present paper
extend, in a non-trivial way, to strongly coupled systems of differential-
functional equations

Dtuk(t, x) =

n∑

j,l=1

a
(k)
jl Dxjxl

uk(t, x)

+ f (k)(t, x, u(t, x), u(t,x) ,Dxu(t, x), (Dx)(t,x)) (k = 1, . . . ,m),

uk(t, x) = φk(t, x) on E0 (k = 1, . . . ,m),
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and their further generalization:

Dtuk(t, x) =

n∑

j,l=1

a
(k)
jl Dxjxl

uk(t, x)

+ f (k)(t, x, u(t, x), V(t,x)u,Dxu(t, x), V(t,x)(Dxu))

(k = 1, . . . ,m),

uk(t, x) = φk(t, x) on E0 (k = 1, . . . ,m),

where u = (u1, . . . , um) : E0 ∪ E → R
m, φk : E0 → R and the real coeffi-

cients a
(k)
jl are such that the matrices A(k) = [a

(k)
jl ]j,l=1,...,n are positive and

symmetric. The functionals V(t,x)u are some generalizations of the Hale-type
functionals u(t,x).
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