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A note on generalized flag structures

by ToMAsz RYBICKI (Rzeszow)

Abstract. Generalized flag structures occur naturally in modern geometry. By ex-
tending Stefan’s well-known statement on generalized foliations we show that such struc-
tures admit distinguished charts. Several examples are included.

1. Introduction. It has been first established by P. Stefan in [13, 14]
that the orbits of any “isotopically connected” set of local C"-diffeomor-
phisms, 1 < r < w, fit together to form a generalized foliation. The career
of this statement in geometry is justified by the fact that a nontransitive
geometric structure usually induces a foliation with singularities. Further
facts concerning generalized foliations and the integrability of distributions
can be found in [1, 2, 15, 17]. However, it seems that surprisingly little is
known on this subject compared with the theory of regular foliations.

In this note we give some introductory remarks on generalized flag struc-
tures. This notion describes a somewhat more complicated situation which
arises for instance in multisymplectic geometry, Riemannian foliations, Ja-
cobi structures, Hamiltonian actions on Poisson manifolds (cf. Section 3).

Given generalized foliations F; (i = 1,2) on a manifold M we write
F1 < Fo and say that F; is a subfoliation of Fy if every leaf of F;p is
contained in a leaf of F5. By a generalized flag structure on M we mean any
finite sequence F; < ... < Fj of foliations of M. Throughout we shall drop
the term “generalized” in the above notions.

Our purpose is to formulate the notion of a distinguished chart for a
flag structure. We show that any flag structure admits distinguished charts.
This fact is well known and trivial for regular flag structures (see, e.g., [18])
in contrast to the case of (regular) almost-product structures where one
needs more than merely the integrability of each distribution to obtain the
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integrability of the whole structure. One of the consequences of our result is
that the pseudo-n-transitivity can be formulated in a more general context
(Section 4).

2. The existence of distinguished charts. Let us recall some con-
cepts from [13] and [14]. A foliation of class C", 1 < r < w, is a partition
F of M into weakly imbedded submanifolds (see below), called leaves, such
that the following condition holds. If x belongs to a k-dimensional leaf, there
exists an (inverse) chart (U, ¢) with ¢(0) =z and U =V x W, where V is
an open ball in R* and W is an open ball in R"~%, such that if L € F then

d(U)NL=¢(Vx1), forl={weW:¢0,w)e L}

A subset L of a C"-manifold M endowed with a C"-differentiable struc-
ture o which makes it an immersed submanifold is weakly imbedded if for any
locally connected topological space N and a continuous map f : N — M
satisfying f(N) C L, the map f : N — L is continuous as well. It follows
that such a differentiable structure o is necessarily unique.

A smooth mapping ¢ of an open subset of R x M into M is said to be a
C"-arrow if (1) ¢(t,-) = ¢; is a local C"-diffeomorphism for each ¢, possibly
with empty domain, (2) ¢ = id on its domain, and (3) dom(¢;) C dom(¢s)
whenever 0 < s < t.

Given an arbitrary set A of arrows let A* be the totality of local diffeo-
morphisms 1 such that ¢ = ¢(¢,-) for some ¢ € A, t e R. Next, A, stands
for the set consisting of all local diffeomorphisms which are finite composi-
tions of elements from A* or (A*)~! = {¢y=1 : ¢ € A*} and of the identity.
Then the orbits of A, are called accessible sets of A.

For x € M we let A%x), A(z), and A(x) be the vector subspaces of
T, M spanned by

{600,2): 0 € A}, {d(ty): b € A, duly) =},
and
{dy¢(v) : ¢ 6 A*u ¢(?J) = ‘T’ v 6 A(y)}7
respectively. Clearly A%(z) C A(x) C A(x).
THEOREM 1 [13]. Let A be an arbitrary set of C"-arrows on M. Then:
(i) Every accessible set of A admits a (unique) C”-differentiable struc-
ture of a connected weakly imbedded submanifold of M .

(ii) The collection of accessible sets defines a foliation F = F(A).
(iii) {A(x)}ren is the tangent distribution of F(A).

Any diffeomorphism group G(M) C Diff" (M) defines uniquely a set of
arrows. Namely, by a C"-smooth path (or isotopy) in G(M) we mean any
family {fi}ter with f; € G(M) such that the map (¢, z) — fi(z) is smooth.
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Next, G(M)o denotes the subgroup of all f € G(M) such that there is a
smooth path {f;}+er with f; = id for ¢t < 0and f; = f for ¢t > 1. The totality
of f; as above constitutes a set of arrows. This set determines uniquely a
foliation F(G) which coincides with the orbits of G(M)o.

Likewise, any set of local vector fields defines a foliation as any flow is
an arrow.

A set of arrows A is said to be homogeneous if A(z) = A(x), for all
x € M. Next, A is symmetric if ¢ € A* implies that ¢~ is a composition
of elements of A*.

LEMMA. To each set of arrows A one can assign a homogeneous set
of arrows A such that F(A) = F(A) and A°(z) = A(z) for all x € M.
Moreover, if Ay C Ay then Ay C As, where A; is assigned to A;.

We reproduce the proof from [13] for the sake of completeness.
First we enlarge A by setting
A={brrs0 (@) buro(6:) 19 €A, s €R}.
It is visible that A, = A, and F(A) = F(A). Furthermore, A is symmetric,
A%(x) = A(x) = A(z), and A is homogeneous whenever so is A.
Next we put
/T:{Xzzpocmow_l :domy = (—e,e) x V, V open, ¢ € A, € A}

Then by a straightforward inspection A(z) = A(z). Since F(A) = F(A) it
follows by Theorem 1 that A is homogeneous.

Therefore A = A satisfies the claim.

Let 71 < ... < Fj be a flag structure on M and let x € M. If z €
L; € F; we write p;(z) = dim L;, p;(z) = pi(x) — pi—1(x) (i =2,...,k) and
qi(z) =m — pi(z).

DEFINITION. A chart (U, ¢) of M with ¢(0) = z is called a distinguished
chart at x with respect to 71 < ... < Fp if U = V] x ... x Vi x W with
Vi ¢ RP@) Y, ¢ RP®) (5> 2) and W € R%*(®) open balls such that for
any L; € F; we have

(%) p(U)NL; = (Vi x ... x Vi x1;),
where
lLi={weViy1 x...x Ve x W:¢0,w) € L;}
fori=1,...,k.
Observe that actually the above ¢ is an inverse chart; following [13] we

call it a chart for simplicity. Notice as well that in the above definition
one need not assume that F; is a foliation but only that it is a partition
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into weakly imbedded submanifolds; that F; is a foliation follows then by
definition.

THEOREM 2. Let Ay C ... C A be an increasing sequence of sets of
arrows of M. Then F(A1) < ... < F(Ay) admits a distinguished chart at
any x € M. Specifically, so does any flag structure on M.

Proof. Fix x € M and let p; = p;(x), p; = p;(x), ¢ = ¢i(x). We have
Ai(x) = T, F;, i =1,...,k. In view of Lemma each A; can be replaced by
A; such that A%(z) = A;(x), F(A;) = F(A;), and Ay C ... C Ay

First we choose ¢/ € A%, j =1,...,p1, such that ¢/ (0, 2) form a basis of
T,.F1. Next we extend this basis to a basis of T}, F5 by means of gf)j (0, x) with
®’ € Aj for j =p1 +1,...,p2, and so on. Thus we obtain a basis of T, F}
of the form qﬁl(O,x), .. .,q;pk(o,l‘) where ¢t ... ¢Pi € A fori=1,... k.

Now let @ be a gi-dimensional submanifold of M with z € @ and T, M =
T.Fr ® T,Q. Shrinking @ if necessary we may and do assume that

G110, 2), .., P*(0, 2)

are linearly independent for any z € . By choosing ¢, > 0 sufficiently
small we see that the mapping

RS}
Ukt (bpyy 1y s tpry 2) € Vi X Q > @7 o...ogbf;k(z)eM

tpp_q+1
is an imbedding, where Vi, = {t = (tp,_,41,---,tp,) € RPF 1 |t| < ex}, | -]
being the usual norm. Then T, M = T, F;_1 @ T,(im ). Again, possibly
shrinking @@ and Vj, we find that

P20, 2), ..., §P*1(0, 2)

are linerly independent for any 2z’ € im ;. Then with some small g1 > 0
the mapping

o1
V1t (Lpp_ot1se -y tpes2) € Ve X Vi X Q — @72 o...ogf)f;k(z) eM

Pp—2+1
is an imbedding, where Vi_1 = {t = (tp,_o4+1,---,tp,_,) € RPE-1 ¢ || <
ex—1}. We have T, M = T, F—o ® T, (im(1px_1)).

By continuing this procedure we obtain a chart of the form
1= (b1, by, y) €VIX X Vi X Wi ¢, o...odpr (x(y) € M,

where W C R9% is an open ball and x : W — @ with x(0) = z is an (inverse)
chart.

Let us check that ¢ is distinguished, i.e. that (x) is fulfilled. Fix 1< i< k.
Let z € U and ¢(z) = ¢;, o.. .ogZ)f;k (x(y)) = ¢f,0.. .oqﬁf; (v) for some y € W
and v € iIm(Yr—_i4+1). But im(¢r—i11) = ¢(0Xx ... x0x Vipq X... x Vi x W).
Hence ¢(z) € L; if and only if v € L; Nim(Yk—i11), i.e. v = ¢(0, w) where
w € l;. In fact, ¢}, ..., ¢} preserve all the leaves of F;.
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For the second assertion let F; < ... < Fj be a flag structure. If A(F;)
is the set of flows of all (local) vector fields tangent to F; then obviously
F(A(F;)) = F;. The proof follows by the first part.

In view of the above proof we get

COROLLARY. Let Fi < ... < Fi on M and let (L,o) be a leaf of Fy.
Then F1|L < ... < Fr-1|L and a distinguished chart at x for L is the
restriction to L of a distiguished chart at x for M.

3. Examples. We give some geometric examples of subfoliations or flag
structures which motivate our interest, mainly in disciplines being nowadays
intensively developed.

3.1. Let F;, i = 1,2, be a foliation of class C*° and D; = {T,F;} its
tangent distribution. Then F; N Fy < F; if and only if D = Dy N D5 is of
class C* (i.e. for any = € M there are vector fields X1,..., X}, such that
D, is spanned by Xi(z),..., Xy)(x)) (cf. [1]).

3.2. Let G;(M) C Diff"(M) be a locally arcwise connected group of
diffeomorphisms. If G1(M) C ... C Gi(M) we get a flag structure F(G1) <

3.3. Recall that any set of local vector fields V(M) on M defines uniquely
a foliation F (V). So if Vi C ... C Vj is an increasing sequence of sets of
local vector fields one has F(V;) < ... < F(Vg). In particular, if X is any
vector field tangent to a foliation F then the orbits of its flow constitute a
subfoliation of F.

3.4. On M = R? we define two foliations:
F1 = {all circles parallel to the xozs-plane with center on the x;-axis},

and
F> = {all spheres centered at 0}.

Then F; < F». We have three types of points: (i) if x = 0 then p;(x)
p2(x) = 0; (ii) if « lies on the zq-axis, z # 0 then p;(z) = 0 and pa(z) =
(iii) p1(z) = 1 and pa(x) = 2 for z off the x;-axis.

3.5. Let (M, F) be a regular Riemannian foliation and let F be the set
of closures of the leaves of . Then F is a singular Riemannian foliation
(cf. [9]) and obviously F < F.

Also orbit-like foliations introduced by P. Molino in [10] have the prop-
erty that the foliation F by the closures of leaves of F is again Riemannian,
and the relation F < F holds.

3.6. Let A; be a Poisson structure on M, i =1,...,k, and let F(A;) be
the corresponding symplectic foliation (cf. [16]). If F(A;) < ... < F(Ag) we

2;
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shall say that (Ay,. .., Ag) constitutes a Poisson flag structure. Observe that
in contrast to Theorem 2 and despite the existence of the canonical charts
for Poisson manifolds (a splitting theorem of Weinstein [16]), a common
canonical chart for A; would exist only in very special cases.

Likewise, a Jacobi flag structure arises when one has a sequence of Jacobi
structures (A;, F;) such that F(Aq, Ey) < ... < F(Ag, Ex), where F(A;, E;)
is the characteristic foliation of (A;, E;) (see (3.10) below).

3.7 (Reduction of Poisson manifolds, cf. [16]). Let N be a submanifold of
a Poisson manifold (M, A) such that Dy = (§ Ann(T'N))NTN is a distribu-
tion of constant dimension along N. Here  : 2'(M) — X (M) is defined by
$(a)(B) = A(a, B), and Ann denotes the annihilator. Then Dy is differen-
tiable and integrates to a foliation Fx which is called the subcharacteristic
foliation of N. If N is transversal to F(A) then Fy < F(A) N N.

3.8. Consider a Hamiltonian action of a compact Lie group G on a
Poisson manifold (M, A) (cf. [11]). Then the orbits of G form a subfoliation
Fe of F(A). The same is true for canonical manifolds (cf. [6]).

3.9. A homogeneous Poisson structure (A, Z) on a manifold M is a Pois-
son structure A and a vector field Z such that Lz A = —A, where L is the
Lie derivative. These structures play a central role in the theory of Ja-
cobi manifolds (see [3]). Let F(A,Z) be the foliation generated by F(A)
and Z (at some points Z is tangent to F(A) and at some is not). Then
F(A) < F(A,Z). This is still the case of locally homogeneous structures
(cf. [3, Prop. 2.16]).

3.10. Recall that a pair (A4, E) is a Jacobi structure on M if A is an
antisymmetric (2,0)-tensor, F is a vector field, and the equalities

A, A =2EAA, [E,A =0

are satisfied. Here [-, -] is the Schouten—Nijenhuis bracket.

For u € C*° (M) one defines a Hamiltonian vector field by X,, = [A,u] +
uF. The orbits of the set of all Hamiltonian vector fields form a characteristic
foliation of (A, E), denoted by F(A, E). Next, let F*(A, E) be the foliation
determined by all X,, with u € C°°(M) satisfying Lgu = 0. Then

F(E) < F*(AE) < F(AE),
where F(FE) is the foliation given by the orbits of E (cf. [3, p. 119]).

3.11. Interesting examples arise in multisymplectic geometry (see, e.g.,

[4, 5, 7]). One of them is produced by Nambu-Poisson manifolds.
Let us recall that a skew-symmetric n-linear mapping {, ..., } : C°°(M)x
X C®(M) — C*®(M) is called a generalized almost Poisson (g.a.P.)
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bracket of order n if it satisfies the Leibniz rule:

{urvy, ..., un} = ui{vg, ... unt + v1{ug, ..., un}

for all uy,...,u,, v1 € C>°(M). Equivalently, a g.a.P. manifold of order
n is a pair (M, A), where A is a skew-symmetric (n,0)-tensor on M. The
relation between A and the n-bracket {,...,} is expressed by the equal-
ity A(duq,...,du,) = {u1,...,u,}. Then we define a linear mapping £ :
2"1(M) — X (M) by setting

<ﬁ(0¢1 AL /\Oénfl),ﬁ> = A(Oél, - ,an,l,ﬁ)

for any aq,...,a,_1, B€2(M). Here (, ) is the natural pairing on X' (M) x
21 (M).
For any uy,...,u,—1 € C°°(M) we define a Hamiltonian vector field

X’U«h-- :jj(dul/\/\dun_l)

Un—1

A vector field X is called an infinitesimal automorphism of (M, A) if Lx A =
0. It is visible that this condition amounts to claiming that X is a derivation
of the bracket {,...,}.

Now a g.a.P. manifold of order n is called a Nambu—Poisson manifold if
any Hamiltonian vector field is a derivation of the bracket. Notice that for
n = 2 the above condition is equivalent to [A, A] = 0 and, consequently, the
Nambu—Poisson manifolds of order 2 coincide with the Poisson manifolds.

Given a Nambu—Poisson tensor let us define a smooth distribution D =
{D,}sens where D, = #(A\" "' T*M). This distribution is called character-
istic. We have the following structural theorem.

THEOREM 3 [4]. Let (M, A) be an m-dimensional Nambu—Poisson man-
ifold of order n > 3. Then:

(1) The characteristic distribution D is completely integrable and, con-
sequently, it defines a foliation, denoted by F(A). There are two kinds of
leaves of F(A): (a) if Ay = 0 then the leaf passing through x reduces to
x itself, and (b) if Ay # 0 then the leaf meeting x has dimension n and
A restricted to it induces a Nambu—Poisson structure which comes from a
volume form.

(2) In case (b) there exists a distinguished chart (z1,...,%n,Y1,...,Yq)
at x (¢ =m —n) such that A = A, ... A0y, where 9; = 0/0x;.

Now for any ue C*° (M) we put A, = 14, A. It is easily seen [4] that A, is
a g.a.P. (resp. Nambu—Poisson) structure of order n — 1 if A is a g.a.P.(resp.
Nambu—Poisson) structure of order n. This can be iterated by setting A, =
(Ay)y and so on. Therefore for any choice ug, ..., u,—1 € C°°(M) we obtain
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a flag structure
FAuy, i 1) = F(Auy, oy n) < oo < F(Ayy) < F(A).
As in (3.6) there are no common canonical charts for this flag.

3.12. Only recently the authors of [5] have introduced the concept of
Nambu—Jacobi structure as a counterpart of the Jacobi structures in mul-
tisymplectic geometry. Specifically, if (A, A2) is a Nambu—Jacobi structure
of order n, n > 2, then A; (resp. As) is a Nambu—Poisson structure of order
n (resp. n — 1). Consequently, further examples of flag structures occur.

4. Locality and pseudo-n-transitivity. In [12] we have proven that
the locality of a diffeomorphism group yields its pseudo-n-transitivity. This
can be extended to the flag case.

Recall that G(M) C Diff" (M), where r < oo (resp. 7 = w) satisfies the
locality condition if for any open relatively compact U,V C M with U C V,
and a C"-diffeotopy {f:} in G(M) with fy = id, there exist ¢ > 0 and a
smooth diffeotopy {g¢:} in G(M) such that g, = f; on U and supp(g:) C V
for [t| < € (resp. g; is sufficiently C! near f; on U and g, is sufficiently C!
near the identity outside V for |t| < €).

By an orbit of a sequence of diffeomorphism groups G1(M) C ... C
Gr(M) we mean any orbit of each G;(M)q. Next, for z,y € M belonging
to a common orbit, a minimal orbit containing x, y is the unique orbit of
the least dimension passing through z, y.

The sequence G1 (M) C ... C G(M) is said to be pseudo-n-transitive if
for any two n-tuples of pairwise distinct points (z1,...,z,) and (y1,...,yn)
of M such that x;, y; belong to the same orbit and each orbit of dimension
<1 contains at most one x; there exists f € Gy(M )y satisfying f(x;) = y;
and preserving all the minimal orbits containing the pairs x;, y;.

Observe that the concept of pseudo-n-transitivity is an extension of the
well-known notion of n-transitivity (see, e.g., [8]) to arbitrary groups of
diffeomorphisms.

THEOREM 4. Suppose that each group of an increasing sequence G1(M) C
... C GR(M) C DIff" (M) (1 < r < w) satisfies the locality condition. Then
this sequence is pseudo-n-transitive for every n > 1.

The proof makes use of our Lemma and repeats an argument from [12].
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