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A note on generalized flag structures

by Tomasz Rybicki (Rzeszów)

Abstract. Generalized flag structures occur naturally in modern geometry. By ex-
tending Stefan’s well-known statement on generalized foliations we show that such struc-
tures admit distinguished charts. Several examples are included.

1. Introduction. It has been first established by P. Stefan in [13, 14]
that the orbits of any “isotopically connected” set of local Cr-diffeomor-
phisms, 1 ≤ r ≤ ω, fit together to form a generalized foliation. The career
of this statement in geometry is justified by the fact that a nontransitive
geometric structure usually induces a foliation with singularities. Further
facts concerning generalized foliations and the integrability of distributions
can be found in [1, 2, 15, 17]. However, it seems that surprisingly little is
known on this subject compared with the theory of regular foliations.

In this note we give some introductory remarks on generalized flag struc-
tures. This notion describes a somewhat more complicated situation which
arises for instance in multisymplectic geometry, Riemannian foliations, Ja-
cobi structures, Hamiltonian actions on Poisson manifolds (cf. Section 3).

Given generalized foliations Fi (i = 1, 2) on a manifold M we write
F1 ≺ F2 and say that F1 is a subfoliation of F2 if every leaf of F1 is
contained in a leaf of F2. By a generalized flag structure on M we mean any
finite sequence F1 ≺ . . . ≺ Fk of foliations of M . Throughout we shall drop
the term “generalized” in the above notions.

Our purpose is to formulate the notion of a distinguished chart for a
flag structure. We show that any flag structure admits distinguished charts.
This fact is well known and trivial for regular flag structures (see, e.g., [18])
in contrast to the case of (regular) almost-product structures where one
needs more than merely the integrability of each distribution to obtain the
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integrability of the whole structure. One of the consequences of our result is
that the pseudo-n-transitivity can be formulated in a more general context
(Section 4).

2. The existence of distinguished charts. Let us recall some con-
cepts from [13] and [14]. A foliation of class Cr, 1 ≤ r ≤ ω, is a partition
F of M into weakly imbedded submanifolds (see below), called leaves, such
that the following condition holds. If x belongs to a k-dimensional leaf, there
exists an (inverse) chart (U, φ) with φ(0) = x and U = V ×W , where V is
an open ball in Rk and W is an open ball in Rn−k, such that if L ∈ F then

φ(U) ∩ L = φ(V × l), for l = {w ∈W : φ(0, w) ∈ L}.
A subset L of a Cr-manifold M endowed with a Cr-differentiable struc-

ture σ which makes it an immersed submanifold is weakly imbedded if for any
locally connected topological space N and a continuous map f : N → M
satisfying f(N) ⊂ L, the map f : N → L is continuous as well. It follows
that such a differentiable structure σ is necessarily unique.

A smooth mapping φ of an open subset of R×M into M is said to be a
Cr-arrow if (1) φ(t, ·) = φt is a local Cr-diffeomorphism for each t, possibly
with empty domain, (2) φ0 = id on its domain, and (3) dom(φt) ⊂ dom(φs)
whenever 0 ≤ s < t.

Given an arbitrary set A of arrows let A∗ be the totality of local diffeo-
morphisms ψ such that ψ = φ(t, ·) for some φ∈A, t∈R. Next, A∗ stands
for the set consisting of all local diffeomorphisms which are finite composi-
tions of elements from A∗ or (A∗)−1 = {ψ−1 : ψ ∈ A∗} and of the identity.
Then the orbits of A∗ are called accessible sets of A.

For x ∈ M we let A0(x), A(x), and A(x) be the vector subspaces of
TxM spanned by

{φ̇(0, x) : φ ∈ A}, {φ̇(t, y) : φ ∈ A, φt(y) = x},
and

{dyψ(v) : ψ ∈ A∗, ψ(y) = x, v ∈ A(y)},
respectively. Clearly A0(x) ⊂ A(x) ⊂ A(x).

Theorem 1 [13]. Let A be an arbitrary set of Cr-arrows on M . Then:

(i) Every accessible set of A admits a (unique) Cr-differentiable struc-
ture of a connected weakly imbedded submanifold of M .

(ii) The collection of accessible sets defines a foliation F = F(A).
(iii) {A(x)}x∈M is the tangent distribution of F(A).

Any diffeomorphism group G(M) ⊂ Diffr(M) defines uniquely a set of
arrows. Namely, by a Cr-smooth path (or isotopy) in G(M) we mean any
family {ft}t∈R with ft ∈ G(M) such that the map (t, x) 7→ ft(x) is smooth.
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Next, G(M)0 denotes the subgroup of all f ∈ G(M) such that there is a
smooth path {ft}t∈R with ft = id for t ≤ 0 and ft = f for t ≥ 1. The totality
of ft as above constitutes a set of arrows. This set determines uniquely a
foliation F(G) which coincides with the orbits of G(M)0.

Likewise, any set of local vector fields defines a foliation as any flow is
an arrow.

A set of arrows A is said to be homogeneous if A(x) = A(x), for all
x ∈ M . Next, A is symmetric if φ ∈ A∗ implies that φ−1 is a composition
of elements of A∗.

Lemma. To each set of arrows A one can assign a homogeneous set
of arrows A such that F(A) = F(A) and A0(x) = A(x) for all x ∈ M .
Moreover , if A1 ⊂ A2 then A1 ⊂ A2, where Ai is assigned to Ai.

We reproduce the proof from [13] for the sake of completeness.
First we enlarge A by setting

Ã = {φt+s ◦ (φs)−1, φs−t ◦ (φs)−1 : φ ∈ A, s ∈ R}.

It is visible that Ã∗ = A∗ and F(Ã) = F(A). Furthermore, Ã is symmetric,
Ã0(x) = Ã(x) = A(x), and Ã is homogeneous whenever so is A.

Next we put

Â = {χ = ψ ◦ φt ◦ ψ−1 : domχ = (−ε, ε)× V, V open, φ ∈ Ã, ψ ∈ A∗}.

Then by a straightforward inspection Â(x) = A(x). Since F(Â) = F(A) it
follows by Theorem 1 that Â is homogeneous.

Therefore A = ˜̂
A satisfies the claim.

Let F1 ≺ . . . ≺ Fk be a flag structure on M and let x ∈ M . If x ∈
Li ∈ Fi we write pi(x) = dimLi, pi(x) = pi(x)− pi−1(x) (i = 2, . . . , k) and
qi(x) = m− pi(x).

Definition. A chart (U, φ) of M with φ(0) = x is called a distinguished
chart at x with respect to F1 ≺ . . . ≺ Fk if U = V1 × . . . × Vk ×W with
V1 ⊂ Rp1(x), Vi ⊂ Rp̄i(x) (i ≥ 2) and W ⊂ Rqk(x) open balls such that for
any Li ∈ Fi we have

(∗) φ(U) ∩ Li = φ(V1 × . . .× Vi × li),
where

li = {w ∈ Vi+1 × . . .× Vk ×W : φ(0, w) ∈ Li}
for i = 1, . . . , k.

Observe that actually the above φ is an inverse chart; following [13] we
call it a chart for simplicity. Notice as well that in the above definition
one need not assume that Fi is a foliation but only that it is a partition
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into weakly imbedded submanifolds; that Fi is a foliation follows then by
definition.

Theorem 2. Let A1 ⊂ . . . ⊂ Ak be an increasing sequence of sets of
arrows of M . Then F(A1) ≺ . . . ≺ F(Ak) admits a distinguished chart at
any x ∈M . Specifically , so does any flag structure on M .

P r o o f. Fix x ∈ M and let pi = pi(x), pi = pi(x), qi = qi(x). We have
Ai(x) = TxFi, i = 1, . . . , k. In view of Lemma each Ai can be replaced by
Ai such that A0

i (x) = Ai(x), F(Ai) = F(Ai), and A1 ⊂ . . . ⊂ Ak.
First we choose φj ∈ A∗1, j = 1, . . . , p1, such that φ̇j(0, x) form a basis of

TxF1. Next we extend this basis to a basis of TxF2 by means of φ̇j(0, x) with
φj ∈ A∗2 for j = p1 + 1, . . . , p2, and so on. Thus we obtain a basis of TxFk

of the form φ̇1(0, x), . . . , φ̇pk(0, x) where φ1, . . . , φpi ∈ A∗i for i = 1, . . . , k.
Now let Q be a qk-dimensional submanifold of M with x ∈ Q and TxM =

TxFk ⊕ TxQ. Shrinking Q if necessary we may and do assume that

φ̇pk−1+1(0, z), . . . , φ̇pk(0, z)

are linearly independent for any z ∈ Q. By choosing εk > 0 sufficiently
small we see that the mapping

ψk : (tpk−1+1, . . . , tpk
, z) ∈ Vk ×Q 7→ φ

pk−1+1
tpk−1+1

◦ . . . ◦ φpk
tpk

(z) ∈M

is an imbedding, where Vk = {t = (tpk−1+1, . . . , tpk
) ∈ Rp̄k : |t| < εk}, | · |

being the usual norm. Then TxM = TxFk−1 ⊕ Tx(imψk). Again, possibly
shrinking Q and Vk we find that

φ̇pk−2+1(0, z′), . . . , φ̇pk−1(0, z′)

are linerly independent for any z′ ∈ imψk. Then with some small εk−1 > 0
the mapping

ψk−1 : (tpk−2+1, . . . , tpk
, z) ∈ Vk−1 × Vk ×Q 7→ φ

pk−2+1
tpk−2+1

◦ . . . ◦ φpk
tpk

(z) ∈M

is an imbedding, where Vk−1 = {t = (tpk−2+1, . . . , tpk−1) ∈ Rp̄k−1 : |t| <
εk−1}. We have TxM = TxFk−2 ⊕ Tx(im(ψk−1)).

By continuing this procedure we obtain a chart of the form

ψ1 = φ : (t1, . . . , tpk
, y) ∈ V1 × . . .× Vk ×W 7→ φ1

t1 ◦ . . . ◦ φ
pk
tpk

(χ(y)) ∈M,

where W ⊂ Rqk is an open ball and χ : W → Q with χ(0) = x is an (inverse)
chart.

Let us check that φ is distinguished, i.e. that (∗) is fulfilled. Fix 1≤ i≤ k.
Let z ∈ U and φ(z) = φ1

t1 ◦. . .◦φ
pk
tpk

(χ(y)) = φ1
t1 ◦. . .◦φ

pi

tpi
(v) for some y ∈W

and v ∈ im(ψk−i+1). But im(ψk−i+1) = φ(0× . . .×0×Vi+1× . . .×Vk×W ).
Hence φ(z) ∈ Li if and only if v ∈ Li ∩ im(ψk−i+1), i.e. v = φ(0, w) where
w ∈ li. In fact, φ1

t , . . . , φ
pi

t preserve all the leaves of Fi.
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For the second assertion let F1 ≺ . . . ≺ Fk be a flag structure. If A(Fi)
is the set of flows of all (local) vector fields tangent to Fi then obviously
F(A(Fi)) = Fi. The proof follows by the first part.

In view of the above proof we get

Corollary. Let F1 ≺ . . . ≺ Fk on M and let (L, σ) be a leaf of Fk.
Then F1|L ≺ . . . ≺ Fk−1|L and a distinguished chart at x for L is the
restriction to L of a distiguished chart at x for M .

3. Examples. We give some geometric examples of subfoliations or flag
structures which motivate our interest, mainly in disciplines being nowadays
intensively developed.

3.1. Let Fi, i = 1, 2, be a foliation of class C∞ and Di = {TxFi} its
tangent distribution. Then F1 ∩ F2 ≺ Fi if and only if D = D1 ∩D2 is of
class C∞ (i.e. for any x ∈M there are vector fields X1, . . . , Xk(x) such that
Dx is spanned by X1(x), . . . , Xk(x)(x)) (cf. [1]).

3.2. Let Gi(M) ⊂ Diffr(M) be a locally arcwise connected group of
diffeomorphisms. If G1(M) ⊂ . . . ⊂ Gk(M) we get a flag structure F(G1) ≺
. . . ≺ F(Gk).

3.3. Recall that any set of local vector fields V(M) onM defines uniquely
a foliation F(V). So if V1 ⊂ . . . ⊂ Vk is an increasing sequence of sets of
local vector fields one has F(V1) ≺ . . . ≺ F(Vk). In particular, if X is any
vector field tangent to a foliation F then the orbits of its flow constitute a
subfoliation of F .

3.4. On M = R3 we define two foliations:

F1 = {all circles parallel to the x2x3-plane with center on the x1-axis},
and

F2 = {all spheres centered at 0}.

Then F1 ≺ F2. We have three types of points: (i) if x = 0 then p1(x) =
p2(x) = 0; (ii) if x lies on the x1-axis, x 6= 0 then p1(x) = 0 and p2(x) = 2;
(iii) p1(x) = 1 and p2(x) = 2 for x off the x1-axis.

3.5. Let (M,F) be a regular Riemannian foliation and let F be the set
of closures of the leaves of F . Then F is a singular Riemannian foliation
(cf. [9]) and obviously F ≺ F .

Also orbit-like foliations introduced by P. Molino in [10] have the prop-
erty that the foliation F by the closures of leaves of F is again Riemannian,
and the relation F ≺ F holds.

3.6. Let Λi be a Poisson structure on M , i = 1, . . . , k, and let F(Λi) be
the corresponding symplectic foliation (cf. [16]). If F(Λ1) ≺ . . . ≺ F(Λk) we
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shall say that (Λ1, . . . , Λk) constitutes a Poisson flag structure. Observe that
in contrast to Theorem 2 and despite the existence of the canonical charts
for Poisson manifolds (a splitting theorem of Weinstein [16]), a common
canonical chart for Λi would exist only in very special cases.

Likewise, a Jacobi flag structure arises when one has a sequence of Jacobi
structures (Λi, Ei) such that F(Λ1, E1) ≺ . . . ≺ F(Λk, Ek), where F(Λi, Ei)
is the characteristic foliation of (Λi, Ei) (see (3.10) below).

3.7 (Reduction of Poisson manifolds, cf. [16]). Let N be a submanifold of
a Poisson manifold (M,Λ) such that DN = (]Ann(TN))∩TN is a distribu-
tion of constant dimension along N . Here ] : Ω1(M)→ X (M) is defined by
](α)(β) = Λ(α, β), and Ann denotes the annihilator. Then DN is differen-
tiable and integrates to a foliation FN which is called the subcharacteristic
foliation of N . If N is transversal to F(Λ) then FN ≺ F(Λ) ∩N .

3.8. Consider a Hamiltonian action of a compact Lie group G on a
Poisson manifold (M,Λ) (cf. [11]). Then the orbits of G form a subfoliation
FG of F(Λ). The same is true for canonical manifolds (cf. [6]).

3.9. A homogeneous Poisson structure (Λ,Z) on a manifold M is a Pois-
son structure Λ and a vector field Z such that LZΛ = −Λ, where L is the
Lie derivative. These structures play a central role in the theory of Ja-
cobi manifolds (see [3]). Let F(Λ,Z) be the foliation generated by F(Λ)
and Z (at some points Z is tangent to F(Λ) and at some is not). Then
F(Λ) ≺ F(Λ,Z). This is still the case of locally homogeneous structures
(cf. [3, Prop. 2.16]).

3.10. Recall that a pair (Λ,E) is a Jacobi structure on M if Λ is an
antisymmetric (2,0)-tensor, E is a vector field, and the equalities

[Λ,Λ] = 2E ∧ Λ, [E,Λ] = 0

are satisfied. Here [·, ·] is the Schouten–Nijenhuis bracket.
For u ∈ C∞(M) one defines a Hamiltonian vector field by Xu = [Λ, u] +

uE. The orbits of the set of all Hamiltonian vector fields form a characteristic
foliation of (Λ,E), denoted by F(Λ,E). Next, let F∗(Λ,E) be the foliation
determined by all Xu with u ∈ C∞(M) satisfying LEu = 0. Then

F(E) ≺ F∗(Λ,E) ≺ F(Λ,E),

where F(E) is the foliation given by the orbits of E (cf. [3, p. 119]).

3.11. Interesting examples arise in multisymplectic geometry (see, e.g.,
[4, 5, 7]). One of them is produced by Nambu–Poisson manifolds.

Let us recall that a skew-symmetric n-linear mapping {, . . . , } : C∞(M)×
. . . × C∞(M) → C∞(M) is called a generalized almost Poisson (g.a.P.)
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bracket of order n if it satisfies the Leibniz rule:

{u1v1, . . . , un} = u1{v1, . . . , un}+ v1{u1, . . . , un}

for all u1, . . . , un, v1 ∈ C∞(M). Equivalently, a g.a.P. manifold of order
n is a pair (M,Λ), where Λ is a skew-symmetric (n, 0)-tensor on M . The
relation between Λ and the n-bracket {, . . . , } is expressed by the equal-
ity Λ(du1, . . . , dun) = {u1, . . . , un}. Then we define a linear mapping ] :
Ωn−1(M)→ X (M) by setting

〈](α1 ∧ . . . ∧ αn−1), β〉 = Λ(α1, . . . , αn−1, β)

for any α1, . . . , αn−1, β∈Ω1(M). Here 〈 , 〉 is the natural pairing on X (M)×
Ω1(M).

For any u1, . . . , un−1 ∈ C∞(M) we define a Hamiltonian vector field

Xu1,...,un−1 = ](du1 ∧ . . . ∧ dun−1).

A vector field X is called an infinitesimal automorphism of (M,Λ) if LXΛ =
0. It is visible that this condition amounts to claiming that X is a derivation
of the bracket {, . . . , }.

Now a g.a.P. manifold of order n is called a Nambu–Poisson manifold if
any Hamiltonian vector field is a derivation of the bracket. Notice that for
n = 2 the above condition is equivalent to [Λ,Λ] = 0 and, consequently, the
Nambu–Poisson manifolds of order 2 coincide with the Poisson manifolds.

Given a Nambu–Poisson tensor let us define a smooth distribution D =
{Dx}x∈M where Dx = ](

∧n−1
T ∗xM). This distribution is called character-

istic. We have the following structural theorem.

Theorem 3 [4]. Let (M,Λ) be an m-dimensional Nambu–Poisson man-
ifold of order n ≥ 3. Then:

(1) The characteristic distribution D is completely integrable and , con-
sequently , it defines a foliation, denoted by F(Λ). There are two kinds of
leaves of F(Λ): (a) if Λx = 0 then the leaf passing through x reduces to
x itself , and (b) if Λx 6= 0 then the leaf meeting x has dimension n and
Λ restricted to it induces a Nambu–Poisson structure which comes from a
volume form.

(2) In case (b) there exists a distinguished chart (x1, . . . , xn, y1, . . . , yq)
at x (q = m− n) such that Λ = ∂1∧, . . . ∧ ∂n where ∂i = ∂/∂xi.

Now for any u∈C∞(M) we put Λu = ιduΛ. It is easily seen [4] that Λu is
a g.a.P. (resp. Nambu–Poisson) structure of order n−1 if Λ is a g.a.P.(resp.
Nambu–Poisson) structure of order n. This can be iterated by setting Λuv =
(Λu)v and so on. Therefore for any choice u1, . . . , un−1 ∈ C∞(M) we obtain
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a flag structure

F(Λu1,...,un−1) ≺ F(Λu1,...,un−2) ≺ . . . ≺ F(Λu1) ≺ F(Λ).

As in (3.6) there are no common canonical charts for this flag.

3.12. Only recently the authors of [5] have introduced the concept of
Nambu–Jacobi structure as a counterpart of the Jacobi structures in mul-
tisymplectic geometry. Specifically, if (Λ1, Λ2) is a Nambu–Jacobi structure
of order n, n > 2, then Λ1 (resp. Λ2) is a Nambu–Poisson structure of order
n (resp. n− 1). Consequently, further examples of flag structures occur.

4. Locality and pseudo-n-transitivity. In [12] we have proven that
the locality of a diffeomorphism group yields its pseudo-n-transitivity. This
can be extended to the flag case.

Recall that G(M) ⊂ Diffr(M), where r ≤ ∞ (resp. r = ω) satisfies the
locality condition if for any open relatively compact U, V ⊂M with U ⊂ V ,
and a Cr-diffeotopy {ft} in G(M) with f0 = id, there exist ε > 0 and a
smooth diffeotopy {gt} in G(M) such that gt = ft on U and supp(gt) ⊂ V
for |t| < ε (resp. gt is sufficiently C1 near ft on U and gt is sufficiently C1

near the identity outside V for |t| < ε).
By an orbit of a sequence of diffeomorphism groups G1(M) ⊂ . . . ⊂

Gk(M) we mean any orbit of each Gi(M)0. Next, for x, y ∈ M belonging
to a common orbit, a minimal orbit containing x, y is the unique orbit of
the least dimension passing through x, y.

The sequence G1(M) ⊂ . . . ⊂ Gk(M) is said to be pseudo-n-transitive if
for any two n-tuples of pairwise distinct points (x1, . . . , xn) and (y1, . . . , yn)
of M such that xj , yj belong to the same orbit and each orbit of dimension
≤ 1 contains at most one xj there exists f ∈ Gk(M)0 satisfying f(xj) = yj

and preserving all the minimal orbits containing the pairs xj , yj .
Observe that the concept of pseudo-n-transitivity is an extension of the

well-known notion of n-transitivity (see, e.g., [8]) to arbitrary groups of
diffeomorphisms.

Theorem 4. Suppose that each group of an increasing sequence G1(M) ⊂
. . . ⊂ Gk(M) ⊂ Diffr(M) (1 ≤ r ≤ ω) satisfies the locality condition. Then
this sequence is pseudo-n-transitive for every n ≥ 1.

The proof makes use of our Lemma and repeats an argument from [12].
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