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Effective formulas for invariant functions
—case of elementary Reinhardt domains

by Peter Pflug (Oldenburg) and W lodzimierz Zwonek (Kraków)

Abstract. We find effective formulas for the invariant functions, appearing in the
theory of several complex variables, of the elementary Reinhardt domains. This gives
us the first example of a large family of domains for which the functions are calculated
explicitly.

0. Introduction. Holomorphically invariant functions and pseudomet-
rics have proved to be very useful in the theory of several complex variables.
Nevertheless, the problem of finding effective formulas for them has turned
out to be very difficult. So far there have been very few examples of domains
for which explicit formulas for these functions are known.

Among many different invariant functions and pseudometrics let us men-
tion the Lempert and Green functions, the Kobayashi and Carathéodory
pseudodistances as well as their infinitesimal versions, i.e. the Kobayashi–
Royden, Carathéodory and Azukawa pseudometrics.

Due to Lempert’s theorem (see [L1,2]) all holomorphically invariant func-
tions and pseudometrics coincide in the class of convex domains. But even
in the convex case it is difficult to find explicit formulas. Among the few ex-
isting results in this direction let us mention here the special case of convex
(see [BFKKMP], [JP2]) and non-convex (see [PZ]) ellipsoids. Another class
of non-convex domains for which some of the functions were calculated is
the class of elementary Reinhardt domains (see [JP1,2]). In our paper we
extend the results obtained in the latter domains to all invariant functions
and pseudometrics mentioned above. The formulas obtained enable us to
understand better the mutual relations between the invariant objects and
give surprising solutions to some problems.
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1. Definitions, notations and main results. By E we will always
denote the unit disc in C. We put

m(λ1, λ2) :=
|λ1 − λ2|
|1− λ1λ2|

, λ1, λ2 ∈ E,

γE(λ;α) :=
|α|

1− |λ|2
, λ ∈ E, α ∈ C.

Let D be a domain in Cn. Following [L1], [Ko1], [Kl1,2], [C], [A], [R]
and [JP2] for (w, z) ∈ D ×D and (w,X) ∈ D × Cn we define the following
functions:

k̃∗D(w, z) := inf{m(λ1, λ2) : ∃ϕ ∈ O(E,D), ϕ(λ1) = w, ϕ(λ2) = z},
k∗D(w, z) := tanh kD(w, z),

where kD is the largest pseudodistance smaller than or equal to k̃D :=
tanh−1 k̃∗D,

gD(w, z) := sup{u(z) : log u ∈ PSH(D, [−∞, 0)),
∃M,R > 0 : u(ζ) ≤M‖ζ − w‖ for ζ ∈ D, ‖ζ − w‖ < R},

c∗D(w, z) := sup{m(ϕ(w), ϕ(z)) : ϕ ∈ O(D,E)};

and also their infinitesimal versions:
κD(w;X) := inf{γE(λ;α) : ∃ϕ ∈ O(E,D), ϕ(λ) = w, αϕ′(λ) = X},

AD(w;X) := lim sup
λ→0, λ 6=0

gD(w,w + λX)
|λ|

,

γD(w;X) := sup{γE(ϕ(w);ϕ′(w)X) : ϕ ∈ O(D,E)}.

The function k̃∗D (resp. gD, k∗D, c∗D) is called the Lempert function (resp. the
Green function, the Kobayashi and Carathéodory pseudodistance). The func-
tion κD (resp. AD and γD) is called the Kobayashi–Royden (resp. Azukawa
and Carathéodory–Reiffen) pseudometric.

Note that the functions k̃∗D, k∗D and c∗D are always symmetric, whereas
gD need not have this property. For the basic properties of the functions
defined we refer the interested reader to [JP2]. Let us mention here only
some basic relations:

k̃∗D ≥ k∗D ≥ c∗D, k̃∗D ≥ gD ≥ c∗D, κD ≥ AD ≥ γD.

A mapping ϕ ∈ O(E,D) is called a k̃D-geodesic for (w, z), w 6= z, if
ϕ(λ1) = w, ϕ(λ2) = z and m(λ1, λ2) = k̃∗D(w, z) for some λ1, λ2 ∈ E.

The class of domains we are interested in is defined below.
For α = (α1, . . . , αn) ∈ Rn+, n > 1, (R+ := (0,∞)) define

Dα := {z ∈ Cn : |z1|α1 . . . |zn|αn < 1}.
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We say that α is of rational type if there are t > 0 and β = (β1, . . . , βn) ∈ Nn∗
such that α= tβ; otherwise α is of irrational type. Note that if α is of rational
type we may without loss of generality assume that all αj ’s are relatively
prime natural numbers. We also define

D̃α := {z ∈ Dα : z1 . . . zn 6= 0}.

For α ∈ Nn∗ , we set

zα := zα1
1 . . . zαnn , Fα(z) := zα,

Fα(r)(z)X :=
∑

β1+...+βn=r

1
β1! . . . βn!

∂β1+...+βnFα(z)

∂zβ1
1 . . . ∂zβnn

Xβ , z,X ∈ Cn.

Note that the domain Dα is always unbounded, Reinhardt, complete, and
pseudoconvex but not convex.

As mentioned in the introduction, some of the invariant functions for the
domains Dα are explicitly known. We gather the results known so far in the
following theorem.

Theorem 1 (see [JP2]). If α ∈ Nn∗ , where αj’s are relatively prime, then

c∗Dα(w, z) = m(wα, zα),

gDα(w, z) = (m(wα, zα))1/r,
γDα(w;X) = γE(wα; (Fα)′(w)X),
ADα(w;X) = (γE(wα;Fα(r)(w)X))1/r, w, z ∈ Dα, X ∈ Cn,

where r is the order of the zero of Fα(·)− Fα(w) at w.
If α is of irrational type, then

c∗Dα(w, z) = 0,
γDα(w;X) = 0, w, z ∈ Dα, X ∈ Cn.

We extend the results of Theorem 1 to other invariant functions and
pseudometrics and we find the remaining formulas for the Green function
(and the Azukawa pseudometric) in the irrational case. The results are pre-
sented in two theorems: for rational and irrational α. In both theorems the
formulas for the Lempert function may seem incomplete (not all the cases
are covered); nevertheless, because of the symmetry of both functions one
easily obtains the formulas in the remaining cases.

Theorem 2. Assume that α ∈ Nn∗ with αj’s relatively prime. Let (w, z) ∈
Dα × Dα and (w,X) ∈ Dα × Cn. Set J := {j ∈ {1, . . . , n} : wj = 0} =
{j1, . . . , jk}. Then
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k̃∗Dα(w, z) =


min{m(λ1, λ2) : λ1, λ2 ∈ E,

λ
min{αj}
1 = wα, λ

min{αj}
2 = zα} if w, z ∈ D̃α,

|zα|1/(αj1+...+αjk ) if J 6= ∅,
k∗Dα(w, z) = min{m((wα)1/min{αj}, (zα)1/min{αj})},

where the minimum is taken over all possible roots; and in the infinitesimal
case we have

κDα(w;X)

=

 γE

(
(wα)1/min{αk}; (wα)1/min{αk} 1

min{αk}

n∑
j=1

αjXj

wj

)
if J = ∅,

(|w1|α1 . . . |Xj1 |αj1 . . . |Xjk |αjk . . . |wn|αn)1/(αj1+...+αjk ) if J 6= ∅.

Observe that if min{αj} = 1, then k̃∗Dα(w, z) = gDα(w, z) for w, z ∈ D̃α;
otherwise, if wα 6= zα, then the Green function is strictly less than the
Lempert function.

As opposed to the rational case, in the irrational case not only the Lem-
pert function, Kobayashi pseudodistance and Kobayashi–Royden pseudo-
metric, but also the Green function and the Azukawa pseudometric have
not been calculated so far.

Theorem 3. Assume that α is of irrational type. Let (w, z) ∈ Dα ×Dα

and (w,X) ∈ Dα × Cn. Set J := {j ∈ {1, . . . , n} : wj = 0} = {j1, . . . , jk}.
Then

k̃∗Dα(w, z) =

m((|w1|α1 . . . |wn|αn)1/min{αj},

(|z1|α1 . . . |zn|αn)1/min{αj}) if w, z ∈ D̃α,
(|z1|α1 . . . |zn|αn)1/(αj1+...+αjk ) if J 6= ∅,

k∗Dα(w, z) = m
(( n∏

j=1

|wj |αj
)1/min{αj}

,
( n∏
j=1

|zj |αj
)1/min{αj})

,

gDα(w, z) =
{

0 if J = ∅,
(|z1|α1 . . . |zn|αn)1/(αj1+...+αjk ) if J 6= ∅;

and in the infinitesimal case we have

κDα(w;X)

=



γE

(( n∏
j=1

|wj |αj
)1/min{αk}

;

( n∏
j=1

|wj |αj
)1/min{αk} 1

min{αk}

n∑
j=1

αjXj

wj

)
if J = ∅,

(|w1|α1 . . . |Xj1 |αj1 . . . |Xjk |αjk . . . |wn|αn)1/(αj1+...+αjk ) if J 6= ∅,
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ADα(w;X)

=
{

0 if J = ∅,
(|w1|α1 . . . |Xj1 |αj1 . . . |Xjk |αjk . . . |wn|αn)1/(αj1+...+αjk ) if J 6= ∅.

Observe that for an arbitrary balanced pseudoconvex domain D we al-
ways have k̃∗D(0, z) = hD(z) for z ∈ D, where hD denotes the Minkowski
function for D. In the above formula, k∗Dα(0, z) < hDα(z) for 0 6= z ∈ Dα.
It would be interesting to find the general form of k∗D(0, ·) for an arbitrary
balanced pseudoconvex domain D.

2. Auxiliary results. For z ∈ Cn put

Tz := {(eiθ1z1, . . . , eiθnzn) : θj ∈ R}.
Note that Tz is a group with multiplication defined as follows:

(eiθ1z1, . . . , eiθnzn) ◦ (eiθ̃1z1, . . . , eiθ̃nzn) := (ei(θ1+θ̃1)z1, . . . , ei(θn+θ̃n)zn).

Define Tz,α to be the subgroup of Tz generated by the set

{(ei
αj1
α1

2k1πz1, . . . , e
i
αjn
αn

2knπzn) : j1, . . . , jn ∈ {1, . . . , n}, k1, . . . , kn ∈ Z}.
Note that if α is of rational type, then Tz,α is finite; more precisely, if we
assume that α ∈ Nn∗ and αj ’s are relatively prime, then

Tz,α = {(ε1z1, . . . , εnzn) : εαjj = 1 for all j}.
However, if α is of irrational type, then a well-known theorem of Kronecker
(see [HW], Theorem 439) gives

(1) T z,α = Tz.

For µ ∈ E∗ we define

Φµ : Cn−1 3 (λ1, . . . , λn−1)→
(eαnλ1 , . . . , eαnλn−1 , µe−α1λ1 . . . e−αn−1λn−1) ∈ Dα.

Put

Vµ := Φµ(Cn−1), µ ∈ E∗, V0 := {z ∈ Cn : z1 . . . zn = 0}.
Note that ⋃

µ∈E
Vµ = Dα.

Remark 4. Let µ ∈ E∗. Assume that w, z ∈ Vµ, and X ∈ Cn satisfies∑n
j=1 αjXj/wj = 0. Then

k̃∗Dα(w, z) = 0, κDα(w;X) = 0.

In fact, w = Φµ(λ) and z = Φµ(γ) for some λ, γ ∈ Cn−1, so

k̃∗Dα(w, z) = k̃∗Dα(Φµ(λ), Φµ(γ)) ≤ k̃∗Cn−1(λ, γ) = 0.
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For the second equality note that assuming Φµ(λ) = w we have

Φ′µ(λ)(Y ) =
(
αnw1Y1, . . . , αnwn−1Yn−1,−

n−1∑
j=1

αjwnYj

)
, Y ∈ Cn−1.

One may easily verify that

Φ′µ(λ)(Cn−1) =
{
X ∈ Cn :

n∑
j=1

αjXj/wj = 0
}
.

Note that

0 = κCn−1(λ;Y ) ≥ κDα(Φµ(λ);Φ′µ(λ)Y ), Y ∈ Cn−1,

which finishes the proof.

In the proof of Lemma 5 below we shall replace E in the definition of
the Lempert function with H := {x+ iy : 1 > x > −1}.

Lemma 5. Fix w, z∈Dα. Take any z̃∈Tz,α. Then for any ϕ ∈ O(E,Dα)
such that ϕ(λ1) = w, ϕ(λ2) = z for some λ1 6= λ2, there is ϕ̃ ∈ O(E,Dα)
such that ϕ̃(λ1) = w and ϕ̃(λ2) = z̃. Consequently ,

k̃∗Dα(w, z) = k̃∗Dα(w, z̃) for any z̃ ∈ Tz,α.

P r o o f. Take any mapping ϕ ∈ O(H,Dα) with ϕ(0) = w and ϕ(it) = z
for some t > 0. Define (for kn ∈ Z fixed)

ϕ̃ : H 3 λ→
(ϕ1(λ), . . . , ϕn−2(λ), e−2knπλ/tϕn−1(λ), eαn−12knπλ/(αnt)ϕn(λ)) ∈ Dα.

We have

ϕ̃(0) = w, ϕ̃(it) = (z1, . . . , zn−1, e
i(αn−1/αn)2knπzn).

Note that we may replace αn−1 above with any other αj , and zn with
ei(αj/αn)2knπzn, and also we may continue the procedure with the next com-
ponents zj varying, which finishes the proof.

Remark 6. From the proof of Lemma 5 we also have the following
property:

Fix α ∈ Nn∗ with αj ’s relatively prime and 0 < δ1 ≤ m(λ1, λ2) ≤ δ2 < 1.
Take any ψ ∈ O(E,Cn) with ψ(E) b (C∗)n and choose z ∈ Cn such that
z
αj
j = ψ

αj
j (λ2) for j = 1, . . . , n. Then there is a mapping ψ̃∈O(E,Cn) such

that ψ̃(E) b (C∗)n, ψ(λ1) = ψ̃(λ1), ψ̃(λ2) = z and

ψα1
1 (λ) . . . ψαnn (λ) = ψ̃α1

1 (λ) . . . ψ̃αnn (λ), λ ∈ E,
m‖ψj‖E ≤ ‖ψ̃j‖E ≤M‖ψj‖E , j = 1, . . . , n,

where m,M > 0 depend only on δ1 and α.
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Lemma 7. Fix L1
1, L

2
1 b E, L2 b C∗ and α ∈ (R+)n. Assume that there

is δ > 0 such that for any λ1∈L1
1 and λ2∈L2

1 we have m(λ1, λ2) ≥ δ. Then
there is L2 ⊂ K b C∗ such that for any z1, z2 ∈ L2 and for any λ1 ∈ L1

1 and
λ2 ∈ L2

1 there is ψ ∈ O(E,C∗) with ψ(λj) = zj for j = 1, 2, and ψ(E) ⊂ K.
Moreover , there is K̃ b C∗ such that for any numbers z1, . . . , zn ∈ L2 and
w1, . . . , wk ∈ L2, k < n, with

|z1|α1 . . . |zn|αn = 1

there are functions ψj ∈ O(E,C∗) with ψj(E) ⊂ K̃ for j = 1, . . . , n and

ψα1
1 (λ) . . . ψαnn (λ) = eiθ, λ ∈ E,

ψj(λ1) = zj , j = 1, . . . , n, ψj(λ2) = wj , j = 1, . . . , k.

P r o o f. For the first part it is sufficient to consider L1
1 = {λ1} and L2

1 =
{λ2} with m(λ1, λ2)=δ. The general case is then obtained by composing the
functions with automorphisms of E and the dilatation Rλ, where 0 ≤ R < 1,
since the images of new functions are contained in that of the original one.

Define

L := exp−1(L2) ∩ (R× [0, 2π)) b C.

Now put

K := {exp(h(λ)) : λ ∈ E, and h is of the type
h(λ) = aλ+ b, a, b ∈ C, h(λ1) = z̃1, h(λ2) = z̃2, z̃1, z̃2 ∈ L}.

Observe that K b C∗. The mappings we are looking for are of the form
exp ◦h, where h is one of the functions appearing in the definition of K.

For the proof of the second part of the lemma we set wj for j = k + 1,
. . . , n− 1 to be any number from L2 and we take mappings ψ1, . . . , ψn−1 as
in the first part of the lemma. Define

ψn(λ) :=
eiθ̃

(ψα1
1 (λ) . . . ψαn−1

n−1 (λ))1/αn
,

where the branches of powers are chosen arbitrarily and θ̃ ∈ R is chosen so
that ψn(λ1) = zn.

Lemma 8. Let L1
1, L

2
1, L2, δ be as in Lemma 7. Fix α ∈ Nn∗ , where αj’s

are relatively prime. Then there is K b C∗ such that for any mappings
ψj ∈ O(E,C∗), j = 1, . . . , n, with

ψα1
1 . . . ψαnn = 1, λ ∈ E,
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and ψj(λ1), ψj(λ2) ∈ L2, where λ1 ∈ L1
1 and λ2 ∈ L2

1, there are functions
ψ̃j ∈ O(E,C∗) such that

ψ̃α1
1 . . . ψ̃αnn = 1 on E,

ψ̃j(λ1) = ψj(λ1), ψ̃j(λ2) = ψj(λ2), ψ̃j(E) ⊂ K, j = 1, . . . , n.

P r o o f. Put zj := ψj(λ1) and wj := ψj(λ2), j=1, . . . , n. From Lemma 7
there are ψ̃j , j = 1, . . . , n− 1, as desired. Put

ψ̃n(λ) :=
1

(ψ̃α1
1 (λ) . . . ψ̃αn−1

n−1 (λ))1/αn
.

We choose the branch of the power 1/αn so that ψ̃n(λ1) = zn; note also that
ψ̃αnn (λ2) = wαnn . From Remark 6 we may change ψ̃ := (ψ̃1, . . . , ψ̃n) so that
all the desired properties are preserved and, additionally, ψ̃n(λ2) = wn.

Now we present a lemma which is a weaker infinitesimal version of
Lemma 7.

Lemma 9. Let w ∈ C∗, X ∈ C and λ1 ∈ E. Then there is a mapping
ψ ∈ O(E,C∗) such that

ψ(λ1) = w, ψ′(λ1) = X.

Moreover , for given numbers w1, . . . , wn ∈ C∗, X1, . . . , Xk ∈ C (k < n) and
α ∈ (R+)n, where |w1|α1 . . . |wn|αn = 1, there are mappings ψj ∈ O(E,C∗),
j = 1, . . . , n, such that

ψj(λ1) = wj , j = 1, . . . , n, ψ′j(λ1) = Xj , j = 1, . . . , k,

ψα1
1 (λ) . . . ψαnn (λ) = eiθ, λ ∈ E.

P r o o f. The first part goes as in the proof of Lemma 7 (note that we
do not need to specify more, since we do not demand so much about the
mapping ψ as in Lemma 7). The mapping we are looking for is of the form
exp(aλ+ b).

For the second part of the lemma let Xj (j = k + 1, . . . , n − 1) be
any complex number. Take ψj as given in the first part of the lemma (for
j = 1, . . . , n− 1) with w replaced with wj and X replaced with Xj . Put

ψn(λ) :=
eiθ̃

(ψα1
1 (λ) . . . ψαn−1

n−1 (λ))1/αn
,

where the branches of powers are chosen arbitrarily and θ̃ ∈ R is chosen so
that ψn(λ1) = wn.

Now we are able to give formulas for the Lempert function and the
Kobayashi–Royden metric for special points.
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Lemma 10. Fix w ∈ V0. Let z ∈ Dα and X ∈ Cn. Then

k̃∗Dα(w, z) = (|z1|α1 . . . |zn|αn)1/(αj1+...+αjk )
,

κDα(w;X) = (|w1|α1 . . . |Xj1 |αj1 . . . |Xjk |αjk . . . |wn|αn)1/(αj1+...+αjk ),

where J := {j ∈ {1, . . . , n} : wj = 0} = {j1, . . . , jk}.

P r o o f. Without loss of generality we may assume that w1 = . . . = wk =
0, wk+1, . . . , wn 6= 0, n ≥ k ≥ 1. We prove both equalities simultaneously.

First we consider the case z ∈ D̃α (resp. Xj 6= 0 for all j = 1, . . . , k).
Take any ϕ ∈ O(E,Dα) such that ϕ(0) = w, ϕ(t) = z (resp. ϕ(0) = w,
tϕ′(0) = X) for some t > 0. We have

ϕ(λ) = (λψ1(λ), . . . , λψk(λ), ψk+1(λ), . . . , ψn(λ)),
ψj ∈ O(E,C), j = 1, . . . , n.

Put

u(λ) :=
n∏
j=1

|ψj(λ)|αj .

We know that log u ∈ SH(E) and u ≤ 1 on ∂E, so the maximum principle
for subharmonic functions implies that u ≤ 1 on E. In particular, u(t) ≤ 1
(resp. u(0) ≤ 1), so∏n

j=1 |zj |αj

tα1+...+αk
≤ 1 (resp.

∏k
j=1 |Xj |αj

∏n
j=k+1 |wj |αj

tα1+...+αk
≤ 1),

which gives

t ≥
( n∏
j=1

|zj |αj
)1/(α1+...+αk)

(resp. t ≥
( k∏
j=1

|Xj |αj
n∏

j=k+1

|wj |αj
)1/(α1+...+αk)

).

Therefore,

k̃∗Dα(w, z) ≥
( n∏
j=1

|zj |αj
)1/(α1+...+αk)

(
resp. κDα(w;X) ≥

( k∏
j=1

|Xj |αj
n∏

j=k+1

|wj |αj
)1/(α1+...+αk)

).

To get equality put

t :=
( n∏
j=1

|zj |αj
)1/(α1+...+αk)



184 P. Pflug and W. Zwonek

(resp. t :=
( k∏
j=1

|Xj |αj
n∏

j=k+1

|wj |αj
)1/(α1+...+αk)

)

and consider the mapping

ϕ(λ) := (λψ1(λ), . . . , λψk(λ), ψk+1(λ), . . . , ψn(λ)), λ ∈ E,
where ψj ∈ O(E,C∗), j = 1, . . . , n,

∏n
j=1 ψ

αj
j (λ) = eiθ on E and

ψj(t) = zj/t, j = 1, . . . , k, ψj(t) = zj , j = k + 1, . . . , n;
ψj(0) = wj , j = k + 1, . . . , n (see Lemma 7)

(resp. ψj(0) = Xj/t, j = 1, . . . , k, ψj(0) = wj , j = k + 1, . . . , n,
ψ′j(0) = Xj/t, j = k + 1, . . . , n; see Lemma 9).

Then ϕ ∈ O(E,Dα), ϕ(0) = w, ϕ(t) = z (resp. tϕ′(0) = X), which finishes
that case.

We are left with the case z ∈ V0 (resp. Xj = 0 for some 1 ≤ j ≤ k). If
there is j such that wj = zj = 0 (resp. wj = Xj = 0), then the mapping

Cn−1 3 (z1, . . . , žj , . . . , zn)→ (z1, . . . , 0, . . . , zn) ∈ Dα

gives

0 = k̃∗Cn−1((w1, . . . , w̌j , . . . , wn), (z1, . . . , žj , . . . , zn)) ≥ k̃∗Dα(w, z),
(resp.

0 = κCn−1((w1, . . . , w̌j , . . . , wn); (X1, . . . , X̌j , . . . , Xn)) ≥ κDα(w;X)).

Now, there only remains the Lempert function and then we may assume
that for all j we have |wj |+ |zj | > 0.

For fixed 1 > β > 0 define the mapping ϕ := (ϕ1, . . . , ϕn) as follows:

ϕj(λ) :=


λ− β
1− βλ

ψj(λ) if wj = 0,

λ+ β

1 + βλ
ψj(λ) if zj = 0,

ψj(λ) if wjzj 6= 0,

where ψj ∈ O(E,C∗),
∏n
j=1 ψ

αj
j (λ) = eiθ on E and ϕ(β) = w, ϕ(−β) = z

(the values of ψj(β) and ψj(−β) are prescribed if only wjzj 6= 0; for wjzj = 0
only one of them is prescribed; more precisely, take j1 such that zj1 = 0, and
define ψj1(−β) so that |ψ1(−β)|α1 . . . |ψn(−β)|αn = 1; note also that there
is j2 such that wj2 = 0, so ψj2(β) has no fixed value—it is the reason why
we are allowed to use Lemma 7). Note also that ϕ ∈ O(E,Dα). As β > 0
may be chosen arbitrarily small this completes the proof of the lemma.

In the next step we prove a formula for the Lempert function in the spe-
cial case of the domain D(1,...,1). Following (to some extent) the ideas from
[JPZ] and [PZ] we extend the formulas to the general case using a technique
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which could be called transport of geodesics. Roughly speaking, the idea is
to transport the formulas from simpler domains to more complex ones with
the help of “good” mappings. In [JPZ] and [PZ] it was the Euclidean ball
that was a model domain. In the present paper it is the domain D(1,...,1).

Lemma 11. If w, z ∈ V0, then

k̃∗D(1,...,1)
(w, z) = 0.

Assume that w ∈ D̃(1,...,1). Then

k̃∗D(1,...,1)
(w, z) = (m(w1 . . . wn, z1 . . . zn))1/k,

where

k := max{#{j : zj = 0}, 1}.
P r o o f. The first part is a consequence of Lemma 10. Moreover, also the

case z ∈ V0 is a consequence of Lemma 10.
Consider now the case w, z ∈ D̃(1,...,1). We may assume that w1 . . . wn 6=

z1 . . . zn (the other case is covered by Remark 4).
Consider the following mapping (see Lemma 7):

ϕ(λ) := (ψ1(λ), . . . , ψn−1(λ), e−iθλψn(λ)),

where

λ1 := w1 . . . wn, λ2 := z1 . . . zn,

ψj ∈ O(E,C∗), j = 1, . . . , n, ψ1(λ) . . . ψn(λ) = eiθ, λ ∈ E,
ψj(λ1) = wj , ψj(λ2) = zj , j = 1, . . . , n− 1

(using Lemma 7 we may even assume that ψj(E) ⊂ K b C∗, j = 1, . . . , n;
compare Remark 12 below).

Note that ϕ ∈ O(E,D(1,...,1)), ϕ(λ1) = w, ϕ(λ2) = z. Therefore, com-
bining this with the contractivity property of the Lempert function we have

m(w1 . . . wn, z1 . . . zn) ≥ k̃∗D(1,...,1)(w, z) = m(w1 . . . wn, z1 . . . zn).

This completes the proof.

Remark 12. From the proof of Lemma 11 we see that for any w, z ∈
D̃(1,...,1) with w1 . . . wn 6= z1 . . . zn there is a k̃D(1,...,1) -geodesic for (w, z) of
the form (

ψ1(λ), . . . , ψn−1(λ), eiθ
λ− β
1− βλ

ψn(λ)
)

with ψ1(λ) . . . ψn(λ) = 1 and ψj(E) b C∗.

The domains Dα, although very regular, do not have a property which
is crucial in the theory of holomorphically invariant functions: they are not
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taut. Therefore, we have no guarantee that they admit k̃Dα -geodesics. How-
ever, as Lemma 13 will show, they do admit them at least in the rational
case and for points which are “separated” by the Lempert function. The
existence of the geodesics will play a great role in the proof of the formula
for the Lempert function in the rational case.

Lemma 13. Assume that α ∈ Nn∗ and αj’s are relatively prime. Let w, z ∈
D̃α with wα 6= zα. Then there is a bounded k̃Dα-geodesic ϕ ∈ O(E,Dα) for
(w, z).

P r o o f. We know that (use contractivity of the Lempert function)

t := k̃∗Dα(w, z) ≥ m(wα, zα) > 0;

consequently, there are mappings ϕ(k) = (ϕ(k)
1 , . . . , ϕ

(k)
n ), k = 1, 2, . . . , such

that ϕ(k) ∈ O(E,Dα), ϕ(k)(0) = w and ϕ(k)(tk) = z, where tk ≥ tk+1 →
t > 0. We have

ϕ
(k)
j = B

(k)
j ψ

(k)
j , j = 1, . . . , n,

where B(k)
j is a Blaschke product and ψ

(k)
j ∈ O(E,C∗).

Put ψ(k) := (ψ(k)
j )nj=1. There are two possibilities (due to the maximum

principle for subharmonic functions—remember the pseudoconvexity ofDα):

ψ(k)(E) ⊂ Dα,(2)
ψ(k)(E) ⊂ ∂Dα.(3)

Below we prove that without loss of generality we may restrict our attention
to a case which is some kind of generalization of (3).

Take any k such that (2) is satisfied. First, notice that the mapping

ψ̃(k) := ((ψ(k)
1 )α1/(α1...αn), . . . , (ψ(k)

n )αn/(α1...αn))

is in O(E,D(1,...,1)). From Remark 12 there is a k̃D(1,...,1)-geodesic for
(ψ̃(k)(0), ψ̃(k)(tk)) of the form

µ(k) :=
(
ψ̂

(k)
1 , . . . , ψ̂

(k)
n−1, e

iθk
λ− βk
1− βkλ

ψ̂(k)
n

)
,

where ψ̂(k)
1 . . . ψ̂

(k)
n = 1 on E, such that µ(k)(0) = ψ̃(k)(0) and µ(k)(Rktk) =

ψ̃(k)(tk), βk ∈ E, Rk ≤ 1.
Coming back to the domain Dα we see that instead of considering ϕ(k)

with the property (2) we may consider the mapping (note that (α1 . . . αn)/αj
∈ N)

ϕ̃(k)(λ) := (B(k)
j (λ)(µ(k)

j )(α1...αn)/αj (Rkλ))nj=1,

because ϕ̃(k) ∈ O(E,Dα), ϕ̃(k)(0) = w and ϕ̃(k)(tk) = z.
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Therefore we may assume that (irrespective of which case we consider,
(2) or (3))

ϕ
(k)
j = B

(k)
j ψ

(k)
j , j = 1, . . . , n,

where (ψ(k)
1 )α1 . . . (ψ(k)

n )αn = 1 and |B(k)
j | ≤ 1 (although B

(k)
j ’s need not

longer be Blaschke products).
Choosing a subsequence if necessary, we may assume that for all j =

1, . . . , n, {B(k)
j }∞k=1 converges locally uniformly on E. Keeping in mind that

ϕ(k)(0) = w and ϕ(k)(tk) = z we see that in view of Lemma 8 there isK b C∗
such that we may assume that ψ(k)

j (E) ⊂ K for any j, k (we may apply

Lemma 8 because L2 := {ψ(k)
j (tk), ψ(k)

j (0)}j,k b C∗, which follows from

the convergence and boundedness of {B(k)
j }∞k=1, the fact that wjzj 6= 0 for

j = 1, . . . , n, and the equality (ψ(k)
1 )α1 . . . (ψ(k)

n )αn = 1), and then choosing
a subsequence if necessary we deduce that ϕ(k) converges to a mapping
ϕ ∈ O(E,Dα) with ϕ(E) b (C∗)n such that ϕ(0) = w and ϕ(t) = z.
The maximum principle for subharmonic functions implies, however, that
ϕ(E) ⊂ Dα. This completes the proof of the lemma.

3. The rational case—proof of Theorem 2. In the present section
we provide the proof of Theorem 2. Since the theorem consists of a number
of formulas, we prove them below one by one. We start with the Lempert
function, which is basic in the calculation of other functions.

We begin with a formula for the Möbius function which seems to be
known, but we have not been able to find any references in the literature.
Its proof is elementary but it needs tedious calculations, so we skip it.

Lemma 14. Fix 0 < s ≤ 1. Then for any λ1 ∈ (0, 1) and λ2 ∈ E we have

m(λs1, λ
s
2) ≥ m(λ1, λ2),

where λs1 ∈ (0, 1) and the power λs2 is chosen so that the left-hand side of
the formula is smallest possible.

Proof of the formula for k̃∗Dα in the rational case. The case w1 . . . wn = 0
is a consequence of Lemma 10. The case w, z ∈ D̃α, wα = zα follows from
Remark 4. We are left with the case w, z ∈ D̃α, wα 6= zα. By Lemma 13
there is a bounded k̃Dα -geodesic ϕ ∈ O(E,Dα) for (w, z) = (ϕ(λ1), ϕ(λ2)).
Proceeding as in the proof of Lemma 13 we may assume that

ϕj = Bjψj , j = 1, . . . , n,

where Bj is a Blaschke product (up to a constant |cj | = 1), ψj(E) ⊂ K b C∗
and ψα1

1 . . . ψαnn = 1. In fact, consider the decomposition of ϕj as above with
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Blaschke product Bj . Put

ψ̃ := (ψαj/(α1...αn)
j )nj=1.

Consider two cases. If ψα1
1 . . . ψαnn is not constant on E, then ψ̃ ∈

O(E,D(1,...,1)) and it is a k̃D(1,...,1) -geodesic for (ψ̃(λ1), ψ̃(λ2)): otherwise,
there would be ψ̂ ∈ O(E,D(1,...,1)) such that ψ̂(λ1) = ψ̃(λ1), ψ̂(λ2) = ψ̃(λ2)
and ψ̂(E) b D(1,...,1) and taking ϕ̂(λ) := (Bj(λ)ψ̂(α1...αn)/αj

j (λ))nj=1 we
get a mapping such that ϕ̂(λ1) = ϕ(λ1), ϕ̂(λ2) = ϕ(λ2) and ϕ̂(E) b Dα—
contradiction. By Remark 12 there is a k̃D(1,...,1) -geodesic µ for (ψ̃(λ1), ψ̃(λ2))
= (µ(λ1), µ(λ2)), where ψ̂1 . . . ψ̂n = 1 and ψ̂j(E)’s are relatively compact in
C∗. Taking now (Bj(λ)µj(λ)(α1...αn)/αj )nj=1 instead of ϕ we get the desired
property.

In case ψα1
1 . . . ψαnn = eiθ, we may assume that ψj(E) ⊂ K b C∗ for

some K because of Lemma 8 (and then without loss of generality we may
assume that eiθ = 1).

Therefore, ϕ(E) is contained in some polydisk. Consequently, ϕ(E) is
contained in some smooth bounded pseudoconvex complete Reinhardt do-
main G ⊂ Dα, which arises from the domain Dα by “cutting the ends”
and “smoothing the corners”. Therefore, ϕ is a k̃G-geodesic for (w, z). Us-
ing the results of [E], [Pa] we find that there are mappings hj ∈ H∞(E,C),
j = 1, . . . , n, and % : ∂E → (0,∞) such that

1
λ
h∗j (λ)ϕ∗j (λ) = %(λ)αj |(ϕ∗(λ))α|, j = 1, . . . , n, for almost all λ ∈ ∂E

(we easily exclude the case (ϕ∗(λ))α = 0 for λ from some subset of ∂E with
non-zero Lebesgue measure). Using the result of Gentili (see [Ge]) we deduce
that for some bj ∈ C∗, j = 1, . . . , n, β ∈ E,

ϕj(λ)hj(λ) = bj(1− βλ)(λ− β), j = 1, . . . , n, λ ∈ E,

where bj/αj = bk/αk, j, k = 1, . . . , n. Consequently, we may take

Bj(λ) = cj

(
λ− β
1− βλ

)rj
, |cj | = 1,

where rj ∈ {0, 1} and not all rj ’s are 0. Without loss of generality we may
assume that β = 0 (we then change only λ1 and λ2).

Now we come back to the domain Dα. We may assume that r1 = . . .=
rk = 1 and rk+1 = . . . = rn = 0 (1 ≤ k ≤ n). We want to have for some
λ1, λ2 ∈ E (without loss of generality we may assume that cj = 1—if neces-
sary we change w and z with the help of rotations of suitable components,
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so the Lempert function does not change)

λ1ψj(λ1) = wj , j = 1, . . . , k, ψj(λ1) = wj , j = k + 1, . . . , n,
λ2ψj(λ2) = zj , j = 1, . . . , k, ψj(λ2) = zj , j = k + 1, . . . , n.

Taking the αjth power and multiplying the equalities we get

λα1+...+αk
1 = wα, λα1+...+αk

2 = zα.

The formulas above describe all possibilities which may yield candidates for
the realization of the Lempert function. Now for all possible λ1, λ2 as above
we find mappings which map λ1 and λ2 to w and z. Note that there are
mappings ψj ∈ O(E,C∗), j = 2, . . . , n, such that (see Lemma 7)

ψj(λ1) =
wj

(wα)1/(α1+...+αk)
=
wj
λ1
, j = 2, . . . , k,

ψj(λ2) =
zj

(zα)1/(α1+...+αk)
=
zj
λ2
, j = 2, . . . , k,

ψj(λ1) = wj , ψj(λ2) = zj , j = k + 1, . . . , n,

Define also

ψ1(λ) :=
1

(ψα2
2 (λ) . . . ψαnn (λ))1/α1

, λ ∈ E.

Put

ϕ(λ) := (λψ1(λ), . . . , λψk(λ), ψk+1(λ), . . . , ψn(λ)).

The α1st root in the definition of ψ1 is chosen so that ϕ1(λ1) = w1, and we
know that ϕα1

1 (λ2) = zα1
1 . One may also easily verify that ϕ(λ1) = w and

ϕj(λ2) = zj for j = 2, . . . , n, which, however, in view of Lemma 5 shows that
there is also a mapping ϕ̃ ∈ O(E,Dα) such that ϕ̃(λ1) = w and ϕ̃(λ2) = z.
Therefore we have proved that

k̃∗Dα(w, z) = min{m(λ1, λ2) : λ1, λ2 ∈ E,

λ
αj1+...+αjk
1 = wα, λ

αj1+...+αjk
2 = zα},

where the minimum is taken over all possible subsets {j1, . . . , jk} ⊂
{1, . . . , n}. Now Lemma 14 finishes the proof (remark that without loss
of generality we may assume that wj > 0 for j = 1, . . . , n).

Proof of the formula for k∗Dα in the rational case. Note that tanh−1

of the desired formula is equal to tanh−1 of the Lempert function off the
axis, satisfies the triangle inequality and is continuous. The definition of the
Kobayashi pseudodistance and its continuity (see [JP2]) finish the proof.

To finish the proof it remains to compute the Kobayashi–Royden pseu-
dometric κDα . We do that by defining an operator which connects κDα to
the Kobayashi pseudodistance.
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Following M. Jarnicki and P. Pflug (see [JP2]), for a domain D ⊂ Cn we
define

DkD(w;X) := lim sup
λ→0, λ 6=0

k∗Dα(w,w + λX)
|λ|

, w ∈ D, X ∈ Cn.

This function differs from that in [JP2], but it is no larger, so the inequality
below, which is crucial for our considerations, remains true:

(4) DkD(w;X) ≤ κD(w;X), w ∈ D, X ∈ Cn.
Lemma 15. Let α ∈ Nn∗ , where αj’s are relatively prime. Then

DkDα(w;X)

= γE

(( n∏
j=1

|wj |αj
)1/min{αk}

;
( n∏
j=1

|wj |αj
)1/min{αk} 1

min{αk}

n∑
j=1

αjXj

wj

)
for w ∈ D̃α and X ∈ Cn.

P r o o f. Without loss of generality we may assume that wj > 0 for
j = 1, . . . , n, and αn = min{αk}. Using the formula for k∗Dα we get

(5) DkDα(w;X) = lim sup
λ→0, λ 6=0

|
∏n
j=1(wj + λXj)αj/αn −

∏n
j=1 w

αj/αn
j |

|1−
∏n
j=1(wj + λXj)αj/αn

∏
w
αj/αn
j | · |λ|

.

Applying the Taylor formula we get, for λ close to 0,

(wj + λXj)αj/αn = w
αj/αn
j +

αj
αn

w
αj/αn
j

λXj

wj
+ εj(λ), j = 1, . . . , n,

where εj(λ)/λ→ 0 as λ→ 0. Substituting the last equalities in (5) we get

DkDα(w;X) = lim sup
λ→0, λ 6=0

(
∏n
j=1 |w

αj
j |1/αn)|λ|

∣∣∑n
j=1

αjXj
αnwj

∣∣
(1−

∏n
j=1 |wj |2αj/αn)|λ|

,

which equals the desired value.

Proof of the formula for κDα in the rational case. If J 6= ∅, then in
view of Lemma 10 we are done. The case

∑n
j=1 αjXj/wj = 0 follows from

Remark 4.
Take w ∈ D̃α. Without loss of generality we may assume that wj ∈ R+

for j = 1, . . . , n, and αn = min{αj}. Below, forX ∈ Cn with
∑n
j=1 αjXj/wj

6= 0 we shall construct a mapping ϕ ∈ O(E,Dα) such that

ϕ(λ1) = w, tϕ′(λ1) = X,

where

λ1 := (wα1
1 . . . wαnn )1/αn > 0, t := (wα1

1 . . . wαnn )1/αn
n∑
j=1

αjXj

αnwj
.

The existence of such a ϕ finishes the proof by Lemma 15 and (4).
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Define

ϕ(λ) :=
(
ψ1(λ), . . . , ψn−1(λ),

λ

(ψα1
1 (λ) . . . ψαn−1

n−1 (λ))1/αn

)
,

where (see Lemma 9)

ψj(λ1) = wj , tψ′j(λ1) = Xj , j = 1, . . . , n− 1.

We choose the (1/αn)th power so that ϕn(λ1) = wn. After some elementary
transformation we get tϕ′n(λ1) = Xn, which finishes the proof.

4. The irrational case—proof of Theorem 3. As in the rational case
we start with the proof of the formula for the Lempert function. First, we
make use of the special properties of the domains of irrational type to get:

Lemma 16. Let α be of irrational type. Then for any w, z ∈ Dα,

k̃∗Dα(w, z) = k̃∗Dα(w̃, z̃), w̃ ∈ Tw, z̃ ∈ Tz.
P r o o f. Certainly it is enough to prove that

k̃∗Dα(w, z) = k̃∗Dα(w, z̃) whenever z̃ ∈ Tz.
Assume that
(6) k̃∗Dα(w, z̃1) < k̃∗Dα(w, z̃2) =: ε
for some z̃1, z̃2 ∈ Tz. Then in view of Lemma 5,

(7) k̃∗Dα(w, z̃) = ε

for all z̃ ∈ Tz̃2,α. Because of (1) we have z̃1 ∈ Tz = Tz̃2 = T z̃2,α. To-
gether with (6) and (7), the last statement contradicts, however, the upper-
semicontinuity of the Lempert function.

As an immediate corollary of Lemma 16 we get

Corollary 17. Let α be of irrational type. Then for any z ∈ Dα,

k̃∗Dα(z, z̃) = 0 for any z̃ ∈ Tz.

Proof of the formula for k̃∗Dα in the irrational case. The case J 6= ∅ is
covered by Lemma 10. Consider now the remaining case. In view of Lemma
16 we have

k̃∗Dα(w, z) = k̃∗Dα((|w1|, . . . , |wn|), (|z1|, . . . , |zn|)).

Choose a sequence {α(k)}∞k=1 ⊂ (Q+)n such that α(k) → α. First notice that
in view of Theorem 2, if x, y ∈ (R+)n ∩Dα(k) , then

(8) k̃∗D
α(k)

(x, y)

= m((xα
(k)
1

1 . . . x
α(k)
n
n )1/min{α(k)

j }, (yα
(k)
1

1 . . . y
α(k)
n

n )1/min{α(k)
j }).

We may assume that min{αj} = αn and min{α(k)
j } = α

(k)
n .
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First we prove that

k̃∗Dα(w, z) ≥ m((|w1|α1 . . . |wn|αn)1/αn , (|z1|α1 . . . |zn|αn)1/αn).

Indeed, otherwise there is a mapping ϕ ∈ O(E,Dα) such that ϕ(λ1) =
(|w1|, . . . , |wn|), ϕ(λ2) = (|z1|, . . . , |zn|) and

m(λ1, λ2) < m((|w1|α1 . . . |wn|αn)1/αn , (|z1|α1 . . . |zn|αn)1/αn).

Then we may choose k so large that ϕ(E) ⊂ Dα(k) and

m(λ1, λ2) < m((|w1|α
(k)
1 . . . |wn|α

(k)
n )1/α

(k)
n , (|z1|α

(k)
1 . . . |zn|α

(k)
n )1/α

(k)
n ),

which, however, contradicts (8).
To get equality consider the mapping ϕ(λ) := (ψ1(λ), . . . , ψn−1(λ),

λψn(λ)), where (see Lemma 7) ϕj ∈ O(E,C∗) for j = 1, . . . , n− 1,

λ1 := (|w1|α1 · . . . · |wn|αn)1/αn > 0, λ2 := (|z1|α1 . . . |zn|αn)1/αn > 0;
ψj(λ1) = |wj |, ψj(λ2) = |zj |, j = 1, . . . , n− 1.

Define also

ψn(λ) :=
1

(ψα1
1 (λ) . . . ψαn−1

n−1 (λ))1/αn
, λ ∈ E.

The αnth root is chosen so that ϕn(λ1) = |wn|. One may also easily check
from the form of ψj ’s in the proof of Lemma 7 that then ϕn(λ2) > 0, so
ϕn(λ2) = |zn|. This completes the proof.

Just as in the rational case we have:

Proof of the formula for k∗Dα in the irrational case. Note that tanh−1 of
the desired formula satisfies the triangle inequality and coincides with the
tanh−1 of the Lempert function off the axis. The definition of the Kobayashi
pseudodistance and its continuity finish the proof.

Having the formula for the Lempert function we get

Proof of the formula for gDα in the irrational case.

Case I: J = ∅. Corollary 17 implies that gDα(w, z) = 0 for any z ∈ Tw.
The maximum principle for plurisubharmonic functions (applied to
gDα(w, ·)) implies that gDα(w, z) = 0 for any z with |zj | ≤ |wj |, which
means that gDα(w, ·) vanishes on a set with non-empty interior (remember
that w1 . . . wn 6= 0); but gDα(w, ·) is logarithmically plurisubharmonic, so it
must vanish on Dα.

Case II: J 6= ∅. This case is a simple consequence of Lemma 10, the
inequality g ≤ k̃∗, the definition of the Green function and the fact that the
function (|z1|α1 . . . |zn|αn)1/(αj1+...+αjk ) is logarithmically plurisubharmonic
on Dα.
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Proof of the formula for ADα in the irrational case. The result follows
from the formula for the Green function and the definition of the Azukawa
pseudometric.

Now, as in the rational case, we finish up the proof by showing the
formula for κDα .

Lemma 18. Let α be of irrational type. Then

DkDα(w;X)

= γE

(( n∏
j=1

|wj |αj
)1/min{αk}

;
( n∏
j=1

|wj |αj
)1/min{αk} 1

min{αk}

n∑
j=1

αjXj

wj

)
for w ∈ D̃α and X ∈ Cn.

P r o o f. Without loss of generality we may assume that αn = min{αk}.
The formula for the Kobayashi pseudodistance gives us

(9) DkDα(w;X) = lim sup
λ→0, λ 6=0

|
∏n
j=1 |wj + λXj |αj/αn −

∏n
j=1 |wj |αj/αn |

|1−
∏n
j=1 |wj + λXj |αj/αn

∏
|wj |αj/αn | · |λ|

.

Note that αj/αn ≥ 1. Therefore, applying the Taylor formula we get, for λ
close to 0,

|wj + λXj |αj/αn = |wj |αj/αn +
αj
αn
|wj |αj/αn

(
Re
(
λXj

wj

))
+ εj(λ),

j = 1, . . . , n,

where εj(λ)/λ→ 0 as λ→ 0. Substituting the last equalities in (9) we get

DkDα(w;X) = lim sup
λ→0, λ 6=0

∏n
j=1(|wj |αj )1/αn Re

(
λ
(∑n

j=1
αjXj
αnwj

))(
1−

∏n
j=1 |wj |2αj/αn

)
|λ|

,

which equals the desired value.

Proof of the formula for κDα in the irrational case. If J 6= ∅, then in
view of Lemma 10 we are done. Also the case

∑n
j=1 αjXj/wj = 0 follows

from Remark 4. Below we deal with the remaining cases.
Take w ∈ D̃α. Without loss of generality we may assume that wj∈R+ for

j = 1, . . . , n, and αn = min{αj}. Below, for X ∈ Cn with
∑n
j=1 αjXj/wj

6= 0 we construct a mapping ϕ ∈ O(E,Dα) such that ϕ(λ1) = w and tϕ′(λ1)
= X, where

λ1 := (wα1
1 . . . wαnn )1/αn > 0, t := (wα1

1 . . . wαnn )1/αn
n∑
j=1

αjXj

αnwj
.

The existence of such a ϕ finishes the proof by Lemma 18 and (4).
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Define

ϕ(λ) :=
(
ψ1(λ), . . . , ψn−1(λ),

λ

(ψα1
1 (λ) . . . ψαn−1

n−1 (λ))1/αn

)
,

where (see Lemma 9)

ψj(λ1) = wj , tψ′j(λ1) = Xj , j = 1, . . . , n− 1.

We choose the (1/αn)th power so that ϕn(λ1) = wn. After some elementary
transformation we get tϕ′n(λ1) = Xn, which finishes the proof.

5. Some applications. We now formulate some corollaries which show
how irregularly the invariant functions can behave although the domains
considered are very regular.

For a given domain D ⊂ Cn we define a relation R on D as follows:
wRz for w, z ∈ D if k∗D(w, z) = 0. In [Ko2], S. Kobayashi asked whether the
quotient D/R always has a complex structure. The answer is “no”, but the
examples showing this are artificial (see [Ko1], p. 130; also [HD] and [Gi]).
From Theorem 3 we know that if α is of irrational type, then Dα/R is [0, 1).
This gives the first very simple example of a very regular domain for which
the answer to the above question is “no”.

One may consider some generalizations of the Carathéodory pseudodis-
tance, called the kth Möbius function, denoted by mk (for k = 1, 2, . . .) (for
definitions see [JP2]). S. Nivoche [N] has proved that if a domain is strictly
hyperconvex, then the functions mk tend to g. One may easily verify that
if α is of irrational type, then all the mk’s vanish on Dα × Dα. Therefore
no such convergence holds in the domains Dα (α of irrational type), so one
should not expect a result similar to [N] in the class of Reinhardt complete
pseudoconvex domains.

In general, the Lempert function seems to be very distant from the Green
function. The definition of the Kobayashi pseudodistance makes the impres-
sion that the Kobayashi pseudodistance should be larger than or equal to
the Green function. Nevertheless, if α∈Nn∗ is such that all αj ’s are relatively
prime and min{αj} = 1, then (see Theorem 2)

c∗Dα ≡ k
∗
Dα ≤ gDα ≤ k̃

∗
Dα , k∗Dα 6= gDα .

In [Pa] and [L1] a notion of stationary maps was introduced and studied.
In the class of strongly convex domains these mappings are exactly the
k̃-geodesics. In strongly pseudoconvex domains, geodesics are necessarily
stationary maps. The converse implication does not hold in general (see
[Pa] and [PZ]). From the proof of Theorem 2 we may construct also other
examples disproving that implication.
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6. Open problems. It would be interesting to find formulas for all
the invariant functions discussed above for domains of the following more
general type:

Dα1 ∩ . . . ∩Dαk ∩ ((R1E)× . . .× (RnE)),

where αj ∈ (R+)n, j = 1, . . . , k.
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