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Effective formulas for invariant functions
——case of elementary Reinhardt domains

by PETER PrLUG (Oldenburg) and WLODZIMIERZ ZWONEK (Krakéw)

Abstract. We find effective formulas for the invariant functions, appearing in the
theory of several complex variables, of the elementary Reinhardt domains. This gives
us the first example of a large family of domains for which the functions are calculated
explicitly.

0. Introduction. Holomorphically invariant functions and pseudomet-
rics have proved to be very useful in the theory of several complex variables.
Nevertheless, the problem of finding effective formulas for them has turned
out to be very difficult. So far there have been very few examples of domains
for which explicit formulas for these functions are known.

Among many different invariant functions and pseudometrics let us men-
tion the Lempert and Green functions, the Kobayashi and Carathéodory
pseudodistances as well as their infinitesimal versions, i.e. the Kobayashi—
Royden, Carathéodory and Azukawa pseudometrics.

Due to Lempert’s theorem (see [L1,2]) all holomorphically invariant func-
tions and pseudometrics coincide in the class of convex domains. But even
in the convex case it is difficult to find explicit formulas. Among the few ex-
isting results in this direction let us mention here the special case of convex
(see [BFKKMP], [JP2]) and non-convex (see [PZ]) ellipsoids. Another class
of non-convex domains for which some of the functions were calculated is
the class of elementary Reinhardt domains (see [JP1,2]). In our paper we
extend the results obtained in the latter domains to all invariant functions
and pseudometrics mentioned above. The formulas obtained enable us to
understand better the mutual relations between the invariant objects and
give surprising solutions to some problems.
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1. Definitions, notations and main results. By F we will always
denote the unit disc in C. We put

A1 — Ao
m(A, A2) == ——=——, A, A2 € F,
11— A1
vp(xa) = —9 AeE, aeC.
) =TT ’

Let D be a domain in C". Following [L1], [Kol], [KI1,2], [C], [A], [R]
and [JP2] for (w,z) € D x D and (w, X) € D x C" we define the following
functions:

%*D(w,z) = inf{m(A, A2) : Jp € O(E, D), p(A\) =w, p(A2) =z},

kD (w, z) := tanh kp(w, 2),
where kp is the largest pseudodistance smaller than or equal to %D =
tanh ™" k%,
gp(w, z) := sup{u(z) : logu € PSH(D, [—00,0)),

IM,R > 0:u(¢) < M||¢ —wl|| for ¢ € D, ||¢ —wl| < R},
c¢p(w, z) := sup{m(p(w),¢(2)) : ¢ € O(D, E)};

and also their infinitesimal versions:

kp(w; X) :=inf{yp(Xja) : Jp € O(E, D), ¢(A) =w, ap’(A) = X},

X
Ap(w; X) := limsup gp(w,w + A ),
A—0, A£0 B

vp(w; X) = sup{ye(p(w); ¢'(w)X) : ¢ € O(D, E)}.

The function %}5 (resp. gp, k}, ¢},) is called the Lempert function (resp. the
Green function, the Kobayashi and Carathéodory pseudodistance). The func-
tion kp (resp. Ap and vp) is called the Kobayashi—Royden (resp. Azukawa
and Carathéodory—Reiffen) pseudometric.

Note that the functions EE, k7, and c}, are always symmetric, whereas
gp need not have this property. For the basic properties of the functions
defined we refer the interested reader to [JP2]. Let us mention here only
some basic relations:

kp > kp >cp, kp>gp>cp, kp=>Ap>p.

A mapping ¢ € O(E,D) is called a %D—geodesz’c for (w,z), w # z, if
©(A1) =w, p(A2) = z and m(Ay, A2) = %E(w,z) for some A\, \s € E.

The class of domains we are interested in is defined below.

For o = (av1,...,a,) €RY, n > 1, (Ry :=(0,00)) define

Dy :={z€C":|z|* ... |z |* < 1}.
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We say that « is of rational type if there are t > 0 and 5 = (f1,...,0,) € NI
such that a =t; otherwise « is of irrational type. Note that if « is of rational
type we may without loss of generality assume that all a;’s are relatively
prime natural numbers. We also define

D, ={2€Dy:21...2n, # 0}

For a € N}, we set

2% =2yt g, F(z) =27,
1 HP1t-+8n o
Bi+...+Bn=r 1tee-Pns a'Zl .0z

Note that the domain D, is always unbounded, Reinhardt, complete, and
pseudoconvex but not convex.

As mentioned in the introduction, some of the invariant functions for the
domains D,, are explicitly known. We gather the results known so far in the
following theorem.

THEOREM 1 (see [JP2]). If « € N}, where o ’s are relatively prime, then

cp, (w,z) = m(w®, z%),
gp,(w,2) = (m(wa7za))1/T7
VD, (w; X) = ye(w®; (F*) (w)X),
Ap, (w; X) = ('yE(wa;F(oﬁ)(w)X))l/r, w,z € Dy, X € C",

where r is the order of the zero of F(-) — F*(w) at w.
If a is of irrational type, then

cp, (w,2) =0,
Yo, (w; X)=0, w,z€D,, XeC".

We extend the results of Theorem 1 to other invariant functions and
pseudometrics and we find the remaining formulas for the Green function
(and the Azukawa pseudometric) in the irrational case. The results are pre-
sented in two theorems: for rational and irrational c. In both theorems the
formulas for the Lempert function may seem incomplete (not all the cases
are covered); nevertheless, because of the symmetry of both functions one
easily obtains the formulas in the remaining cases.

THEOREM 2. Assume that o € N} with «; ’s relatively prime. Let (w, z) €
Dy x Dy and (w,X) € Do x C*. Set J :={j € {1,...,n} : w; =0} =
{j17 v 7.7k} Then
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min{m(A1, A2) : A1, Ay € E,
kEa (U}, Z) _ )\rlnin{aj} — wa’ )\;nin{aj} — za} Zf w,z € ﬁa,
|Za|1/(aj1+...+a]-k) Zf j#@,
kb, (w, z) = min{m/((w®)!/ i), (zo)t/mintesh)y,

where the minimum is taken over all possible roots; and in the infinitesimal
case we have

kp, (w; X)
. . 1 S X
a\1l/min{ag}. (,,,a\1/min{ay} E 1<) ; —
YE <(w ) ,(U) ) min{ak} pt w; ) Zf J ®a

(Jwoa|® o X |2 X |2 fwp )it f 7 20,

Observe that if min{c;} = 1, then EEQ (w,z) = gp,. (w, z) for w, z € Dy;
otherwise, if w® # 2%, then the Green function is strictly less than the
Lempert function.

As opposed to the rational case, in the irrational case not only the Lem-
pert function, Kobayashi pseudodistance and Kobayashi—-Royden pseudo-
metric, but also the Green function and the Azukawa pseudometric have
not been calculated so far.

THEOREM 3. Assume that « is of irrational type. Let (w,z) € Dy X Dy
and (w,X) € Do x C". Set J :={j € {1,...,n} :w; =0} = {j1,...,Jx}
Then

N m((|w1|a1 ".|wn|an)1/min{aj}7
kp, (w,2) = (lz1]2 . |z |om)t/mindesdy if w2 € D,
(Jza|or .z om) o tbas) o f 7 20,

§ n o 1/ min{a;} n o 1/ min{a;}
ki, (w,2) = m( (T] luws|™) NIER ).

j=1 j=1
gp. (w,2) =1 7 v
et (Jz1]*t .z rm) Vot osn) f T 20

and in the infinitesimal case we have

kp, (w; X)

1/min{oy }

VE(@J»%) ,

= n . 1/min{ay} 1 "o X _
(H’wj|a3> ;]> if J=0,
j=1 j=1

min{ay }

a7L)1/(0‘.71+"'+ajk) 'lf j;é@,

(w1, % X% Jwn,
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Ap, (w; X)
_Jo if I =0,
L || X 0 XY w0 )Y @it e 7 £,

Observe that for an arbitrary balanced pseudoconvex domain D we al-
ways have k},(0,z) = hp(z) for z € D, where hp denotes the Minkowski
function for D. In the above formula, k7, (0,2) < hp, () for 0 # z € D,.
It would be interesting to find the general form of k7,(0, ) for an arbitrary
balanced pseudoconvex domain D.

2. Auxiliary results. For z € C" put
T, :={(e2,...,e%2,):0; € R}.
Note that T, is a group with multiplication defined as follows:
(eP21,...,e"%2,) 0 (eiglzl, ce eig"zn) = (ei(91+§1)zl, ce ei(e"*'g")zn).

Define T, ,, to be the subgroup of T, generated by the set

("o ®M oy e T Y gy g e {1, nY, k.. Ky € 7).

Note that if o is of rational type, then T , is finite; more precisely, if we
assume that o € N} and «;’s are relatively prime, then

T,0={(c121,...,6n2n) : 5?7 =1 for all j}.

However, if « is of irrational type, then a well-known theorem of Kronecker
(see [HW], Theorem 439) gives

(1) T,0a="T,.
For p € E, we define
@, :C" 3 (A, A1) &
(enAr . enAn-1 pem@A | eman—1An-1) € D
Put
V,=®,C" Y, pekb, Vy={2€C":2...2,=0}
Note that
U V. = Da.
HEE
REMARK 4. Let € E,. Assume that w,z € V,,, and X € C" satisfies
Z?:l O[ij/’wj = 0. Then
kp (w,2) =0, wp,(w;X)=0.
In fact, w = &, () and z = @, (7) for some A,y € C"1, so

kb, (w,2) = kD, (8,(X), 8u(7)) < kfu-a (A7) = 0.
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For the second equality note that assuming @,,(\) = w we have

n—1
@;L()\)(Y) = (anwlyh ce ,anwn_lYn_l, — Z Oéj’LUnY;')7 Y e (Cn—l'
j=1
One may easily verify that

P, (A)(C) = {X eC": zn:anj/wj = 0}.

j=1
Note that
0= ko1 (NY) > kp, (B,(N); P, (V)Y), Y eC,
which finishes the proof.

In the proof of Lemma 5 below we shall replace F in the definition of
the Lempert function with H := {x +iy:1>x > —1}.

LEMMA 5. Fiz w,z€ D,,. Take any Z€T, . Then for any ¢ € O(E, D,,)
such that (A1) = w, @(X\2) = z for some Ay # \a, there is p € O(E, Dy,)
such that (A1) = w and p(A2) = z. Consequently,

E*Da (w,z) = EBQ (w,2) foranyz €T, .
Proof. Take any mapping ¢ € O(H, D,,) with ¢(0) = w and ¢(it) = z
for some ¢ > 0. Define (for k,, € Z fixed)
p:H>\—
(P1(A)s s Pn—2(N), 672%#)\/%071—1()‘)’ ean712knm\/(ant)@n()‘)) € D,.

We have

P0) =w, @(it) = (21, ..., 2p_1, e On=1/an)Zknm

Note that we may replace «,_; above with any other «;, and z, with
eilai/an)2knm,  and also we may continue the procedure with the next com-
ponents z; varying, which finishes the proof. m

REMARK 6. From the proof of Lemma 5 we also have the following
property:

Fix a € N} with «a;’s relatively prime and 0 < 6; < m(Ag, A2) <y < 1.
Take any ¢ € O(E,C"™) with ¢(E) € (C,)™ and choose z € C" such that
z?j = @D;Xj()\g) for j = 1,...,n. Then there is a mapping 1 € O(E,C"™) such

that ¢(E) € (C.)", ¥(M) = $(M1), $(A2) = z and
M) (A) =N gt (), AEE,
ml[Yjlle < ¢;lle < MliY;lle, 7=1,...,n,
where m, M > 0 depend only on ; and «a.
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LEMMA 7. Fiz L1, L2 € E, Ly € C, and o € (Ry)". Assume that there
is & > 0 such that for any A1 € L} and Ay € L? we have m(A1,\2) > 6. Then
there is Ly C K € C, such that for any z1, 2o € Ly and for any \; € L} and
A2 € L3 there is p € O(E,C,) with (\j) = zj for j = 1,2, and Y(E) C K.
Moreover, there is K € C, such that for any numbers z1,...,z, € Lo and
Wi, ..., W € Lo, k <n, with

‘2’1’&1 R |Zn‘a” =1
there are functions ; € O(E,C,) with ¢;(E) C K forj=1,...,n and
NN =€? NEE,
¢j()\1):Zj,j:1,...,n, 1j}j(>\2):w]',j:1,...,k.
Proof. For the first part it is sufficient to consider L1 = {\;} and L? =
{A2} with m(A1, A\2) =3J. The general case is then obtained by composing the

functions with automorphisms of E and the dilatation RA, where 0 < R < 1,
since the images of new functions are contained in that of the original one.

Define
L:=exp (L) N (R x [0,27)) € C.
Now put
K :={exp(h()\)) : A € E, and h is of the type
h(A\) = a\+b, a,b€C, h(\) =31, h(he) = 5o, 1,5 € L.

Observe that K € C,.. The mappings we are looking for are of the form
exp oh, where h is one of the functions appearing in the definition of K.

For the proof of the second part of the lemma we set w; for j =k + 1,
...,n—1to be any number from Ly and we take mappings 1, ...,%¥,_1 as
in the first part of the lemma. Define

eié
(W7 () - Ry (A) e

¢n()‘) =

where the branches of powers are chosen arbitrarily and 0 € R is chosen so
that ¥, (A1) = z,,. =

LEMMA 8. Let L1, L3, Lo,8 be as in Lemma 7. Fiz o € N7, where a;’s
are relatively prime. Then there is K € C, such that for any mappings
Y€ O(E,Cy), j=1,...,n, with

X Y% =1, MNEE,

1 n
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and j(M\1),1%j(X2) € La, where \y € L1 and Ay € L3, there are functions
Y; € O(E,Cy) such that
b =1 on E,
Jj(Al):@b]’(Al)? Jj()\z):%‘(}\z), J](E) CK7 .7:177”
Proof. Put zj :=¢;(A\1) and w; := ¢;(A2), j=1,...,n. From Lemma 7

there are ¢;, 7 =1,...,n — 1, as desired. Put

~ 1

Yn(A) == — o .

(W7 A) - iy () o

We choose the branch of the power 1/«,, so that JnjAl) = Zn; not~e also that
Yo (A2) = wi™. From Remark 6 we may change ¢ := (@Z)lL. .., ¥y) so that
all the desired properties are preserved and, additionally, ¥, (A\2) = w;,. =

Now we present a lemma which is a weaker infinitesimal version of
Lemma 7.

LEMMA 9. Let w € C,, X € C and A\y € E. Then there is a mapping
Y € O(E,C.) such that

Y(M) =w, P(M) =X
Moreover, for given numbers wy, ..., w, € Cy, X1,...,X; € C (k <n) and
a € (Ry)™, where w1 |** ... |w,|* =1, there are mappings ¢; € O(E,C,),
7 =1,...,n, such that

wj()\l):wj,jzl,...,n, w;(Al):Xj,j:L...,k,
N .Y\ =€? A€ E.

Proof. The first part goes as in the proof of Lemma 7 (note that we
do not need to specify more, since we do not demand so much about the
mapping ¢ as in Lemma 7). The mapping we are looking for is of the form
exp(aX + b).

For the second part of the lemma let X; (j = k+1,...,n — 1) be
any complex number. Take 1); as given in the first part of the lemma (for
j=1,...,n—1) with w replaced with w; and X replaced with X;. Put

g
(WA byt (A) Ve

where the branches of powers are chosen arbitrarily and 0 € R is chosen so
that ¥, (A1) = wy,. =

UV (N) =

Now we are able to give formulas for the Lempert function and the
Kobayashi—-Royden metric for special points.
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LeEMMA 10. Fiz w € Vy. Let z € Dy and X € C". Then
E}Ba (w,z) = (|]z1]** ... yzn|an)1/(ajl+...+ajk) 7
kp, (w; X) = (Jwy|* X, %9 X, %9k wy | ) Y (@t e
where J :={j € {1,...,n} :w; =0} = {j1,...,Jx}

Proof. Without loss of generality we may assume that w; = ... = wg =
0, Wgy1,...,wy #0,n >k >1. We prove both equalities simultaneously.

First we consider the case z € D, (resp. X; #0forall j =1,...,k).
Take any ¢ € O(E, D,) such that (0) = w, ¢(t) = z (resp. ¢(0) = w,
te'(0) = X) for some t > 0. We have

P(A) = Apr(A)s - Mok (N), Y1 (V) - P (V)
Yv; € O(E,C), j=1,...,n.
Put

OVESS | LOTeVIs

We know that logu € SH(E) and u < 1 on 0F, so the maximum principle
for subharmonic functions implies that « < 1 on E. In particular, u(t) <1
(resp. u(0) < 1), so

H?:1 |25|% <1 Hj:l | X[ H;‘L:kJrl lw;|*

ta1+...+ak - ( : ta1+...+ak S 1)’

which gives

t> (ﬁ \Zj|aj>

k n

esp. ¢ > ([T 150 T fwsl™

j=1 j=k+1

1/(a14...4ak)
>1/(a1+...+o¢k))

Therefore,

~. n o 1/(c1+...4ag)
Bp, (w,2) = (T] l1)

j=1
k n 1/(ar+...4ak)

(resp. Kp, (w; X) > <H | X[ H ‘wj’%) 1 k )
j=1 J=k+1

To get equality put

n 1/(ea+...4ak)
e ()
j=1



184 P. Pflug and W. Zwonek

k n 1/(a1+...+a)
(resp. = ([T 151 T fwyls) ™77

j=1 j=k+1
and consider the mapping

(A = (ADL(N), o AN, U1 (A), - 0n (X)), AEE,
where ¢; € O(E,C.), j =1,...,n, [[j, P37 (X) =€ on E and
wj(t):Zj/t, j=1,...k, "L/}j(t):Zj, j=k+1,...,m
¥;j(0) =wj;, j=k+1,...,n (see Lemma T7)
(resp. ¥;(0) = X;/t, 5=1,...,k, ¥;(0)=w;, j=k+1,...,n,
¥;(0) = Xj/t, j=k+1,...,n; see Lemma 9).
Then ¢ € O(E, D,,), ¢(0) = w, ¢(t) = z (resp. tp’(0) = X), which finishes
that case.
We are left with the case z € Vj (resp. X; =0 for some 1 < j < k). If
there is j such that w; = z; =0 (resp. w; = X; = 0), then the mapping

cts (215, Zjy oy 2n) = (21,...,0,...,2) € Dy
gives
0= ]{En_l((’wl,...,’lI)j,...,wn),(Zl,...,21',...,2”)) > k},a(w,z),
(resp.

0= R@n—l((wl,...,wj,. . .,wn); (Xl,.. . ,Xj,... ,Xn)) > RDQ(’LU;X)).
Now, there only remains the Lempert function and then we may assume
that for all j we have |w;| + |z;| > 0.
For fixed 1 > (8 > 0 define the mapping ¢ := (¢1, ..., pn) as follows:
A8
1— 0\
ei(A) =< A+ .
Y 2R it =0
’(ﬁj()\) if Wjzj 75 0,
where 1; € O(E,C,), H?:l 11}]% (A\) =€ on E and ¢(B8) = w, ¢(—f) = 2
(the values of ¢;(3) and 1);(—(3) are prescribed if only w;z; # 0; for w;z; = 0
only one of them is prescribed; more precisely, take j; such that z;, = 0, and
define v, (=) so that |[¢1(—=3)|* ... |, (=F)|*" = 1; note also that there
is jo such that wj, = 0, so ¢, (/) has no fixed value—it is the reason why
we are allowed to use Lemma 7). Note also that ¢ € O(E,D,). As 8 >0
may be chosen arbitrarily small this completes the proof of the lemma. =

G i w; =0,

In the next step we prove a formula for the Lempert function in the spe-
cial case of the domain D(; . ;). Following (to some extent) the ideas from
[JPZ] and [PZ] we extend the formulas to the general case using a technique
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which could be called transport of geodesics. Roughly speaking, the idea is
to transport the formulas from simpler domains to more complex ones with
the help of “good” mappings. In [JPZ] and [PZ] it was the Euclidean ball
that was a model domain. In the present paper it is the domain Dy, . 1).

LEMMA 11. If w, z € Vy, then

-----

-----

,,,,,

where
k= max{#{j : z; =0}, 1}.
Proof. The first part is a consequence of Lemma 10. Moreover, also the
case z € Vj is a consequence of Lemma, 10.
Consider now the case w, z € 13(1,.“71). We may assume that wy ...w, #
21...zn (the other case is covered by Remark 4).
Consider the following mapping (see Lemma 7):

PN 1= (U1 (N, -, 1 (V) e O (V)
where
Alzzwl...wn, )\21221...,2”,
v, €O(E,CL), j=1,....,n, P1(N)...0(N) =€ NcE,
wj(/\l):wj, ”Lﬂj(Ag):Z’j, j:l,...,n—l
(using Lemma 7 we may even assume that ¢;(F) C K € C,, j =1,...,n;
compare Remark 12 below).

Note that ¢ € O(E,D1,... 1)), ¢(M) = w, ¢(A2) = z. Therefore, com-
bining this with the contractivity property of the Lempert function we have
m(wy ... Wy, 21 ... 2n) > fl;:/’lk)(l’...71)(w,z) =m(wy...Wp, 21 ...2n).

This completes the proof. m
REMARK 12. From the proof of Lemma 11 we see that for any w,z €

5(17“.71) with w1 ... w, # 21... 2, there is a kp,,  -geodesic for (w, z) of
the form

,,,,,

WA=
(10t 0, 7 2 (0)
with ¢1(A\) ... ¢, (X)) =1 and ¢;(F) € C,.

The domains D, although very regular, do not have a property which
is crucial in the theory of holomorphically invariant functions: they are not
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taut. Therefore, we have no guarantee that they admit Epa -geodesics. How-
ever, as Lemma 13 will show, they do admit them at least in the rational
case and for points which are “separated” by the Lempert function. The
existence of the geodesics will play a great role in the proof of the formula
for the Lempert function in the rational case.

LEMMA 13. Assume that o € N and o ’s are relatively prime. Let w, z €
D, with w® # z*. Then there is a bounded kp_-geodesic ¢ € O(E, D) for
(w,2).

Proof. We know that (use contractivity of the Lempert function)

t:= %Ba (w, z) > m(w®, z%) > 0;

consequently, there are mappings o) = (gogk), ... ,gaglk)) k=1,2,..., such

that ¥ e O(E, D,), (p(k)(()) = w and ) (t,) = 2z, where t; >ty —
t > 0. We have

k k), (k .

A9 - BOO. o1,

where B(k) is a Blaschke product and w(k) € O(E,C,).

Put 1/J(k) = (¢(k)) . There are two possibilities (due to the maximum
principle for subharrnomc functions—remember the pseudoconvexity of D,, ):
(2) Y*(E) € Da,

(3) WP (E) C 8D,.

Below we prove that without loss of generality we may restrict our attention
to a case which is some kind of generalization of (3).
Take any k such that (2) is satisfied. First, notice that the mapping

o k [e2] a1...0p [072%% A1...0n
P = () /e L () enS ()

is in O(F,D(,..1)). From Remark 12 there is a %Du
(1 ®)(0),® (t1,)) of the form

(k) — [ 7k ) b A — B (k))
2 <¢1 ’ ﬂ/fn 1,€ 1_Bk)\'¢
where Jgk) ..9% =1 on E, such that 1) (0) = w(k)(O) and p®) (Ryty) =
Y ® (t), B € B, Ry < 1.
Coming back to the domain D, we see that instead of considering ¢(*)
with the property (2) we may consider the mapping (note that (o ... o)/
e N)

,,-geodesic for

,,,,,

4 k k ap...0pn) /o
G M) = (B V(g eren) o (RN,
because ¥) € O(E, D), ) (0) = w and 3*) () = 2.
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Therefore we may assume that (irrespective of which case we consider,
(2) or (3))
k k), (k .
Qog):B;)w;)’ ]:17"‘7/’7/7

where (wgk))al ...(wff))“" =1 and ]B](k)| < 1 (although B](.k)’s need not
longer be Blaschke products).

Choosing a subsequence if necessary, we may assume that for all j =
1,...,n, {Bj(k)}io:l converges locally uniformly on F. Keeping in mind that
©)(0) = w and *) () = z we see that in view of Lemma 8 there is K € C,

(*)
J

Lemma 8 because Lo := {¢§k) (tk),l/)J(-k)(O)}j7k € C,, which follows from

the convergence and boundedness of {Bj(k)}z":l, the fact that w;z; # 0 for
j=1,...,n, and the equality ( :(lk))o‘l - (w,(f))a" = 1), and then choosing
a subsequence if necessary we deduce that ¢*) converges to a mapping
¢ € O(E,D,) with p(E) € (C,)" such that ¢(0) = w and ¢(t) = 2.
The maximum principle for subharmonic functions implies, however, that
@(E) C D,. This completes the proof of the lemma. m

such that we may assume that ;"' (E) C K for any j,k (we may apply

3. The rational case—proof of Theorem 2. In the present section
we provide the proof of Theorem 2. Since the theorem consists of a number
of formulas, we prove them below one by one. We start with the Lempert
function, which is basic in the calculation of other functions.

We begin with a formula for the Mobius function which seems to be
known, but we have not been able to find any references in the literature.
Its proof is elementary but it needs tedious calculations, so we skip it.

LEMMA 14. Fiz 0 < s < 1. Then for any \1 € (0,1) and A2 € E we have
m()\i, )\g) Z m()\l, )\2),

where \j € (0,1) and the power A5 is chosen so that the left-hand side of
the formula is smallest possible.

Proof of the formula for E*Da in the rational case. The case wy ... w, =0

is a consequence of Lemma 10. The case w,z € l~)a, w® = z% follows from
Remark 4. We are left with the case w,z € D,, w® # 2% By Lemma 13
there is a bounded kp_-geodesic ¢ € O(E, D,,) for (w, z) = (©(A1), ¢(A2)).
Proceeding as in the proof of Lemma 13 we may assume that

wj=Bp;, j=1,...,n,

where B; is a Blaschke product (up to a constant |¢;| = 1), ¥;(E) C K € C,
and 7" ... Yo" = 1. In fact, consider the decomposition of ¢; as above with
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Blaschke product B;. Put

”[]Z) = (w;‘j/(al---an))?zr

Consider two cases. If ¢ ... 92" is not constant on E, then ibv €

O(E,Dq,.. 1)) and it is a kp , , -geodesic for (A1), 1(X2)): otherwise,

there would be ¢ € O(E, Dy, _1y) such that $(A1) = ¥(\1), $(A2) = P(Aa)
and Y(E) € D, 1) and taking $(\) := (Bj()\)wj(al"'a”)/aj()\));1:1 we

77777

get a mapping such that @(A1) = @(A1), p(A2) = ¢(A2) and P(E) € Dy—

contradiction. By Remark 12 thereisa kp, ,,-geodesic p for (1(A1), 9 (2))
= ((A1), (X2)), where 91 ... ¢, = 1 and QZJ’(E)’S are relatively compact in
C.. Taking now (B;(\)p;(\)(@1an)/as )7_; instead of ¢ we get the desired
property.

In case ¥ ... 9% = e we may assume that ¢;(E) C K € C, for
some K because of Lemma 8 (and then without loss of generality we may
assume that ¢ = 1).

yeees

Therefore, ¢(E) is contained in some polydisk. Consequently, p(E) is
contained in some smooth bounded pseudoconvex complete Reinhardt do-
main G C D,, which arises from the domain D, by “cutting the ends”
and “smoothing the corners”. Therefore, ¢ is a kg-geodesic for (w, z). Us-
ing the results of [E], [Pa] we find that there are mappings h; € H>(E, C),
j=1,...,n,and g : OF — (0,00) such that

1 * * * « .
th(/\)%()\) — Q()\)Oéj‘(w AN)*, Jj=1,...,n, for almost all A € OF

(we easily exclude the case (¢*(\))* = 0 for A\ from some subset of F with
non-zero Lebesgue measure). Using the result of Gentili (see [Ge]) we deduce
that for some b; € Cy, j=1,...,n, B € F,

where b;/a; = by /ay, j,k =1,...,n. Consequently, we may take
A
Bji(A) =¢; = s el =1,
W=t =5) -l

where 7; € {0,1} and not all r;’s are 0. Without loss of generality we may
assume that § = 0 (we then change only \; and A2).

Now we come back to the domain D,. We may assume that ry=...=
rp =1land rp41 = ... =71, =0 (1 <k <n). We want to have for some
A1, A2 € E (without loss of generality we may assume that ¢; = 1—if neces-
sary we change w and z with the help of rotations of suitable components,
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so the Lempert function does not change)
Af(/)j()\l) = wj, ] = 1,...,k, lp]()\l) = wjy, j =k 4+ 1,...,71,
)\27#]‘()\2):2]‘, jzl,...,k, wj()\g):Zj, j:k—l-l,,n
Taking the a;th power and multiplying the equalities we get

A?l—l-...-l-ak Agl—l-...-l-ak

=w, = 2%

The formulas above describe all possibilities which may yield candidates for
the realization of the Lempert function. Now for all possible A, Ay as above
we find mappings which map A1 and Ay to w and z. Note that there are
mappings ¢; € O(E,C,), j =2,...,n, such that (see Lemma 7)

wj wj

Pi(\) = (@ @i = 3y i=2,...,k
. _ Zj _ % .

7’/}3()\2) - (za>1/(a1+...+ak) - )\2’ J= 27"'7k7

Vi) =wj,  Pi(Xe) = 25, j=k+1,...,n,
Define also

1
P1(A) == —4; - , ANEE.
W= ey e gy

Put

80()‘) = ()\7#1 ()‘)7 R )\"ﬁk()‘)v wkz-i—l()‘)a cee 7wn()‘))
The a;st root in the definition of 1) is chosen so that ¢1(A1) = wy, and we
know that p7*(A2) = 27"*. One may also easily verify that ¢(A\1) = w and
©;(A2) = z; for j = 2,...,n, which, however, in view of Lemma 5 shows that
there is also a mapping ¢ € O(F, D, ) such that (A1) = w and @(A2) = z.
Therefore we have proved that

EBQ (w, z) = min{m(A, \2) : A1, A2 € E,

i, tag o, F. o Fag,
)\111 Jk ,u}oz7 )\231 Jk — Za},

where the minimum is taken over all possible subsets {ji,...,jx} C
{1,...,n}. Now Lemma 14 finishes the proof (remark that without loss
of generality we may assume that w; >0 for j=1,...,n). =

Proof of the formula for kp, —in the rational case. Note that tanh ™!
of the desired formula is equal to tanh™' of the Lempert function off the
axis, satisfies the triangle inequality and is continuous. The definition of the
Kobayashi pseudodistance and its continuity (see [JP2]) finish the proof. m

To finish the proof it remains to compute the Kobayashi—Royden pseu-
dometric kp_. We do that by defining an operator which connects kp,_ to
the Kobayashi pseudodistance.
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Following M. Jarnicki and P. Pflug (see [JP2]), for a domain D C C" we
define

K (w,w+ AX
Dkp(w; X) := limsup b, (W w )

, webD, XeC"
A—0, A£0 Al

This function differs from that in [JP2], but it is no larger, so the inequality
below, which is crucial for our considerations, remains true:

(4) Dkp(w; X) < kp(w; X), weD, XeC
LEMMA 15. Let o € N7,
Dkp,, (w; X)

n 1/min{ay } n 1/min{ay} 1 n anj
=YE |w~"‘f> ; < Iw""j) - )
(<E / 31;[1 / min{ay } ; w;

forw € D, and X € C".

Proof. Without loss of generality we may assume that w; > 0 for

where ;s are relatively prime. Then

j=1,...,n, and o, = min{ay}. Using the formula for sza we get
| TT— (w; + AX )/ an — I, w;_)‘j/an|

(5) Dkp,(w;X) = limsup

A=0,220 |1 — 7, (w; + AX Yo/ an Hw;"j/ocn| ) |)\‘

Applying the Taylor formula we get, for A close to 0,
o/, Qj/Cp Q; Qg /Qn )\X .
(w; + AX;) 7/”:wj/ —i—a—iwj/ Tj+5j(A)’ j=1,...,n,

where €;(A)/A — 0 as A — 0. Substituting the last equalities in (5) we get

(T fw [em) ]| S, 22|
Dkp, (w; X) = limsup = S0/ —,
A—0, A0 (L= [Tj=y lwj[?i/om)[A|
which equals the desired value. m

Proof of the formula for kp, in the rational case. If J # (0, then in
view of Lemma 10 we are done. The case Z?zl a; X;j/w; = 0 follows from
Remark 4.

Take w € D,. Without loss of generality we may assume that w; € R
forj=1,...,n,and a,, = min{e;}. Below, for X € C" with 27;21 a; X/ w;
# 0 we shall construct a mapping ¢ € O(E, D,,) such that

() =w,  te'(\) =X,

where

A= (W wgm) e >0, = (wit L wgn) e

n
a; X

apw;’

j=1
The existence of such a ¢ finishes the proof by Lemma 15 and (4).
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Define
p(A) = <¢11()\)a con U1 (N),

where (see Lemma 9)

wj()\l):wj7 th()‘l):va ]:Lvn_l
We choose the (1/a,,)th power so that ¢, (A1) = w,,. After some elementary
transformation we get tp! (A1) = X,,, which finishes the proof. =

)
W (N) - (W) en )

4. The irrational case—proof of Theorem 3. As in the rational case
we start with the proof of the formula for the Lempert function. First, we
make use of the special properties of the domains of irrational type to get:

LEMMA 16. Let « be of irrational type. Then for any w, z € D,,
Ep (w,z) =kp (9,2), @eT,, €T
Proof. Certainly it is enough to prove that
E*Da (w,z) = Ej*ja (w,z) whenever z € T,.
Assume that

(6) Ep (w,51) < kp_(w, %) =: ¢
for some 27,22 € T,. Then in view of Lemma 5,
(7) kp, (w,2) =¢

for all 2 € T%, .. Because of (1) we have 2, € T, = T3, = T3, 4. To-
gether with (6) and (7), the last statement contradicts, however, the upper-
semicontinuity of the Lempert function. m

As an immediate corollary of Lemma 16 we get
COROLLARY 17. Let « be of irrational type. Then for any z € Dg,
E*DQ(Z,E) =0 foranyzeT,.

Proof of the formula for E}Ba in the irrational case. The case J # () is
covered by Lemma 10. Consider now the remaining case. In view of Lemma
16 we have

kb, (w,2) = kp, ((lwrl, - [wal), (1], za]))-

Choose a sequence {a*1}2° . C (Q1)" such that a(®) — «. First notice that
in view of Theorem 2, if z,y € (R)" N D,u, then

= m((x?gk) N .l’gglk))l/min{a§k)}, (y?gk) N .yz%k))l/min{a§k)})‘
(k)

We may assume that min{a;} = «,, and min{agk)} =ap’ .
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First we prove that
K, (w,2) > m((fun]* . fwp | ) (|20 2] ) ).
Indeed, otherwise there is a mapping ¢ € O(E,D,) such that ¢(\;) =
(lwsl, .. Jwnl), ©(A2) = (lz1];- - -, |2n]) and
m(Ar, A2) < m((Jwi]™ .. Jwy )Y (21| Lz |2 ) ).

Then we may choose k so large that ¢(F) C D,x and

(k) (k) (k) (k) (k) (k)
m(Ar, Az) <m((lwi]T . fwa )Y (M )T

which, however, contradicts (8).
To get equality consider the mapping ¢(A) = (Y1(N), ..., Pn—1(N),
A (N)), where (see Lemma 7) ¢; € O(E,Cy) for j=1,...,n—1,
A= (Jwg[* o wg )Y >0, Ao = (| [z 2) YO > 05
¥i(M) = wsl, i(xe) =zl j=1,...,n—1L

)

Define also
1

(W1 (A) -t (W) e
The a,th root is chosen so that ¢, (A1) = |w,|. One may also easily check

from the form of 1;’s in the proof of Lemma 7 that then ¢, (X2) > 0, so
©n(A2) = |zp|. This completes the proof. m

wn()\) = A€ E.

Just as in the rational case we have:

Proof of the formula for k7, —in the irrational case. Note that tanh™! of
the desired formula satisfies the triangle inequality and coincides with the
tanh ™! of the Lempert function off the axis. The definition of the Kobayashi
pseudodistance and its continuity finish the proof. m

Having the formula for the Lempert function we get
Proof of the formula for gp_ in the irrational case.

Cask I: J = 0. Corollary 17 implies that gp_(w,2) =0 for any z € T),.
The maximum principle for plurisubharmonic functions (applied to
gp, (w,-)) implies that gp, (w,z) = 0 for any z with |z;| < |w;|, which
means that gp,_ (w, ) vanishes on a set with non-empty interior (remember
that wy ... w, # 0); but gp_ (w,-) is logarithmically plurisubharmonic, so it
must vanish on D,,.

CAsg II: J # 0. This case is a simple consequence of Lemma 10, the
inequality g < k*, the definition of the Green function and the fact that the
function (|zq | ... |z,|* )/ (@51 T F%) is logarithmically plurisubharmonic
onD,. m
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Proof of the formula for Ap, in the irrational case. The result follows
from the formula for the Green function and the definition of the Azukawa
pseudometric. m

Now, as in the rational case, we finish up the proof by showing the
formula for kp,, .

LEMMA 18. Let « be of irrational type. Then
Dkp, (w; X)

n o 1/min{oy} n o 1/min{a} 1 ¢
:’VE((H\U/J'\ J) ;(H\wﬂ J) min{ax] iU]>
j=1 j=1 =1

J

forw € D, and X € C™.

Proof. Without loss of generality we may assume that o, = min{ay}.
The formula for the Kobayashi pseudodistance gives us
77’_ w+)\Xa]/an_ n_ w.aj/an
(9) Dkp,(w;X) = limsup |HJ_%1| d i a7a HJ_IL?L .
A—0,020 |1 = [Ty [wy 4+ AXj[os/en [T |w;|*/on] - |Al
Note that o /a,, > 1. Therefore, applying the Taylor formula we get, for A
close to 0,

a5/ [eZyRe a5 o/ )\X
|wj + AX;[%3/ o = Jaw;|*/ "+a—3\wjy i/ "<Re (w’>) +;(N),
n J

j=1....n,
where €;(A)/A — 0 as A — 0. Substituting the last equalities in (9) we get
a;\1/a a; X
. H?:1(|wj| J)l/ ”RG(A(Zyzl anw'))
Dkp,, (w; X) = limsup ~ 5 -
A—0, A£0 (1- [Ti=1 [wjl ai/an ) |A|

which equals the desired value. m

Proof of the formula for kp,_ in the irrational case. If J # (), then in
view of Lemma 10 we are done. Also the case Z?zl a; X;/w; = 0 follows
from Remark 4. Below we deal with the remaining cases.

Take w € D,. Without loss of generality we may assume that w;€R for
j=1,...,n, and o, = min{e;}. Below, for X € C" with Z?zl a; Xj/w;
# 0 we construct a mapping ¢ € O(E, D, ) such that ¢(A1) = w and t¢' (A1)
= X, where

n
a; X;

A= (W w00 = (Wl wln ) e .
QpW;

j=1

The existence of such a ¢ finishes the proof by Lemma 18 and (4).
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Define

SO()‘) = <17Z}1 ()‘)a s a¢n—1()\)a A

( i’”(A).--ﬁif(/\))”““)’

where (see Lemma 9)
(A1) = wy, tq/);'()\l) =X, j=1,...,n—1

We choose the (1/a,)th power so that ¢, (A1) = w,,. After some elementary
transformation we get ¢! (A1) = X,,, which finishes the proof. m

5. Some applications. We now formulate some corollaries which show
how irregularly the invariant functions can behave although the domains
considered are very regular.

For a given domain D C C™ we define a relation R on D as follows:
wRz for w, z € D if k})(w, z) = 0. In [Ko2], S. Kobayashi asked whether the
quotient D /R always has a complex structure. The answer is “no”, but the
examples showing this are artificial (see [Kol], p. 130; also [HD] and [Gi)).
From Theorem 3 we know that if « is of irrational type, then D, /R is [0, 1).
This gives the first very simple example of a very regular domain for which
the answer to the above question is “no”.

One may consider some generalizations of the Carathéodory pseudodis-
tance, called the kth Mobius function, denoted by m* (for k =1,2,...) (for
definitions see [JP2]). S. Nivoche [N] has proved that if a domain is strictly
hyperconvex, then the functions m* tend to g. One may easily verify that
if o is of irrational type, then all the m*’s vanish on D, x D,. Therefore
no such convergence holds in the domains D,, (« of irrational type), so one
should not expect a result similar to [N] in the class of Reinhardt complete
pseudoconvex domains.

In general, the Lempert function seems to be very distant from the Green
function. The definition of the Kobayashi pseudodistance makes the impres-
sion that the Kobayashi pseudodistance should be larger than or equal to
the Green function. Nevertheless, if o € N7 is such that all «;’s are relatively
prime and min{«;} = 1, then (see Theorem 2)

¢p. =k, <gp. <kp,, kb, #9p.-

In [Pa] and [L1] a notion of stationary maps was introduced and studied.
In the class of strongly convex domains these mappings are exactly the
k-geodesics. In strongly pseudoconvex domains, geodesics are necessarily
stationary maps. The converse implication does not hold in general (see
[Pa] and [PZ]). From the proof of Theorem 2 we may construct also other
examples disproving that implication.
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6. Open problems. It would be interesting to find formulas for all
the invariant functions discussed above for domains of the following more
general type:

DoyinN...NDye N((RLE) X ... X (R E)),

where o/ € (Ry)™, j=1,...,k.

(Al

[BFKKMP]

(€]

(E]

[Ge]

[JP1]
[JP2)
[JPZ)
[K11]

[K12]
[Kol]

[Ko2]
[L1]

[L.2]
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