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Poincaré theorem and nonlinear PDE’s

by MARIA E. PLi$ (Krakéw)

Abstract. A family of formal solutions of some type of nonlinear partial differen-
tial equations is found. Terms of such solutions are Laplace transforms of some Laplace
distributions. The series of these distributions are locally finite.

1. Introduction. In this paper we consider the nonlinear partial differ-
ential equations of the form

(1) P(D)u = f(u),

with f analytic at zero, f(0) = 0, and f’(0) # 0. This means that f(u) =
> emu™ with ¢; # 0. The operator P(D) is a linear differential opera-

tor P(0/0x), where P(z) = P(z1,...,2y,) is a complex polynomial without
constant term.
Our aim is to find the behaviour of a solution of the equation (1) at

infinity, writing this solution as some series of integrals involving a solution
of the linear part of (1), i.e.

(2) P(D)y = c1y.

The method of construction used here follows Bobylev [2] (see also Ros-
ales [3]). They solve only evolution type nonlinear equations (KdV, sine-
Gordon etc.) in this way. Applying essentially Bobylev’s idea to use the
Poincaré theorem on normal forms (see Arnold [1]) we can solve a wide
enough class of equations (1). The same method can be used in the case
of the right hand side of (1) being a function not only of u but also of the
derivatives of .
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2. Construction of formal solutions. We can write (1) as

P(D)u — ciu = Z emu™.
m=2
Let Z = {(z1,...,2n) € C" : P(2) — ¢; = 0} and assume that Z contains a
curve Z' C Z described by

Z'={z=(21,...,2n) € Z: 2= z(k) = (z21(k), ..., 2n(k)), k € R},
such that (Z'+ Z'YNZ' = (. Let y = y(x1,...,z,) be a solution of the

linear equation (2) given by the integral over Z’:
[ee]
(3) y(ar,.. o) = | em Wm0 (k) dk
— 00
with @ being an arbitrary function such that the integral (3) makes sense
for x = (x4, ...,x,) large enough.
We use the following notations. Let Lu = éP(D)u. We denote by H,,
for m > 2 the special m-linear form

c?n
Hpylug, ... upy) = c—lul(O) U (0).

Let u”(t) = u(x+t), z,t € C", and let Q(uy, ..., u,,) denote the function
x— Quf,...,ul], Q being an m-linear form.
Thus (1) and (2) can be written as

(4) u:Lu—ZHm(u,...,u)
m=2

and

(5) y = Ly.

We are looking for a solution u represented by a formal series
o0
(6) u=y+Y Ri(y, ..,y
j=2
with some j-linear form R;. From (6) we get

(1) y=u—> Ri(y,.-,y)
j=2

=u—Ry(wu)+ > > > (~DYR(Ry,,... Ry,

m=3 j=2 |p|=m, pp>1

with the convention Ry(u) =u, [p| =p1 + ... +p; and s; = #{k : pr, > 1}.
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Thus
(8) Ly = Lu — LRy (u,u)
=3 ) > (—D)YTLRi(R,,, ..., Ry).
m=3 j=2 |p|=m, pp>1
From (6) and (5) we get
u= Ly
1
j=2
Now by (7) and (8) we have
w=Lu—LRy(u,u) = > > Y (-1)%"'LRj(R,,,..., Ry,

m=3 j=2 |p|=m

+Z%{Rj(Lu—LR2(u,u)—...,...,u—Rg(u,u)—...)+...
j=2
+ Rj(u — Ro(u,u)...,...,Lu— LRy(u,u)...)}

=Lu= 33 > (“UHLR Ry, Ry)

m=2 j=2 |p|=m

1
— E(Rj(LRpw o Ry )+ 4+ Ri(Ry,, ..., LRy,))}
Now we compare the mth order terms and obtain a recurrence system
of equations for R,,, m > 2:

0 Ho=Y 3 (DY HLR;(Ry,....Ry,)

J=2|p|=m
1
- E(RJ(LRM,... JRp,)+ ...+ Rj(Ry,,...,LRy,))}.
To find R,, we use the Laplace transformation. To this end set e,(x) =

e~9% (so, according to our previous notation, el(7) = e~97), and

q
Aa) = Lleg] (= L(eg)(0)),
Cm,
hon(q1y -y qm) = Hm[egl, . ,egm] = .
Tm((ha L 7q’I7L) - Rm[6217 vy egm]
Here obviously ¢, q;,z,7 € C" for j = 1,...,m, therefore gz means the

scalar product.
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0
ql,...,eqm

ha(q1,q2) = 12(q1,92) [Ma1 + ¢2) — 3(M(q1) + AM(q2))],
and for m > 2, defining pj =p1 +...+p (I =1,...,)),

Applying (9) to the system [e0 | we get, for m = 2,

hm(q17- . 7Qm)

m
ZZ 1%+ (g + . ot pys ey, 1t )
J=2 |p|=m

X T (q1y -5 Gpy) - ..ij(qp;;l“, ey Qm)
X [)\(ql—l—...—l—qm)

1
_E(A(ql+...+qp1)+...+>\(qp3,_1+1+...+qm)) :

Therefore if Aj(t1,...,t;) =At1+...+t;) — %[)\(tl) + ...+ A(t;)] then we
have the recurrence system of formulas for r,,, with ¢ = (q1,...,qm):
( r2(q)A2(q) = ca/cx,

Tm(Q)Am(Q) = Cm/cl +.

s +1
(10) +Z Z J Q1+ +Qp17~'7Qp;.71+1+"'+Qm)
=2 |p|=
X Tp1(q1,--- aqpl)“‘rpj(qp;-71+17"' an)

XAj(ql+-..+qp1,...,qp;_1+1+...+qm).

Now, with y given by (3), we can write

_ Rm|: S e_z(kl)(x+T1)¢(k1)dk1, o S e_z(km)(x+T7'L)¢(km) dkm]
= | et bnle () L B(ki) R (€21)(0)) dkiy . . . dki,

Rm
= | ri(z(k))e BEOT A= En)lrg (k) | DKy, ) dk.

Rm

Thus we have proved
THEOREM. Assume that |A;(t1,...,t;)| > A >0 on the set
W](pl,,p]) = {(tl,...,t]’)Itk kaZ’, k= 1,,j}
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for every j €N, j > 2 and every (p1,...,p;) € NV. Then we have a solution
u of (1) given by a formal series

[ee)

1) u(@) =Y | rm(2(B)B(ky) ... Bk e ERDT =Rl g

m=1Rm

with ry, defined by (10) and @ as in (3).

3. Example. Consider the equation
Pu Pu & ;
12 A e — — . _7‘
(12) “= 02 T 0 ;Zlcju

We can write it as

Au—au:bu+chuj,
j=2
with a+b = ¢1, a > 0. Then P(D) = A—a and \(q) = ¢ +¢3—a. We choose
Z' = {(ik,va+k?) : k € R} and we can see that Z' + ...+ Z' = nZ' =
{(iz,y) 1y > Vn2a+ 22, z,y e R} C C% 2Z2'NZ' =0 and nZ' C (n—1)Z’.
Moreover, | Jo7 ,(C?\ nZ') = C%
We have

)\(Z(k‘l) + ...+ Z(k‘l))

=(i(ky+... k) +(JSa+ k2 +.. +Ja+ k) —a
=(-Da+ > 2/a+kZ\/a+k?—knk;) > (1> —1)a > 0.

1<m<j<l
FortiepZ' (I=1,...,r)and m=p; +...+p, (r > 2) we also have
Aty ... t)

=A(z(k) 4+ 2k, ), 2(ky 1)+ 2(k))

+ A2k 1) + o+ 2(K)]

> [(1—%>m2+2<1—%>}a: Tzl(m2+2)a>0.

So the assumptions of the Theorem are satisfied.

4. Locally finite representation of formal solutions. Assume now
that there exists a linear map A : C" — C" such that A(Z') C R%.. We define

@ﬁ = A"Y(R"%). We consider the space L, (R}) of Laplace distributions
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(of type w € R™, sce [4] or [5]), supported by R, and denote by L(w)(]ﬁﬁ)
the space of test functions ¢ = v o A for some 9 € L, (R ).

Consider a functional S; defined for ¢ € L(w)(@i) by

o

(13) Silgl = | o(2(k))D(k)dk

with @ as in (3). Obviously y in (3) is the value of Sy on ¢(z) = e **. Now

we assign to Sp a defining function ¥y:

Uy (z) = — 51[

ef(sz)2 :|

(2mi)™ (z —w)?t

for z € C" # @ﬁ = ATL(C" # R" ), where by C" # R} we understand
(C\ R;)™. We can see by (13) that
1 P e (z—z(k)?

1) = Grr ) Gy

o(k) dk.

~

Therefore, for ¢ € L,,)(R"} ), we can write (cf. [5])

Si[o] = Z sgn o lim+ S d(u)¥ (u + toe) du.
ce{—1,1}n e=0 )

Hence for the solution y of (2) we get the following formula:

y(x) = Si[e™]
Z 1 S OSO efzxf(z+iaefz(k))2
= sgno lim o n - 1
ety e—0+ (271) S ne (z +ioe — z(k))

&(k) dk dz.
+

For m > 2, the mth term of the formal solution u is the value on ¢(z) =
e ** of the Laplace distribution S,, given by

Smld] = | d(z(kr) + ... + 2(km))B(k1) . .. Dk )rma (2(k)) dk
o

with r,, given by (10). By analogy with the case m = 1, we obtain the
defining function for .S,,:

W, (2) = (27;)” Sm [?z (jz:))i ]

1 S ef(zf(z(k1)+---+z(km)))2 45
@ri)" ), (2= (Gka) + 4 2(k))?

(k1) ... P(km)rm(2(k)) dk.
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Hence we get

Smle ] = Z sgmcrel_i%l+ S e W, (2 + ioe) dz.
O'G{*l,l}n fRsz
We see that for m > 2, supp S,, = mZ’, and R, (y,...,y)(z) = Sp[e”**].
So if (m+1)Z’ € mZ’', then we have

u(@) = Y Sm[e*] = S[e™7]

~

and this formal series is locally finite, that is, for every ¢ € L(,,)(R’}) with
supp ¢ bounded, S[¢] is the sum of a finite number of terms. More precisely,
let ¢(x) = 0 for |z| > M, = € @ﬁ Since we can find N € N such that
NZ'n{xz : |z| < M} = 0 we have S,,[¢] = 0 for m > N. So S[¢] =

Yoz Sml@].
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