A discrepancy principle for Tikhonov regularization with approximately specified data

by M. Thamban Nair (Chennai) and EBERHARD SCHOCK (Kaiserslautern)

Abstract. Many discrepancy principles are known for choosing the parameter α in the regularized operator equation $(T^*T+\alpha I)x_{\alpha}^{\delta}=T^*y^{\delta}, \|y-y^{\delta}\|\leq \delta$, in order to approximate the minimal norm least-squares solution of the operator equation Tx=y. We consider a class of discrepancy principles for choosing the regularization parameter when T^*T and T^*y^{δ} are approximated by A_n and z_n^{δ} respectively with A_n not necessarily self-adjoint. This procedure generalizes the work of Engl and Neubauer (1985), and particular cases of the results are applicable to the regularized projection method as well as to a degenerate kernel method considered by Groetsch (1990).

1. Introduction. We are concerned with the problem of finding approximations to the minimal norm least-squares solution \hat{x} of the operator equation

$$(1.1) Tx = y,$$

where $T: X \to Y$ is a bounded linear operator between Hilbert spaces X and Y, and y belongs to $D(T^{\dagger}) := R(T) + R(T)^{\perp}$, the domain of the Moore–Penrose inverse T^{\dagger} of T. It is well known [8] that if the range R(T) of T is not closed, then the operator T^{\dagger} which associates $y \in D(T^{\dagger})$ to $\widehat{x} := T^{\dagger}y$, the unique least-squares solution of minimal norm, is not continuous, and consequently the problem of solving (1.1) for \widehat{x} is ill-posed. A prototype of an ill-posed problem is the Fredholm integral equation of the first kind

(1.2)
$$\int_{0}^{1} k(s,t)x(t) dt = y(s), \quad 0 \le s \le 1,$$

¹⁹⁹¹ Mathematics Subject Classification: 65J10, 65R30, 45B05, 45E99.

Key words and phrases: ill-posed problems, minimal norm least-squares solution, Moore–Penrose inverse, Tikhonov regularization, discrepancy principle, optimal rate.

The work of M. Thamban Nair is partially supported by a project grant from National Board for Higher Mathematics, Department of Atomic Energy, Govt. of India.

with nondegenerate kernel $k(\cdot,\cdot) \in L^2([0,1] \times [0,1])$, where $X = Y = L^2[0,1]$. Regularization methods are employed to find approximations to \widehat{x} . In Tikhonov regularization one looks for the unique x_{α} , $\alpha > 0$, which minimizes the functional

$$x \to ||Tx - y||^2 + \alpha ||x||^2, \quad x \in X.$$

Equivalently, one solves the well-posed equation

$$(1.3) (T^*T + \alpha I)x_{\alpha} = T^*y$$

for each $\alpha > 0$. Since $T^*T\hat{x} = T^*y$, it follows that

$$\|\widehat{x} - x_{\alpha}\| = \|\alpha (T^*T + \alpha I)^{-1} \widehat{x}\| \le \|\widehat{x}\|.$$

It is known ([8], [16]) that

(1.5)
$$\|\widehat{x} - x_{\alpha}\| \to 0 \quad \text{as } \alpha \to 0$$

and

(1.6)
$$\widehat{x} \in R((T^*T)^{\nu}), \ 0 \le \nu \le 1, \text{ implies } \|\widehat{x} - x_{\alpha}\| = O(\alpha^{\nu}).$$

In practical applications the data y may not be available exactly, instead one may have an approximation y^{δ} with say $||y-y^{\delta}|| \leq \delta$, $\delta > 0$. Then one solves the equation

$$(1.7) (T^*T + \alpha I)x_{\alpha}^{\delta} = T^*y^{\delta}$$

instead of (1.3) and requires $\|\widehat{x} - x_{\alpha}^{\delta}\| \to 0$ as $\alpha \to 0$ and $\delta \to 0$. It follows from (1.3) and (1.7) that

$$||x_{\alpha} - x_{\alpha}^{\delta}||^{2} = ||(T^{*}T + \alpha I)^{-1}T^{*}(y - y^{\delta})||^{2}$$

$$= \langle (T^{*}T + \alpha I)^{-1}T^{*}(y - y^{\delta}), (T^{*}T + \alpha I)^{-1}T^{*}(y - y^{\delta}) \rangle$$

$$= \langle (TT^{*} + \alpha I)^{-2}TT^{*}(y - y^{\delta}), (y - y^{\delta}) \rangle$$

$$\leq ||(TT^{*} + \alpha I)^{-2}TT^{*}|| \cdot ||(y - y^{\delta})|^{2} \leq \delta^{2}/\alpha,$$

so that

(1.8)
$$\|\widehat{x} - x_{\alpha}^{\delta}\| \le \|\widehat{x} - x_{\alpha}\| + \delta/\sqrt{\alpha}.$$

Now let $R_{\alpha} = (T^*T + \alpha I)^{-1}T^*$ for $\alpha > 0$. Then by (1.5) we have $\|R_{\alpha}y - T^{\dagger}y\| \to 0$ as $\alpha \to 0$

for $y \in D(T^{\dagger})$. Therefore, if R(T) is not closed, then the family $\{R_{\alpha}\}_{\alpha>0}$ is not uniformly bounded so that, as a consequence of the Uniform Boundedness Principle, there exists $v \in Y$ such that $\{R_{\alpha}v\}_{\alpha>0}$ is not bounded in Y. In particular, if $y^{\delta} = y + \delta v/||v||$, then $||y - y^{\delta}|| \leq \delta$ and $\{R_{\alpha}y^{\delta}\}_{\alpha>0}$ is unbounded in Y. Therefore, the problem of choosing the regularization parameter α depending on y^{δ} is important. Many works in the literature are devoted to this aspect (cf. [7], [17], [1], [2], [3], [6], [14], [4]).

In order to solve (1.7) numerically, it is required to consider approximations of T^*T and of T^*y^{δ} . So the problem actually at hand would be of the form

$$(1.9) (A_n + \alpha I)x_{\alpha,n}^{\delta} = z_n^{\delta},$$

where (A_n) and (z_n^{δ}) are approximations of T^*T and of T^*y^{δ} respectively. In the well known regularized projection methods (cf. [10], [2], [3]),

$$A_n = P_n T^* T P_n$$
 and $z_n^{\delta} = P_n T^* y^{\delta}$,

where (P_n) is a sequence of orthogonal projections on X such that $P_n \to I$ pointwise. In this case we have

$$||T^*T - A_n|| \to 0$$
 as $n \to \infty$,

and discrepancy principles are known for choosing the regularization parameter α in (1.9) (see e.g. [2], [3], [13], [5]).

In the degenerate kernel methods for the integral equation (1.2) with $k(\cdot,\cdot) \in C([0,1] \times [0,1])$, A_n is obtained by approximating the kernel $\widetilde{k}(\cdot,\cdot)$ of the integral operator T^*T by a degenerate kernel $\widetilde{k}_n(\cdot,\cdot)$ so that $\|\widetilde{k}-\widetilde{k}_n\|_{\infty} \to 0$ as $n \to \infty$. Then it follows that

$$||T^*T - A_n|| \le ||\widetilde{k} - \widetilde{k}_n||_2 \le ||\widetilde{k} - \widetilde{k}_n||_{\infty} \to 0 \text{ as } n \to \infty.$$

(See [11] and [12] for a discussion on degenerate kernel methods for integral equations.) In a degenerate kernel method considered by Groetsch [9] the approximation $\widetilde{k}_n(\cdot,\cdot)$ is obtained from

$$\widetilde{k}(s,t) := \int_{0}^{1} k(\tau,s)k(\tau,t) dt, \quad a \le s, t \le b.$$

by using a convergent quadrature rule. In this case one has $\|\widetilde{k} - \widetilde{k}_n\|_{\infty} \to 0$ as $n \to \infty$ for nice enough kernels $k(\cdot, \cdot)$.

Moreover, for the degenerate kernel method of Groetsch [9] as well as for the regularized projection methods, the operators A_n are non-negative and self-adjoint.

In this paper we consider the generalized form of a class of discrepancy principles in [1], namely,

(1.10)
$$||A_n x_{\alpha,n}^{\delta} - z_n^{\delta}|| = \frac{\delta^p}{\alpha^q}, \quad p > 0, \ q > 0,$$

for large enough n, to choose the regularization parameter $\alpha = \alpha(n, \delta)$ in (1.9), where (A_n) is a sequence of bounded linear operators on X and (z_n^{δ}) in X such that

$$||T^*T - A_n|| \to 0$$
 and $||T^*y^{\delta} - z_n^{\delta}|| \to 0$ as $n \to \infty$.

It has to be observed that we do not assume the operators A_n to be non-negative and self-adjoint. The consideration of a general A_n , as has been done recently by Nair [15], is important from the computational point of view, because even if one starts with a non-negative self-adjoint operator as approximation of T^*T , due to truncation errors etc., one actually may not be dealing with a non-negative self-adjoint operator.

With α chosen according to (1.10), we show the convergence of the solution $x_{\alpha,n}^{\delta}$ of (1.9) to \widehat{x} as $\delta \to 0$, $n \to \infty$, and also obtain estimates for the error $\|\widehat{x} - x_{\alpha,n}^{\delta}\|$ whenever $\widehat{x} \in R((T^*T)^{\nu})$, $0 < \nu \le 1$. Our result on error estimates shows that if ν_0 is an estimate for the possibly unknown ν , with $0 < \nu \le \nu_0 \le 1$, then taking $p/(q+1) = 2/(2\nu_0 + 1)$ one obtains the rate $O(\delta^{2\nu/(2\nu_0+1)})$. In particular, prior knowledge of ν enables us to obtain the optimal rate $O(\delta^{2\nu/(2\nu+1)})$ (cf. Schock [16]).

If $A_n = P_n T^* T P_n$ and $z_n^{\delta} = P_n T^* y^{\delta}$ then (1.10) coincides with a discrepancy principle considered by Engl and Neubauer [2] and we recover the optimal result in [2] as a particular case. Thus this paper generalizes the type of results in [2] and [9] for projection methods and degenerate kernel method for integral equations respectively, providing also a parameter choice strategy in the latter case.

2. Approximate solution and convergence. Let X and Y be Hilbert spaces and $T: X \to Y$ be a bounded linear operator with its range R(T) not necessarily closed in Y. Let $y \in D(T^{\dagger}) := R(T) + R(T)^{\perp}$, $y \neq 0$, so that there exists a unique $\widehat{x} \in X$ of minimal norm such that

$$||T\widehat{x} - y|| = \inf\{||Tx - y|| : x \in X\}.$$

Let (A_n) be a sequence of bounded linear operators on X and for $\delta > 0$, let $y^{\delta} \in Y$ and (z_n^{δ}) in X be such that

$$||T^*T - A_n|| \le \varepsilon_n, \quad ||y - y^{\delta}|| \le \delta, \quad ||T^*y^{\delta} - z_n^{\delta}|| \le \eta_n^{\delta},$$

where (ε_n) and (η_n^{δ}) are sequences of nonnegative real numbers such that

$$\varepsilon_n \to 0$$
 as $n \to \infty$

and

(2.1)
$$\eta_n^{\delta} \to 0 \quad \text{as } n \to \infty \text{ and } \delta \to 0.$$

Throughout the paper we denote the operator T^*T by A, and c, c', c_1 , c_2 , etc., denote positive constants which may assume different values in different contexts.

Theorem 2.1. If $\varepsilon_n \leq c_0 \alpha$ with $0 < c_0 < 1$, then $A_n + \alpha I$ is bijective and

$$||(A_n + \alpha I)^{-1}|| \le 1/(\alpha(1 - c_0)).$$

Moreover, if x_{α}^{δ} and $x_{\alpha,n}^{\delta}$ are the unique solutions of (1.7) and (1.9) respectively, then

(2.2)
$$\|\widehat{x} - x_{\alpha,n}^{\delta}\| \le c \left(\|\widehat{x} - x_{\alpha}^{\delta}\| + \frac{\eta_n^{\delta}}{\alpha} + \frac{\varepsilon_n}{\alpha}\right).$$

In particular, if $\alpha := \alpha(\delta, n)$ is chosen in such a way that

$$lpha(\delta,n) o 0, \quad rac{\delta}{\sqrt{lpha(\delta,n)}} o 0, \quad rac{arepsilon_n}{lpha(\delta,n)} o 0 \quad and \quad rac{\eta_n^\delta}{lpha(\delta,n)} o 0$$

as $\delta \to 0$ and $n \to \infty$, then

$$\|\widehat{x} - x_{\alpha,n}^{\delta}\| \to 0$$
 as $\delta \to 0$ and $n \to \infty$.

Proof. Since A is non-negative and self-adjoint, it follows from spectral theory that for each $\alpha > 0$, $(A + \alpha I)^{-1}$ exists as a bounded linear operator on X and

$$||(A + \alpha I)^{-1}|| \le 1/\alpha.$$

Therefore, if $||A - A_n|| < 1/||(A + \alpha I)^{-1}||$ then, by results on perturbation of operators, $(A_n + \alpha I)^{-1}$ exists and is a bounded operator, and

$$\|(A_n + \alpha I)^{-1}\| \le \frac{\|(A + \alpha I)^{-1}\|}{1 - \|A - A_n\| \cdot \|(A + \alpha I)^{-1}\|}$$

$$\le \frac{1/\alpha}{1 - \varepsilon_n/\alpha} \le \frac{1}{\alpha(1 - c_0)}.$$

Now let $w_{\alpha,n}^{\delta}$ be the unique solution of the equation (1.9) with T^*y^{δ} in place of z_n^{δ} , i.e.,

$$(2.3) (A_n + \alpha I)w_{\alpha,n}^{\delta} = T^*y^{\delta}.$$

Then from (1.7), (1.9) and (2.3), we have

$$x_{\alpha,n}^{\delta} - w_{\alpha,n}^{\delta} = (A_n + \alpha I)^{-1} (z_n^{\delta} - T^* y^{\delta})$$

and

$$w_{\alpha,n}^{\delta} - x_{\alpha}^{\delta} = (A_n + \alpha I)^{-1} (A - A_n) x_{\alpha}^{\delta}.$$

Since $\varepsilon_n \leq c_0 \alpha$, it follows that

$$||x_{\alpha,n}^{\delta} - w_{\alpha,n}^{\delta}|| \le c_1 \eta_n^{\delta} / \alpha$$

and

$$\|w_{\alpha,n}^{\delta} - x_{\alpha}^{\delta}\| \le c_2(\|\widehat{x} - x_{\alpha}^{\delta}\| + \varepsilon_n/\alpha),$$

so that

$$\|\widehat{x} - x_{\alpha,n}^{\delta}\| \le c(\|\widehat{x} - x_{\alpha}^{\delta}\| + \eta_n^{\delta}/\alpha + \varepsilon_n/\alpha).$$

Now the assumptions on $\alpha := \alpha(\delta, n)$ together with (1.6) and (1.8) imply the convergence $\|\widehat{x} - x_{\alpha,n}^{\delta}\| \to 0$ as $\delta \to 0$ and $n \to \infty$.

3. The discrepancy principle. By our assumption (2.1) on (η_n^{δ}) and the fact that $0 \neq y \in D(T^{\dagger})$, we have $c_1 \leq ||z_n^{\delta}|| \leq c_2$ for all large enough n, say $n \geq n_0(\delta)$ and for each $\delta \in (0, \delta_0]$ for some δ_0 . Therefore by Theorem 2.1,

(3.1)
$$||A_n x_{\alpha,n}^{\delta} - z_n^{\delta}|| = ||\alpha x_{\alpha,n}^{\delta}|| = ||\alpha (A_n + \alpha I)^{-1} z_n^{\delta}|| \le \gamma_1$$

for some constant γ_1 and for all $\alpha \geq \varepsilon_n/c_0$. Moreover, if

$$\alpha \ge \gamma_0 := \max\{\varepsilon_n/c_0 : n = 1, 2, \ldots\}$$
 and $\delta \le \delta_0$,

then

(3.2)
$$||A_n x_{\alpha,n}^{\delta} - z_n^{\delta}|| \ge ||\alpha(A_n + \alpha I)^{-1} z_n^{\delta}|| \ge \frac{\gamma_0 ||z_n^{\delta}||}{||A_n|| + \alpha} \ge \gamma_2$$

for some $\gamma_2 > 0$, since (A_n) is uniformly bounded.

Now to choose the regularization parameter α in (1.9), we consider the discrepancy principle (1.10).

For simplicity of presentation we assume that

(3.3)
$$\eta_n^{\delta} \le c_3 \delta^r \quad \text{and} \quad \varepsilon_n \le c_4 \delta^k$$

for some positive reals r and k, and for all $n \geq n_0(\delta)$.

Theorem 3.1. Let p and q be positive integers. Then for each $\delta \in (0, \delta_0]$, there exists a positive integer $n_1(\delta)$ and for each $n \geq n_1(\delta)$, there exists $\alpha := \alpha(\delta, n)$ such that (1.10) is satisfied. Moreover,

(3.4)
$$\alpha \leq c_1 \delta^{p/(q+1)}$$
 and $\delta^p/\alpha^q \leq c_2 \delta^\mu$, $n \geq n_1(\delta)$,

where

$$\mu = \min \left\{ r, \frac{p}{(q+1)}, 1 + \frac{p}{2(q+1)} \right\}.$$

Proof. Let $\delta \in (0, \delta_0]$. For $\alpha \geq \varepsilon_n/c_0$ and $n = 1, 2, \ldots$, define

$$f_n(\alpha) = \alpha^q ||A_n x_{\alpha,n}^{\delta} - z_n^{\delta}||.$$

Then from (3.1) it follows that $f_n(\alpha) \leq \gamma_1 \alpha^q$ so that

$$f_n(\varepsilon_n/c_0) \to 0$$
 as $n \to \infty$.

Let $n_1(\delta) \geq n_0(\delta)$ be the smallest positive integer such that for all $n \geq n_1(\delta)$,

$$\varepsilon_n \le c_0 \min\{(\delta^p/\gamma_2)^{1/q}, (\delta^p/\gamma_1)^{1/q}\}.$$

Then taking $\alpha_0 = \max\{\gamma_0, (\delta^p/\gamma_2)^{1/q}\}$, we obtain $\varepsilon_n \leq c_0\alpha_0$ and $\alpha_0 \geq \gamma_0$ so that by (3.1) and (3.2), we have

$$f_n(\varepsilon_n/c_0) \le \delta^p \le f_n(\alpha_0).$$

Therefore by the Intermediate Value Theorem, there exists $\alpha := \alpha(\delta, n)$ such that

$$\varepsilon_n/c_0 \le \alpha \le \alpha_0$$
 and $||A_n x_{\alpha,n}^{\delta} - z_n^{\delta}|| = \delta^p/\alpha^q$

for all $n \geq n_1(\delta)$. We also note that

$$x_{\alpha,n}^{\delta} = \frac{1}{\alpha} (z_n^{\delta} - A_n x_{\alpha,n}^{\delta})$$

so that for all $n \geq n_1(\delta)$ and $\alpha = \alpha(\delta, n)$,

$$||z_n^{\delta}|| - \delta^p/\alpha^q = ||z_n^{\delta}|| - ||A_n x_{\alpha,n}^{\delta} - z_n^{\delta}|| \le ||A_n x_{\alpha,n}^{\delta}|| \le ||A_n||\delta^p/\alpha^{q+1}.$$

Therefore $\alpha^{q+1} \leq \delta^p(\alpha + ||A_n||)/||z_n^{\delta}|| \leq c\delta^p$ and consequently

$$\alpha(\delta, n) \le c_1 \delta^{p/(q+1)}, \quad n \ge n_1(\delta).$$

Now, using the estimates in (1.4), (1.8) and (2.2), we have

$$\delta^{p}/\alpha^{q} = \|A_{n}x_{\alpha,n}^{\delta} - z_{n}^{\delta}\| = \alpha \|x_{\alpha,n}^{\delta}\| \le \alpha (\|\widehat{x}\| + \|\widehat{x} - x_{\alpha,n}^{\delta}\|)$$

$$\le c\alpha (\|\widehat{x}\| + \|\widehat{x} - x_{\alpha}^{\delta}\| + \eta_{n}^{\delta}/\alpha + \varepsilon_{n}/\alpha)$$

$$\le c'(\alpha + \delta\sqrt{\alpha} + \eta_{n}^{\delta}) \le c_{2}\delta^{\mu},$$

where $\mu = \min\{r, p/(q+1), 1 + p/2(q+1)\}$.

4. Error estimates under the discrepancy principle. In order to prove the convergence of $x_{\alpha,n}^{\delta}$ to \widehat{x} and to obtain the estimates for the error $\|\widehat{x} - x_{\alpha,n}^{\delta}\|$ under the discrepancy principle (1.10), we impose certain restrictions on the parameters p and q appearing in (1.10) in terms of the error levels η_n^{δ} and ε_n of the data A_n and z_n^{δ} respectively. More precisely, we assume that

$$(4.1) \qquad \frac{p}{q+1} \le \min\{2, r, k\},$$

where r and k are as in (3.3).

THEOREM 4.1 Let $\alpha := \alpha(\delta, n)$ be chosen according to (1.10). Then:

- (i) $\|\widehat{x} x_{\alpha,n}^{\delta}\| \to 0$ as $n \to \infty$ and $\delta \to 0$.
- (ii) If $\widehat{x} \in R(A^{\nu})$, $0 < \nu \leq 1$, then for all large enough n and small enough δ ,

$$\|\widehat{x} - x_{\alpha,n}^{\delta}\| \le c\delta^s,$$

where

$$s = \min \left\{ \frac{p\nu}{q+1}, 1 - \frac{p}{2(q+1)}, r - \frac{p}{q+1}, k - \frac{p}{q+1} \right\}.$$

(iii) In particular, if

$$\min\{r, k\} \ge \frac{2\nu + 2}{2\nu + 1}$$
 and $\frac{p}{q+1} = \frac{2}{2\nu + 1}$,

then

$$\|\widehat{x} - x_{\alpha,n}^{\delta}\| \le c\delta^{2\nu/(2\nu+1)}.$$

Proof. Using (3.4), we have

$$\delta^l/\alpha^m = \delta^{l-mp/q} (\delta^p/\alpha^q)^{m/q} < c\delta^{l-m(p-\mu)/q}$$

for every $l \geq 0$ and $m \geq 0$, where μ is as in Theorem 3.1. But by the assumption (4.1), $\mu = p/(q+1)$, so that

$$\delta^l/\alpha^m \le c\delta^{l-mp/(q+1)}$$
.

Therefore

$$\delta/\sqrt{\alpha} \le c_1 \delta^{1-p/2(q+1)}, \quad \eta_n^{\delta}/\alpha \le c_2 \delta^{r-p/(q+1)} \quad \text{and} \quad \varepsilon_n/\alpha \le c_3 \delta^{k-p/(q+1)}.$$

Using this, the result in (i) follows from (1.5), (1.8) and (2.2), the estimate in (ii) follows from (1.6), (1.8) and (2.2), and (iii) is a consequence of (ii).

Acknowledgements. The first version of this paper was written while M. Thamban Nair was a Visiting Professor at the Fachbereich Mathematik, Universität Kaiserslautern, Germany. The support received is gratefully acknowledged.

References

- H. W. Engl, Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates, J. Optim. Theory Appl. 52 (1987), 209– 215.
- [2] H. W. Engl and A. Neubauer, An improved version of Marti's method for solving ill-posed linear integral equations, Math. Comp. 45 (1985), 405–416.
- [3] —, —, Optimal parameter choice for ordinary and iterated Tikhonov regularization, in: Inverse and Ill-Posed Problems, H. W. Engl and C. W. Groetsch (eds.), Academic Press, London, 1987, 97–125.
- [4] S. George and M. T. Nair, Parameter choice by discrepancy principles for ill-posed problems leading to optimal convegence rates, J. Optim. Theory Appl. 13 (1994), 217-222.
- [5] —, —, On a generalized Arcangeli's method for Tikhonov regularization with inexact data, Numer. Funct. Anal. Optim. 19 (1998), 773–787.
- [6] H. Gfrerer, Parameter choice for Tikhonov regularization of ill-posed problems, in: Inverse and Ill-Posed Problems, H. W. Engl and C. W. Groetsch (eds.), Academic Press, London, 1987, 27–149.
- [7] C. W. Groetsch, Comments on Morozov's discrepancy principle, in: Improperly Posed Problems and Their Numerical Treatment, G. Hammerline and K. H. Hoffmann (eds.), Birkhäuser, 1983, 97–104.
- [8] —, The Theory of Regularization for Fredholm Integral Equations of the First Kind, Pitman, London, 1984.
- [9] —, Convergence analysis of a regularized degenerate kernel method for Fredholm integral equations of the first kind, Integral Equations Operator Theory 13 (1990), 67–75.
- [10] C. W. Groetsch and J. Guacaneme, Regularized Ritz approximation for Fredholm equations of the first kind, Rocky Mountain J. Math. 15 (1985), 33–37.
- [11] R. Kress, Linear Integral Equations, Springer, Heidelberg, 1989.

- [12] B. V. Limaye, Spectral Perturbation and Approximation with Numerical Experiments, Proc. Centre for Math. Anal. Australian National Univ. 13, 1987.
- [13] A. Neubauer, An a posteriori parameter choice for Tikhonov regularization in the presence of modelling error, Appl. Numer. Math. 14 (1988), 507–519.
- [14] M. T. Nair, A generalization of Arcangeli's method for ill-posed problems leading to optimal convergence rates, Integral Equations Operator Theory 15 (1992), 1042– 1046.
- [15] —, A unified approach for regularized approximation method for Fredholm integral equations of the first kind, Numer. Funct. Anal. Optim. 15 (1994), 381–389.
- [16] E. Schock, On the asymptotic order of accuracy of Tikhonov regularizations, J. Optim. Theory Appl. 44 (1984), 95–104.
- [17] —, Parameter choice by discrepancy principle for the approximate solution of ill-posed problems, Integral Equations Operator Theory 7 (1984), 895–898.

Department of Mathematics Indian Institute of Technology Madras Chennai 600 036, India E-mail: mtnair@acer.iitm.ernet.in Fachbereich Mathematik Universität Kaiserslautern Kaiserslautern, Germany E-mail: schock@mathematik.uni-kl.de

Reçu par la Rédaction le 21.8.1995 Révisé le 10.5.1998