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A discrepancy principle for Tikhonov regularization
with approximately specified data

by M. THAMBAN NAIR (Chennai) and
EBERHARD SCHOCK (Kaiserslautern)

Abstract. Many discrepancy principles are known for choosing the parameter « in the
regularized operator equation (T*T—‘—a[)x‘;a = T*y‘s, Hy—y5|| < 4, in order to approximate
the minimal norm least-squares solution of the operator equation Tx = y. We consider a
class of discrepancy principles for choosing the regularization parameter when T*T and
T*y5 are approximated by A, and zg respectively with Ay, not necessarily self-adjoint.
This procedure generalizes the work of Engl and Neubauer (1985), and particular cases of
the results are applicable to the regularized projection method as well as to a degenerate
kernel method considered by Groetsch (1990).

1. Introduction. We are concerned with the problem of finding ap-
proximations to the minimal norm least-squares solution T of the operator
equation

(1.1) Tr =y,

where T': X — Y is a bounded linear operator between Hilbert spaces X
and Y, and y belongs to D(T") := R(T)+ R(T)*, the domain of the Moore—
Penrose inverse T of T. Tt is well known [8] that if the range R(T) of T is
not closed, then the operator 77 which associates y € D(TT) to 7 := Ty,
the unique least-squares solution of minimal norm, is not continuous, and
consequently the problem of solving (1.1) for Z is ill-posed. A prototype of
an ill-posed problem is the Fredholm integral equation of the first kind

1
(1.2) Vk(s,t)a(t) dt =y(s), 0<s<1,

0
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with nondegenerate kernel k(-,-) € L2([0,1] x [0,1]), where X = Y =
L?]0,1]. Regularization methods are employed to find approximations to 7.
In Tikhonov regularization one looks for the unique x,, o > 0, which mini-
mizes the functional

z— [Tz —y|* + allz|?, = €X.

Equivalently, one solves the well-posed equation

(1.3) (T*"T+ al)ze =Ty

for each a > 0. Since T*Tx = T*y, it follows that

(1.4) I3 = 2all = |a(T*T + al)~ 13 < |3

It is known ([8], [16]) that

(1.5) |z —zo|| =0 asa—0

and

(1.6) T € R(TT)"), 0<v <1, implies || — x| =O0(a").

In practical applications the data y may not be available exactly, instead
one may have an approximation y° with say ||y —4°|| <6, § > 0. Then one
solves the equation

(1.7) (T*T + al)z?, = T*y°

instead of (1.3) and requires |7 — 22| — 0 as & — 0 and § — 0. It follows
from (1.3) and (1.7) that

2o — 2| = [(T*T + o) ' T*(y — y°)|?
= ((T*T + D) " T*(y —°), (T*T + al) ' T*(y — y°))
= ((TT* + o) *TT*(y — ¢°), (y — ¥°))
<TT* +al)>TT| - [I(y — v°[]* < 6% /a,
so that
(1.8) |1Z — 20 || < 12 — ol + 6/ V.

Now let R, = (T*T + oI)~'T* for a > 0. Then by (1.5) we have
|Ray —TTy|| = 0 asa—0

for y € D(TT). Therefore, if R(T) is not closed, then the family {Rq}a>0
is not uniformly bounded so that, as a consequence of the Uniform Bound-
edness Principle, there exists v € Y such that {R,v}s>0 is not bounded in
Y. In particular, if y° = y + dv/||v||, then ||y — v°|| < § and {Ray°®}as0
is unbounded in Y. Therefore, the problem of choosing the regularization
parameter a depending on 3° is important. Many works in the literature are
devoted to this aspect (cf. [7], [17], [1], [2], [3], [6], [14], [4]).
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In order to solve (1.7) numerically, it is required to consider approxima-
tions of T*T and of T*y’. So the problem actually at hand would be of the
form

(1.9) (A, + oz[):nim =20

n’

where (A,) and (22) are approximations of T*T and of T*y° respectively.
In the well known regularized projection methods (cf. [10], [2], [3]),

A, =P, T*TP, and 2= P,T%)°,

where (P,) is a sequence of orthogonal projections on X such that P, — I
pointwise. In this case we have

|T*T — A,|| — 0 asn — oo,

and discrepancy principles are known for choosing the regularization param-
eter a in (1.9) (see e.g. [2], [3], [13], [5]).

In the degenerate kernel methods for the integral equation (1.2) with
k(-,) € C([0,1] x [0,1]), A,, is obtained by approximating the kernel k(-, )
of the integral operator T*T by a degenerate kernel ky, (-, -) so that ||k — ko
— 0 as n — oo. Then it follows that

IT*T — Ayl < |k — Enll2 < |k — Enlloc — 0 as n — oo.

(See [11] and [12] for a discussion on degenerate kernel methods for integral
equations.) In a degenerate kernel method considered by Groetsch [9] the

approximation %n(, -) is obtained from
1
(s, t) := Sk‘(T, Sk(r,t)dt, a<s,t<b.
0

by using a convergent quadrature rule. In this case one has ||k — ky||so — 0
as n — oo for nice enough kernels k(-,-).

Moreover, for the degenerate kernel method of Groetsch [9] as well as for
the regularized projection methods, the operators A,, are non-negative and
self-adjoint.

In this paper we consider the generalized form of a class of discrepancy
principles in [1], namely,

5P
(1.10) 14nzen =2l = — p>0,4>0,

for large enough n, to choose the regularization parameter « = «(n,d) in
(1.9), where (A,,) is a sequence of bounded linear operators on X and (29)
in X such that

|T*T — A, - 0 and |T%y° — 28| — 0 asn — oc.
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It has to be observed that we do not assume the operators A, to be
non-negative and self-adjoint. The consideration of a general A,, as has
been done recently by Nair [15], is important from the computational point
of view, because even if one starts with a non-negative self-adjoint operator
as approximation of T*T', due to truncation errors etc., one actually may
not be dealing with a non-negative self-adjoint operator.

With « chosen according to (1.10), we show the convergence of the so-
lution x?, ,, of (1.9) to Z as § — 0, n — oo, and also obtain estimates for the
error || — 2, || whenever Z € R((T*T)¥), 0 < v < 1. Our result on error
estimates shows that if 1 is an estimate for the possibly unknown v, with
0 < v <y <1, then taking p/(¢ + 1) = 2/(2v9 + 1) one obtains the rate
0(52”/ (2”0+1)). In particular, prior knowledge of v enables us to obtain the
optimal rate O(6%¥/(?»+1)) (cf. Schock [16]).

If A, = P,T*TP, and 20 = P,T*y’ then (1.10) coincides with a dis-
crepancy principle considered by Engl and Neubauer [2] and we recover the
optimal result in [2] as a particular case. Thus this paper generalizes the
type of results in [2] and [9] for projection methods and degenerate kernel
method for integral equations respectively, providing also a parameter choice
strategy in the latter case.

2. Approximate solution and convergence. Let X and Y be Hilbert
spaces and T': X — Y be a bounded linear operator with its range R(T)
not necessarily closed in Y. Let y € D(TT) := R(T)+ R(T)*, y # 0, so that
there exists a unique € X of minimal norm such that

ITZ - yl| = nf{||T2 — y|| : © € X}.

Let (A,) be a sequence of bounded linear operators on X and for § > 0, let
v’ € Y and (2%) in X be such that

IT°T = Aull S eny Ny =9l <6, T =20 < mp,
where (g,) and (1)) are sequences of nonnegative real numbers such that
e, — 0 asn— oo
and
(2.1) 7 -0 asn—ooandd— 0.

Throughout the paper we denote the operator T*T by A, and ¢, ¢/, ¢, ¢o,
etc., denote positive constants which may assume different values in different
contexts.

THEOREM 2.1. If &, < coa with 0 < ¢g < 1, then A, + al is bijective
and

1(An +aD)7H < 1/(a(1 = co)).
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Moreover, if x0 and azg’n are the unique solutions of (1.7) and (1.9) re-
spectively, then

s ) 776 En
(22 16 a2l < o 18- adl + 22+ 2).
In particular, if o := «a(d,n) is chosen in such a way that
5 4
a(d,n) -0, —— —0, —" 0 and g
a(0,n) a(d,n) a(d,n)

as 6 — 0 and n — oo, then
|’§—x2‘7nH—>0 as  — 0 and n — oo.

Proof. Since A is non-negative and self-adjoint, it follows from spectral
theory that for each o > 0, (A + af)~! exists as a bounded linear operator
on X and

(A +al)7Y < 1/a.

Therefore, if ||A — A,|| < 1/||(A + o) then, by results on perturbation
of operators, (A, + al)~! exists and is a bounded operator, and

_ A—i—aI)_l”

An+aI 1 < ”(

It ey W T ey sy
1/a 1

T l-cey/a” all —c)
Now let w‘;m be the unique solution of the equation (1.9) with 7*y° in place
of 22, ie.,

(2.3) (Ap +al)wl,,, =T y’.
Then from (1.7), (1.9) and (2.3), we have
$5 n wg,n = (An + OJ)_I(Zz - T*yé)

and
w , — 2 = (A, +al)"HA - A,)xl,.

a,n

Since g, < ¢ga, it follows that
5

H$a,n - wg,n” < Clﬁi/a

and
w2 = @oll < 2| = 22|l + /),
so that
|17 — 20l < cIT — 20|l + /0 + en/).
Now the assumptions on « := «(d,n) together with (1.6) and (1.8) imply
the convergence [|Z — %, .| = 0asd — 0 and n — co. =
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3. The discrepancy principle. By our assumption (2.1) on (1%) and
the fact that 0 # y € D(T), we have ¢; < ||23| < ¢ for all large enough n,
say n > ng(d) and for each § € (0, §p] for some §y. Therefore by Theorem 2.1,
(3.1) 1Ana0, = 2nll = llazg || = la(An +al) "'z <m
for some constant v, and for all « > &, /cy. Moreover, if

a > :=max{e,/co:n=1,2,...} and 0 <o,
then
ollzo
TA T 22
[An]l + o

for some 73 > 0, since (A,,) is uniformly bounded.

Now to choose the regularization parameter « in (1.9), we consider the
discrepancy principle (1.10).

For simplicity of presentation we assume that

(3.3) n’ <e36” and g, < ¢y6"

(3.2) 1An@ 5 = 2oll > lla(An + D)™ 2| =

for some positive reals r and k, and for all n > ng(J).

THEOREM 3.1. Let p and q be positive integers. Then for each 6 € (0, do],
there exists a positive integer ni(d) and for each m > ni(0), there exists
a := «(d,n) such that (1.10) is satisfied. Moreover,

(3.4) a <P and 6P /ot < 0, n > ny(6),

where

= min{r g5 1+
Proof. Let 6 € (0,d0]. For « > e, /co and n =1,2,..., define
fala) = afl|Ana?, , — 2.
Then from (3.1) it follows that f,,(a) < y1a9 so that
fn(en/co) =0 asn — oc.
Let n1(9) > no(d) be the smallest positive integer such that for all n > n4(d),
en < comin{(6” /72)"7, (87 1)/},

Then taking ag = max{yo, (6” /72)/}, we obtain €, < copag and ag > g
so that by (3.1) and (3.2), we have

fn(en/c(]) S 5;0 § fn(a(])'

Therefore by the Intermediate Value Theorem, there exists o := «(d, n) such
that

enfco < a<ap and HAn:Eim — 22| =6"/ad
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for all n > ny(d). We also note that
1
s

5 s
Ton = a(zn - A'ﬂxa,n)
so that for all n > ny(d) and a = a(d,n),
s s s s s
lnll = 67 /0 = [zl = | Anza,n = 2all < [1Anzanll < [[Anll6” /o™

Therefore a9t < 6P (a + || Anl)/|125]] < P and consequently
a(d,n) < e 67D n > nq(6).
Now, using the estimates in (1.4), (1.8) and (2.2), we have
o fat = || Apal, = Znll = alled |l < a(l@] + 117 - 22,,1)
< ca(|[@l| + 17 — 2|l + /o + en /)
< (a4 0va+n)) < et
where p = min{r,p/(¢+1),1+p/2(¢+1)}. =

4. Error estimates under the discrepancy principle. In order
to prove the convergence of xiyn to = and to obtain the estimates for the
error ||z — xgnH under the discrepancy principle (1.10), we impose certain
restrictions on the parameters p and ¢ appearing in (1.10) in terms of the
error levels 7% and &, of the data A, and z° respectively. More precisely,

we assume that

(4.1) ﬁ < min{2,r, k},

where 7 and k are as in (3.3).
THEOREM 4.1 Let o := «(d,n) be chosen according to (1.10). Then:

(i) |2 — 22|l = 0 asn — oo and § — 0.
(i) If © € R(AY), 0 < v < 1, then for all large enough n and small
enough 6,
|7 — gl < 8,

where

Szmin{ Py ,1— P ,T‘—L,k‘—L}.
qg+1 2(¢+1) qg+1 qg+1
(iii) In particular, if
. 2U+2 P 2
k} > d —— =
win{r,k} = 97— and S = o

then
~ 5
1@ — 2, || < 8/
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Proof. Using (3.4), we have
5l/am _ 5l—mp/q(5p/aq)mm < cot—me—w)/a

for every | > 0 and m > 0, where p is as in Theorem 3.1. But by the
assumption (4.1), u = p/(¢+ 1), so that

§jam < cot—mp/(a+1)
Therefore
5/\/5 < Cl(;lfp/2(q+1)7 772/04 < 625r7p/(q+1) and &,/a < ngkfp/(qﬂ).

Using this, the result in (i) follows from (1.5), (1.8) and (2.2), the estimate
in (ii) follows from (1.6), (1.8) and (2.2), and (iii) is a consequence of (ii). m
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