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Abstract.Many discrepancy principles are known for choosing the parameter α in the
regularized operator equation (T ∗T+αI)xδα = T

∗yδ , ‖y−yδ‖ ≤ δ, in order to approximate
the minimal norm least-squares solution of the operator equation Tx = y. We consider a
class of discrepancy principles for choosing the regularization parameter when T ∗T and
T ∗yδ are approximated by An and z

δ
n respectively with An not necessarily self-adjoint.

This procedure generalizes the work of Engl and Neubauer (1985), and particular cases of
the results are applicable to the regularized projection method as well as to a degenerate
kernel method considered by Groetsch (1990).

1. Introduction. We are concerned with the problem of finding ap-
proximations to the minimal norm least-squares solution x̂ of the operator
equation

(1.1) Tx = y,

where T : X → Y is a bounded linear operator between Hilbert spaces X
and Y , and y belongs to D(T †) := R(T )+R(T )⊥, the domain of the Moore–
Penrose inverse T † of T . It is well known [8] that if the range R(T ) of T is
not closed, then the operator T † which associates y ∈ D(T †) to x̂ := T †y,
the unique least-squares solution of minimal norm, is not continuous, and
consequently the problem of solving (1.1) for x̂ is ill-posed. A prototype of
an ill-posed problem is the Fredholm integral equation of the first kind

(1.2)

1\
0

k(s, t)x(t) dt = y(s), 0 ≤ s ≤ 1,
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with nondegenerate kernel k(·, ·) ∈ L2([0, 1] × [0, 1]), where X = Y =
L2[0, 1]. Regularization methods are employed to find approximations to x̂.
In Tikhonov regularization one looks for the unique xα, α > 0, which mini-
mizes the functional

x → ‖Tx − y‖2 + α‖x‖2, x ∈ X.

Equivalently, one solves the well-posed equation

(1.3) (T ∗T + αI)xα = T ∗y

for each α > 0. Since T ∗T x̂ = T ∗y, it follows that

(1.4) ‖x̂ − xα‖ = ‖α(T ∗T + αI)−1x̂‖ ≤ ‖x̂‖.
It is known ([8], [16]) that

(1.5) ‖x̂ − xα‖ → 0 as α → 0

and

(1.6) x̂ ∈ R((T ∗T )ν), 0 ≤ ν ≤ 1, implies ‖x̂ − xα‖ = O(αν).

In practical applications the data y may not be available exactly, instead
one may have an approximation yδ with say ‖y − yδ‖ ≤ δ, δ > 0. Then one
solves the equation

(1.7) (T ∗T + αI)xδ
α = T ∗yδ

instead of (1.3) and requires ‖x̂ − xδ
α‖ → 0 as α → 0 and δ → 0. It follows

from (1.3) and (1.7) that

‖xα − xδ
α‖2 = ‖(T ∗T + αI)−1T ∗(y − yδ)‖2

= 〈(T ∗T + αI)−1T ∗(y − yδ), (T ∗T + αI)−1T ∗(y − yδ)〉
= 〈(TT ∗ + αI)−2TT ∗(y − yδ), (y − yδ)〉
≤ ‖(TT ∗ + αI)−2TT ∗‖ · ‖(y − yδ‖2 ≤ δ2/α,

so that

(1.8) ‖x̂ − xδ
α‖ ≤ ‖x̂ − xα‖ + δ/

√
α.

Now let Rα = (T ∗T + αI)−1T ∗ for α > 0. Then by (1.5) we have

‖Rαy − T †y‖ → 0 as α → 0

for y ∈ D(T †). Therefore, if R(T ) is not closed, then the family {Rα}α>0

is not uniformly bounded so that, as a consequence of the Uniform Bound-
edness Principle, there exists v ∈ Y such that {Rαv}α>0 is not bounded in
Y . In particular, if yδ = y + δv/‖v‖, then ‖y − yδ‖ ≤ δ and {Rαyδ}α>0

is unbounded in Y . Therefore, the problem of choosing the regularization
parameter α depending on yδ is important. Many works in the literature are
devoted to this aspect (cf. [7], [17], [1], [2], [3], [6], [14], [4]).
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In order to solve (1.7) numerically, it is required to consider approxima-
tions of T ∗T and of T ∗yδ. So the problem actually at hand would be of the
form

(1.9) (An + αI)xδ
α,n = zδ

n,

where (An) and (zδ
n) are approximations of T ∗T and of T ∗yδ respectively.

In the well known regularized projection methods (cf. [10], [2], [3]),

An = PnT ∗TPn and zδ
n = PnT ∗yδ,

where (Pn) is a sequence of orthogonal projections on X such that Pn → I
pointwise. In this case we have

‖T ∗T − An‖ → 0 as n → ∞,

and discrepancy principles are known for choosing the regularization param-
eter α in (1.9) (see e.g. [2], [3], [13], [5]).

In the degenerate kernel methods for the integral equation (1.2) with

k(·, ·) ∈ C([0, 1] × [0, 1]), An is obtained by approximating the kernel k̃(·, ·)
of the integral operator T ∗T by a degenerate kernel k̃n(·, ·) so that ‖k̃−k̃n‖∞
→ 0 as n → ∞. Then it follows that

‖T ∗T − An‖ ≤ ‖k̃ − k̃n‖2 ≤ ‖k̃ − k̃n‖∞ → 0 as n → ∞.

(See [11] and [12] for a discussion on degenerate kernel methods for integral
equations.) In a degenerate kernel method considered by Groetsch [9] the

approximation k̃n(·, ·) is obtained from

k̃(s, t) :=

1\
0

k(τ, s)k(τ, t) dt, a ≤ s, t ≤ b.

by using a convergent quadrature rule. In this case one has ‖k̃ − k̃n‖∞ → 0
as n → ∞ for nice enough kernels k(·, ·).

Moreover, for the degenerate kernel method of Groetsch [9] as well as for
the regularized projection methods, the operators An are non-negative and
self-adjoint.

In this paper we consider the generalized form of a class of discrepancy
principles in [1], namely,

(1.10) ‖Anxδ
α,n − zδ

n‖ =
δp

αq
, p > 0, q > 0,

for large enough n, to choose the regularization parameter α = α(n, δ) in
(1.9), where (An) is a sequence of bounded linear operators on X and (zδ

n)
in X such that

‖T ∗T − An‖ → 0 and ‖T ∗yδ − zδ
n‖ → 0 as n → ∞.
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It has to be observed that we do not assume the operators An to be
non-negative and self-adjoint. The consideration of a general An, as has
been done recently by Nair [15], is important from the computational point
of view, because even if one starts with a non-negative self-adjoint operator
as approximation of T ∗T , due to truncation errors etc., one actually may
not be dealing with a non-negative self-adjoint operator.

With α chosen according to (1.10), we show the convergence of the so-
lution xδ

α,n of (1.9) to x̂ as δ → 0, n → ∞, and also obtain estimates for the

error ‖x̂ − xδ
α,n‖ whenever x̂ ∈ R((T ∗T )ν), 0 < ν ≤ 1. Our result on error

estimates shows that if ν0 is an estimate for the possibly unknown ν, with
0 < ν ≤ ν0 ≤ 1, then taking p/(q + 1) = 2/(2ν0 + 1) one obtains the rate
O(δ2ν/(2ν0+1)). In particular, prior knowledge of ν enables us to obtain the
optimal rate O(δ2ν/(2ν+1)) (cf. Schock [16]).

If An = PnT ∗TPn and zδ
n = PnT ∗yδ then (1.10) coincides with a dis-

crepancy principle considered by Engl and Neubauer [2] and we recover the
optimal result in [2] as a particular case. Thus this paper generalizes the
type of results in [2] and [9] for projection methods and degenerate kernel
method for integral equations respectively, providing also a parameter choice
strategy in the latter case.

2. Approximate solution and convergence. Let X and Y be Hilbert
spaces and T : X → Y be a bounded linear operator with its range R(T )
not necessarily closed in Y . Let y ∈ D(T †) := R(T )+R(T )⊥, y 6= 0, so that
there exists a unique x̂ ∈ X of minimal norm such that

‖T x̂ − y‖ = inf{‖Tx − y‖ : x ∈ X}.
Let (An) be a sequence of bounded linear operators on X and for δ > 0, let
yδ ∈ Y and (zδ

n) in X be such that

‖T ∗T − An‖ ≤ εn, ‖y − yδ‖ ≤ δ, ‖T ∗yδ − zδ
n‖ ≤ ηδ

n,

where (εn) and (ηδ
n) are sequences of nonnegative real numbers such that

εn → 0 as n → ∞
and

(2.1) ηδ
n → 0 as n → ∞ and δ → 0.

Throughout the paper we denote the operator T ∗T by A, and c, c′, c1, c2,
etc., denote positive constants which may assume different values in different
contexts.

Theorem 2.1. If εn ≤ c0α with 0 < c0 < 1, then An + αI is bijective

and

‖(An + αI)−1‖ ≤ 1/(α(1 − c0)).
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Moreover , if xδ
α and xδ

α,n are the unique solutions of (1.7) and (1.9) re-

spectively , then

(2.2) ‖x̂ − xδ
α,n‖ ≤ c

(
‖x̂ − xδ

α‖ +
ηδ

n

α
+

εn

α

)
.

In particular , if α := α(δ, n) is chosen in such a way that

α(δ, n) → 0,
δ√

α(δ, n)
→ 0,

εn

α(δ, n)
→ 0 and

ηδ
n

α(δ, n)
→ 0

as δ → 0 and n → ∞, then

‖x̂ − xδ
α,n‖ → 0 as δ → 0 and n → ∞.

P r o o f. Since A is non-negative and self-adjoint, it follows from spectral
theory that for each α > 0, (A + αI)−1 exists as a bounded linear operator
on X and

‖(A + αI)−1‖ ≤ 1/α.

Therefore, if ‖A − An‖ < 1/‖(A + αI)−1‖ then, by results on perturbation
of operators, (An + αI)−1 exists and is a bounded operator, and

‖(An + αI)−1‖ ≤ ‖(A + αI)−1‖
1 − ‖A − An‖ · ‖(A + αI)−1‖

≤ 1/α

1 − εn/α
≤ 1

α(1 − c0)
.

Now let wδ
α,n be the unique solution of the equation (1.9) with T ∗yδ in place

of zδ
n, i.e.,

(2.3) (An + αI)wδ
α,n = T ∗yδ.

Then from (1.7), (1.9) and (2.3), we have

xδ
α,n − wδ

α,n = (An + αI)−1(zδ
n − T ∗yδ)

and

wδ
α,n − xδ

α = (An + αI)−1(A − An)xδ
α.

Since εn ≤ c0α, it follows that

‖xδ
α,n − wδ

α,n‖ ≤ c1η
δ
n/α

and

‖wδ
α,n − xδ

α‖ ≤ c2(‖x̂ − xδ
α‖ + εn/α),

so that

‖x̂ − xδ
α,n‖ ≤ c(‖x̂ − xδ

α‖ + ηδ
n/α + εn/α).

Now the assumptions on α := α(δ, n) together with (1.6) and (1.8) imply
the convergence ‖x̂ − xδ

α,n‖ → 0 as δ → 0 and n → ∞.
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3. The discrepancy principle. By our assumption (2.1) on (ηδ
n) and

the fact that 0 6= y ∈ D(T †), we have c1 ≤ ‖zδ
n‖ ≤ c2 for all large enough n,

say n ≥ n0(δ) and for each δ ∈ (0, δ0] for some δ0. Therefore by Theorem 2.1,

(3.1) ‖Anxδ
α,n − zδ

n‖ = ‖αxδ
α,n‖ = ‖α(An + αI)−1zδ

n‖ ≤ γ1

for some constant γ1 and for all α ≥ εn/c0. Moreover, if

α ≥ γ0 := max{εn/c0 : n = 1, 2, . . .} and δ ≤ δ0,

then

(3.2) ‖Anxδ
α,n − zδ

n‖ ≥ ‖α(An + αI)−1zδ
n‖ ≥ γ0‖zδ

n‖
‖An‖ + α

≥ γ2

for some γ2 > 0, since (An) is uniformly bounded.
Now to choose the regularization parameter α in (1.9), we consider the

discrepancy principle (1.10).
For simplicity of presentation we assume that

(3.3) ηδ
n ≤ c3δ

r and εn ≤ c4δ
k

for some positive reals r and k, and for all n ≥ n0(δ).

Theorem 3.1. Let p and q be positive integers. Then for each δ ∈ (0, δ0],
there exists a positive integer n1(δ) and for each n ≥ n1(δ), there exists

α := α(δ, n) such that (1.10) is satisfied. Moreover ,

(3.4) α ≤ c1δ
p/(q+1) and δp/αq ≤ c2δ

µ, n ≥ n1(δ),

where

µ = min

{
r,

p

(q + 1)
, 1 +

p

2(q + 1)

}
.

P r o o f. Let δ ∈ (0, δ0]. For α ≥ εn/c0 and n = 1, 2, . . . , define

fn(α) = αq‖Anxδ
α,n − zδ

n‖.
Then from (3.1) it follows that fn(α) ≤ γ1α

q so that

fn(εn/c0) → 0 as n → ∞.

Let n1(δ) ≥ n0(δ) be the smallest positive integer such that for all n ≥ n1(δ),

εn ≤ c0 min{(δp/γ2)
1/q , (δp/γ1)

1/q}.
Then taking α0 = max{γ0, (δ

p/γ2)
1/q}, we obtain εn ≤ c0α0 and α0 ≥ γ0

so that by (3.1) and (3.2), we have

fn(εn/c0) ≤ δp ≤ fn(α0).

Therefore by the Intermediate Value Theorem, there exists α := α(δ, n) such
that

εn/c0 ≤ α ≤ α0 and ‖Anxδ
α,n − zδ

n‖ = δp/αq
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for all n ≥ n1(δ). We also note that

xδ
α,n =

1

α
(zδ

n − Anxδ
α,n)

so that for all n ≥ n1(δ) and α = α(δ, n),

‖zδ
n‖ − δp/αq = ‖zδ

n‖ − ‖Anxδ
α,n − zδ

n‖ ≤ ‖Anxδ
α,n‖ ≤ ‖An‖δp/αq+1.

Therefore αq+1 ≤ δp(α + ‖An‖)/‖zδ
n‖ ≤ cδp and consequently

α(δ, n) ≤ c1δ
p/(q+1) , n ≥ n1(δ).

Now, using the estimates in (1.4), (1.8) and (2.2), we have

δp/αq = ‖Anxδ
α,n − zδ

n‖ = α‖xδ
α,n‖ ≤ α(‖x̂‖ + ‖x̂ − xδ

α,n‖)
≤ cα(‖x̂‖ + ‖x̂ − xδ

α‖ + ηδ
n/α + εn/α)

≤ c′(α + δ
√

α + ηδ
n) ≤ c2δ

µ,

where µ = min{r, p/(q + 1), 1 + p/2(q + 1)}.

4. Error estimates under the discrepancy principle. In order
to prove the convergence of xδ

α,n to x̂ and to obtain the estimates for the

error ‖x̂ − xδ
α,n‖ under the discrepancy principle (1.10), we impose certain

restrictions on the parameters p and q appearing in (1.10) in terms of the
error levels ηδ

n and εn of the data An and zδ
n respectively. More precisely,

we assume that

(4.1)
p

q + 1
≤ min{2, r, k},

where r and k are as in (3.3).

Theorem 4.1 Let α := α(δ, n) be chosen according to (1.10). Then:

(i) ‖x̂ − xδ
α,n‖ → 0 as n → ∞ and δ → 0.

(ii) If x̂ ∈ R(Aν), 0 < ν ≤ 1, then for all large enough n and small

enough δ,

‖x̂ − xδ
α,n‖ ≤ cδs,

where

s = min

{
pν

q + 1
, 1 − p

2(q + 1)
, r − p

q + 1
, k − p

q + 1

}
.

(iii) In particular , if

min{r, k} ≥ 2ν + 2

2ν + 1
and

p

q + 1
=

2

2ν + 1
,

then

‖x̂ − xδ
α,n‖ ≤ cδ2ν/(2ν+1) .
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P r o o f. Using (3.4), we have

δl/αm = δl−mp/q(δp/αq)m/q ≤ cδl−m(p−µ)/q

for every l ≥ 0 and m ≥ 0, where µ is as in Theorem 3.1. But by the
assumption (4.1), µ = p/(q + 1), so that

δl/αm ≤ cδl−mp/(q+1) .

Therefore

δ/
√

α ≤ c1δ
1−p/2(q+1) , ηδ

n/α ≤ c2δ
r−p/(q+1) and εn/α ≤ c3δ

k−p/(q+1).

Using this, the result in (i) follows from (1.5), (1.8) and (2.2), the estimate
in (ii) follows from (1.6), (1.8) and (2.2), and (iii) is a consequence of (ii).
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