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Natural first order Lagrangians for immersions

by Jerzy J. Konderak (Bari)

Abstract. We define natural first order Lagrangians for immersions of Riemannian
manifolds and we prove a bijective correspondence between such Lagrangians and the
symmetric functions on an open subset of m-dimensional Euclidean space.

Introduction. Critical points of functionals on Riemannian manifolds
are particular geometric objects and they obviously depend on Lagrangians
chosen. Naturally defined Lagrangians are expected to provide the most
interesting maps or structures on the manifolds. For instance, we may look
for Riemannian metrics as critical points. If we normalize the volume and
take the Lagrangian to be the scalar curvature then the Einstein metrics are
critical points of the variational problem.

Here we are interested in variations of immersions with a fixed Rieman-
nian metric. For instance, minimal submanifolds are Riemannian immersions
which are critical points of the volume functional as well as of the energy
functional. These functionals are in a certain sense natural with respect to
the Riemannian structures on the considered manifolds. We mean, roughly
speaking, that for isometric manifolds such Lagrangians are equal and that
if we vary the Riemannian structures continuously in the C1-topology then
the Lagrangians vary continuously. Such a definition was given by Palais (cf.
[P2]) for all maps between Riemannian manifolds. The classification of such
Lagrangians is given in [P2] and [K]. Essentially such Lagrangians are deter-
mined by the value of a certain function on the eigenvalues of the diagonal
matrix arising from the polar decomposition of the differential of the map.
The naturality of our Lagrangians is connected with Riemannian metrics on
the manifolds. This naturality is a very particular case of the one considered
in the theory of natural bundles (cf. [KMS]).
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In the present paper we are interested in Lagrangians which are defined
only for immersions. This restriction makes the space of Lagrangians larger.
It is clear that all natural first order Lagrangians, as defined by Palais,
are Lagrangians for immersions. In this paper we show that any smooth
symmetric function on the positive orthant of R

m uniquely determines a
natural first order Lagrangian for immersions.

1.Lagrangians for immersions. Let M and N be smooth (C∞) man-
ifolds. Then on the space C∞(M,N) of smooth maps between M and N
there is defined the weak C1-topology; a generic neighbourhood of a map
belonging to C∞(M,N) is a set of smooth maps which on a given compact
subset of M have their values and the values of the first partial derivatives
sufficiently close to the given map (cf. [H] or [M] for the precise definitions).

IfM , N are two smooth manifolds then we denote by J1(M,N) the set of
1-jets of smooth maps. In other words, J1(M,N) consists of the equivalence
classes, called jets, of local smooth maps from M to N . The equivalence is
given by the requirement of equality of the Taylor series up to the first order

at the source of a jet (cf. [P1], [H] or [M]). We denote by J̃1(M,N) a subset
of J1(M,N) which consists of 1-jets of local immersions, i.e. immersions
defined on open subsets of M . In other words, the differentials of such maps
are monomorphisms. It is clear that the dimension of M has to be less than
or equal to the dimension of N . Moreover, it can be proved that J̃1(M,N)
is an open subset of J1(M,N).

Let M1, M2, N1 and N2 be smooth manifolds. Suppose that we are given
a diffeomorphism φ : M1 →M2 and a smooth map ψ : N1 → N2. Then the
couple of maps (φ,ψ) determines, in a natural way, a map

Φ(φ,ψ) : J1(M1, N1) → J1(M2, N2)

such that if j1x0
f ∈ J1(M1, N1) then

Φ(φ,ψ)j1x0
f = j1y0

[ψ ◦ f ◦ φ−1]

where y0 = φ(x0). It can be shown that Φ(φ,ψ) is a smooth map between
J1(M1, N1) and J1(M2, N2).

Let Km denote the category of pairs X = ((M,g), (N,h)) of Rieman-
nian manifolds with dimM = m. A morphism in Km from X1 = ((M1, g1),
(N1, h1)) to X2 = ((M2, g2), (N2, h2)) is a pair F = (φ,ψ) where φ : M1 →
M2 is an isometry and ψ : N1 → N2 is an isometric immersion. The composi-
tion of morphisms is defined componentwise. A morphism F ∈ Mor(X1,X2)
induces a map

Φ(F ) : J1(M1, N1) → J1(M2, N2)

of jet spaces which preserves the subspaces of jets of immersions and thus
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we have the restriction map

Φ(F ) : J̃1(M1, N1) → J̃1(M2, N2).

Our aim is to define a natural first order Lagrangian for immersions.
We consider maps L̃ on Km with values in a class of functions. We suppose
that if X ∈ Km and X = ((M,g), (N,h)) then L̃(X) ∈ C∞(J̃1(M,N),R).

We mean that a pair of Riemannian manifolds determines, via L̃, a smooth
real-valued function on the space of jets of functions between these two
manifolds. Suppose that U , V are open subsets of M and N , respectively.
Then the restricted pair Y = ((U, g|U ), (V, h|V )) clearly belongs to Km. We

assume that L̃ has the following property: for each X and for each restriction
Y of X the restriction of L̃(X) to J̃1(U, V ) is equal to L̃(Y ). A map L̃ with

this property is called local. We consider here only L̃ of this type.

Definition 1. A map L̃ is called a natural first order Lagrangian for

immersions iff the following two conditions hold:

(i) if X1,X2 ∈ Km and F ∈ Mor(X1,X2) then L̃(X1) = L̃(X2) ◦ Φ(F );

(ii) if j ∈ J1(M,N) and X = ((M,g), (N,h)) then L̃(X)j depends
continuously on the Riemannian metrics on M and N in the C1-topology.

We observe that if X = ((M,g), (N,h)) ∈ Km has dimN < dimM then

L̃(X) = ∅.
This definition is a particular case of Palais’ natural first order La-

grangian (cf. [P2] and [K]). In our case, for each X ∈ Km, L̃(X) is a function

on J̃1(M,N) which is the set of jets of local immersions. Since J̃1(M,N) is

a subset of J1(M,N), the set C∞(J̃1(M,N),R) contains all the restrictions
of functions from C∞(J1(M,N),R) and we have the following observation.

Observation 2. Let L be a natural first order Lagrangian (cf. [P2]).
Then the restriction

Km ∋ X → L(X)|J̃1(M,N)

is a natural first order Lagrangian for immersions.

Hence all natural first order Lagrangians are natural first order La-
grangians for immersions. We shall see that the converse is not true (cf.
Observation 5).

Example 3 (cf. [P1], [K]). Let X = π ∈ Km and let j1x0
f ∈

J1(M,N) be a jet of a smooth map. Then f∗hx0
is a symmetric bilinear form

on Tx0
M . We associate with this form a linear map Ax0

: Tx0
M → Tx0

M
such that f∗hx0

(u, v) = g(Ax0
u, v) for all u, v ∈ Tx0

M . It is clear that Ax0

is a non-negative self-adjoint endomorphism of Tx0
M . Let λ1, . . . , λm be the

eigenvalues of Ax0
, which may be multiple. Suppose that σ : ∆+

m → R is a
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symmetric map on the positive orthant

∆+
m := {(x1, . . . , xm) | xi ≥ 0 ∀i = 1, . . . ,m}.

Then we put eσ(X)j1x0
f := σ(λ1, . . . , λm). It is easy to prove that eσ is a

well-defined natural first order Lagrangian in the sense of Palais. In [K] it
is shown that all natural first order Lagrangians are of this type.

If f : M → N is a smooth map, M is compact and νg is the density on
M induced by g then Eσ(f) := 1

2

T
M
eσ(X)j1fνg is called the σ-energy of

f (cf. [ES]). There is a particular interest in the first elementary symmetric
function σ1(λ1, . . . , λm) = λ1+ . . .+λm because σ1-energy is just the energy
of f and thus the critical points of Eσ1

are the harmonic maps between M
and N .

Example 4. We put int∆+
m := {(x1, . . . , xm) ∈ R

m | xi > 0 ∀i =
1, . . . ,m} and we consider a smooth function σ on int∆+

m. Then σ de-
termines a natural first order Lagrangian ẽσ for immersions in a similar
way to Example 3. In fact, if X ∈ Km and X = ((M,g), (N,h)) then for

j1x0
f ∈ J̃1(M,N) we put

ẽσ(X)j1x0
f := σ(λ1, . . . , λm)

where λ1, . . . , λm are the eigenvalues of the linear map Ax0
which is deter-

mined by f∗hx0
; it is clear that the eigenvalues λ1, . . . , λm of Ax0

are pos-
itive. Then it is easy to observe that ẽσ is a natural first order Lagrangian
for immersions.

Observation 5. It is clear that not all symmetric smooth functions
on int∆+

m are restrictions of functions from ∆+
m. For instance, the map

(x1, . . . , xm) → (x1 + . . .+ xm)−1 cannot be even continuously extended to
∆+

m.

Natural first order Lagrangians for immersions are defined on pairs of
Riemannian manifolds belonging to Km. However, we shall show that they
are determined by their value on the pair ((Rm, st), (Rm, st)) where st de-
notes the standard metric structure on R

m.

Lemma 6 (cf. [P2]). Let (M,g) be a Riemannian manifold of dimension

m and let x0 ∈ M . Then there exists an infinite sequence of Riemannian

metrics on M converging to g in the C1-topology such that each element of

the sequence is flat in some neighbourhood of x0.

P r o o f. 1o We suppose that: M is the unit ball of R
m centred at zero

and the canonical coordinates of R
m are normal for the Riemannian metric

g. We denote by g the standard flat metric on M induced from R
m. Then,
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in the canonical coordinates of R
m, we have

gx =
m∑

i=1

dxi ⊗ dxi, gx =
m∑

i,j=1

gij(x)dxi ⊗ dxj

for each x ∈ M , where (gij(x))i,j=1,...,m is a symmetric positive definite
matrix of C∞ functions on M . We develop each gij in a Maclaurin series up
to the second order. The crucial observation is that the first derivatives of
gij vanish at zero. In fact, let ∇ be the Levi-Civita connection of g. Then
for each γ = 1, . . . ,m we have

∂gij

∂xγ
(0) = ∇∂/∂xγ

g

(
∂

∂xi
,
∂

∂xj

)

= (∇∂/∂xγ
g)

(
∂

∂xi
,
∂

∂xj

)
+ g

(
∇∂/∂xγ

∂

∂xi
,
∂

∂xj

)

+ g

(
∂

∂xi
,∇∂/∂xγ

∂

∂xj

)
= 0

because all three terms vanish at zero. Hence for each i, j = 1, . . . ,m we
have

gij(x) = δij +

m∑

α,β=1

fαβ
ij (x)xαxβ

where δij is the Kronecker delta and fαβ
ij (x) are C∞ functions on M . Then

we introduce an auxiliary C∞ function µ : R → [0, 1] such that

µ(t) =

{
1 if t ≤ 1/2,
0 if t ≥ 1.

We denote by B(r) the closed ball in R
m centred at zero and of radius r.

For later estimates we introduce a constant C defined as follows:

C := max

{
sup
t∈R

|µ′(t)|, sup
x∈B(1/2)

|fαβ
ij (x)|, sup

x∈B(1/2)

∣∣∣∣
∂fαβ

ij

∂xγ

∣∣∣∣ :

i, j, α, β, γ = 1, . . . ,m

}
.

2o Define gn := µ(2n‖x‖)g + [1 − µ(2n‖x‖)]g. It is easy to observe that
for each n:

(i) gn is a Riemannian metric on M ;

(ii) gn and g coincide on B(1/2n+1);

(iii) gn and g coincide on M \B(1/2n).

We are going to prove that gn tends to g in the C1-topology, i.e. for each
compact subset K of M , gn tends to g uniformly on K and ∂gn/∂xγ tends
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to ∂g/∂xγ uniformly on K. Equivalently, we are to show that gn − g and
∂(gn − g)/∂xγ tend to zero uniformly on K.

3o We have

gn − g = µ(2n‖x‖)
m∑

i,j=1

m∑

α,β=1

fαβ
ij (x)xαxβdxi ⊗ dxj .

Hence to show that gn − g tends to zero in the C1-topology it is enough to
show that fαβ

ij (x)xαxβ tends to zero for all i, j, α, β. Since the support of
µ(2n‖x‖) is contained in B(1/2n), for each compact subset K of M we have

sup
x∈K

|µ(2n‖x‖)fαβ
ij (x)xαxβ | ≤ sup

x∈B(1/2n)

|µ(2n‖x‖)fαβ
ij (x)xαxβ |,(1.1)

sup
x∈K

∣∣∣∣
∂[µ(2n‖x‖)fαβ

ij (x)xαxβ ]

∂xγ

∣∣∣∣ ≤ sup
x∈B(1/2n)

∣∣∣∣
∂[µ(2n‖x‖)fαβ

ij (x)xαxβ ]

∂xγ

∣∣∣∣.(1.2)

Hence to prove that gn − g tends to zero in the C1-topology it is enough
to show that the right hand sides of (1.1) and (1.2) tend to zero for all
i, j, α, β, γ = 1, . . . ,m.

4o We have

sup
x∈B(1/2n)

|µ(2n‖x‖)fαβ
ij (x)xαxβ | ≤ sup

x∈B(1/2n)

C|xα||xβ |

≤ sup
x∈B(1/2n)

C‖x‖2 = C(1/2n)2.

Hence the right hand side of (1.1) tends to zero as n tends to infinity.

5o We have

∂

∂xγ
[µ(2n‖x‖)fαβ

ij (x)xαxβ ] =

A1(x)︷ ︸︸ ︷
∂fαβ

ij

∂xγ
µ(2n‖x‖)xαxβ

+

A2(x)︷ ︸︸ ︷
fαβ

ij (x)2n xγ

‖x‖µ
′(2n‖x‖)xαxβ

+

A3(x)︷ ︸︸ ︷
fαβ

ij (x)µ(2n‖x‖)(δαγxβ + xαδβγ) .

Then we have the following estimates:

sup
x∈B(1/2n)

|A1(x)| ≤ sup
x∈B(1/2n)

C‖x‖2 =
C

22n
,

sup
x∈B(1/2n)

|A2(x)| ≤ sup
x∈B(1/2n)

C2n |xγ |
‖x‖C‖x‖2 ≤ C2

2n
,
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sup
x∈B(1/2n)

|A3(x)| ≤ sup
x∈B(1/2n)

C2‖x‖ =
C

2n−1
.

Hence the right hand side of (1.2) tends to zero. As gn coincides with g on
M \B(1/2n), we do not lose generality by restricting our proof to M being
the unit ball in R

m.

2. Main theorem. Let L̃ be a natural first order Lagrangian for im-
mersions and let X = ((M,g), (N,h)) ∈ Km. Suppose that x0 ∈M , y0 ∈ N ,
and let gn and hn be sequences of Riemannian metrics tending to g and h,
respectively, in the C1-topology. Moreover, assume that gn and hn are flat
in some open neighbourhoods of x0 and y0. Hence we have a sequence of
objects Xn = ((M,gn), (N,hn)) ∈ Km. Let j1x0

f ∈ J̃1(M,N). Then from
condition (ii) of Definition 1 we have

(2.1) L̃(X)j1x0
f = lim

n→∞
L̃(Xn)j1x0

f.

Since L̃ is local, L̃(Xn)j1x0
f for each n is determined by a pair which is a

restriction of X to an open flat neighbourhood of x0 and y0. Such flat suffi-
ciently small neighbourhoods are isometric, via the inverses of exponential
maps, with open neighbourhoods of Tx0

M and Ty0
N , respectively. Since L̃

is local and invariant by isometries we get

(2.2) L̃(Xn)j1x0
f = L̃((Tx0

M, st), (Ty0
N, st))j10B

where B = dx0
f . We observe that we apply here property (i) of Definition 1.

We also notice that the jet j10B corresponds to j1x0
f via exponential maps.

From (2.2) it follows that the sequence considered in (2.1) is constant. Hence

(2.3) L̃(X)j1x0
f = L̃((Tx0

M, st), (Ty0
N, st))j10B.

Then we have a polar decomposition B = P ◦O such that

O : Tx0
M → Tx0

M and P : Tx0
M → Ty0

N

where O is a self-adjoint positive isomorphism and P is an isometric mono-
morphism. Let λ1, . . . , λm be the eigenvalues of O. There exists a linear
isometry T : R

m → Tx0
M such that

(2.4) T ◦B ◦ T−1 =




λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λm




in the canonical basis of R
m. Since L̃ is invariant under isometries of pairs

of Riemannian manifolds, from (2.3) and (2.4) we get

L̃(X)j1x0
f = L̃((Rm, st), (Rm, st))j10 [diag(λ1, . . . , λm)]
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where diag[λ1, . . . , λm] is an endomorphism of R
m whose matrix in the

canonical basis is as in (2.4). We observe that the value of L̃(X) at j1x0
f

depends only on the eigenvalues of the self-adjoint part of the polar decom-
position of dx0

f . Hence L̃ determines a smooth real-valued and symmetric
function σ on int∆+

m such that

σ(λ1, . . . , λm) := L̃((Rm, st), (Rm, st))j10 [diag(λ1, . . . , λm)].

Example 7. Let σ : int∆+
m → R be a smooth symmetric real-valued

function on int∆+
m. Then we denote by L̃σ a Lagrangian such that if X =

((M,g), (N,h)) ∈ Km and j1x0
f ∈ J̃1(M,N) then L̃σ(X)j1x0

f := σ(λ1, . . .
. . . , λm) where λ1, . . . , λm are the eigenvalues of the self-adjoint part of the

polar decomposition of dx0
f . It is easy to prove that L̃σ is a well-defined

first order natural Lagrangian for immersions.

Then we have the following version of the Palais classification theorem
for Lagrangians (cf. [P2], [K]).

Theorem 8. There is one-to-one correspondence between the first order

natural Lagrangians for immersions and the symmetric smooth functions on

int∆+
m. The correspondence is defined in the following way : with a smooth

symmetric map σ : int∆+
m → R we associate the Lagrangian L̃σ.

P r o o f. It is clear that L̃σ is a natural first order Lagrangian for immer-
sions. On the other hand, from previous considerations it follows that each
such Lagrangian has to be of the type L̃σ.

To end this paper we give an explicit description of the set of smooth
symmetric functions on int∆+

m, denoted by C∞
s (int∆+

m,R). By the theo-
rem of Glaeser (cf. [G]) such functions may be expressed as compositions of
standard symmetric functions on ∆+

m and any smooth functions on int∆+
m.

More precisely, let σr : int∆+
m → R be the rth elementary symmetric func-

tion defined as

σr(t1, . . . , tm) =
∑

1≤i1<...<ir≤m

ti1 . . . tir

where r = 1, . . . ,m. Then the map

Ξ = (σ1, . . . , σm) : int∆+
m → R

m

consists of m elementary symmetric functions. Clearly the set int∆+
m is

invariant under Ξ. Then from Theorem II of [G] we get

C∞
s (int∆+

m,R) = {φ ◦ Ξ | φ ∈ C∞(int∆+
m,R)}.

We observe that such a factorisation is valid for all Ξ-invariant subsets of
R

m.
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Remark 9. Let σ ∈ C∞
s (int∆+

m,R). It determines the maps ẽσ and

L̃σ which are natural first order Lagrangians for immersions. Let X =
((M,g), (N,h)) ∈ Km and j1x0

f ∈ J̃1(M,N). Then the bilinear symmetric
form (f∗h)x0

determines the positive eigenvalues λ1, . . . , λm and we have
ẽσ(X)j1x0

f = σ(λ1, . . . , λm) (cf. Example 4). We also have the polar decom-
position dx0

f = P ◦O and the eigenvalues of the self-adjoint map O. Then
the eigenvalues of O are, up to permutation,

√
λ1, . . . ,

√
λm. Hence

L̃σ(X)j1x0
f = σ(

√
λ1, . . . ,

√
λm).

This indicates a relationship between ẽσ and L̃σ.
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