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The intersection convolution of relations
and the Hahn–Banach type theorems

by Árpád Száz (Debrecen)

Abstract. By introducing the intersection convolution of relations, we prove a natu-
ral generalization of an extension theorem of B. Rodŕıguez-Salinas and L. Bou on linear
selections which is already a substantial generalization of the classical Hahn–Banach the-
orems. In particular, we give a simple neccesary and sufficient condition in terms of the
intersection convolution of a homogeneous relation and its partial linear selections in order
that every partial linear selection of this relation can have an extension to a total linear
selection.

Introduction. The following dominated extension theorems were first
proved by H. Hahn and S. Banach in 1927 and 1929, respectively, by making
use of the ideas of F. Riesz and E. Helly. (See, for instance, Dieudonné [4,
p. 136] and Fuchssteiner–Lusky [6, p. 72].)

Theorem 1. If p is a norm on a real vector space X and ϕ is a linear
functional on a subspace Z of X such that |ϕ(z)| ≤ p(z) for all z ∈ Z, then
ϕ can be extended to a linear functional f on X such that |f(x)| ≤ p(x) for
all x ∈ X.

Theorem 2. If p is a sublinear functional on a real vector space X and
ϕ is a linear functional on a subspace Z of X such that ϕ(z) ≤ p(z) for
all z ∈ Z, then ϕ can be extended to a linear functional f on X such that
f(x) ≤ p(x) for all x ∈ X.

Theorems 1 and 2 were later generalized to linear operators taking their
values in normed spaces with the binary intersection property and ordered
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vector spaces with the least upper bound property, respectively. (See Nach-
bin [19] and Buskes [3, p. 26], for instance.)

However, these generalizations turned out to be particular cases of the
following fundamental selection type extension theorem of B. Rodŕıguez-
Salinas and L. Bou [22] whose partial converse was later proved by A. D.
Ioffe [15].

Theorem 3. If F is sublinear relation from one vector space X into
another Y and A is a translation invariant family of subsets of Y with the
binary intersection property such that F (x) ∈ A for all x ∈ X, then each
linear function ϕ from a subspace Z of X into Y such that ϕ(z) ∈ F (z) for
all z ∈ Z can be extended to a linear function f from X into Y such that
f(x) ∈ F (x) for all x ∈ X.

Theorem 2 can be easily derived from Theorem 3 by using the fact that
the relation F defined by

F (x) = [−p(−x), p(x)]

for all x ∈ X and the family A of all closed subintervals of the real line R
have the required properties.

In the present paper, by introducing the intersection convolution F ∗ ϕ
defined by

(F ∗ ϕ)(x) =
⋂
z∈Z

(F (x− z) + ϕ(z))

for all x ∈ X, we shall easily prove the following natural generalization of
Theorem 3.

Theorem 4. If F is a homogeneous relation from one vector space X
into another Y , then the following assertions are equivalent :

(1) if ϕ is a linear function from a subspace Z of X into Y such that
ϕ(z) ∈ F (z) for all z ∈ Z, then (F ∗ ϕ)(x) 6= ∅ for all x ∈ X \ Z;

(2) if Φ is a linear relation from a subspace Z of X into Y such that
Φ(z) ⊂ F (z) for all z ∈ Z, then Φ can be extended to a linear relation Ψ
from X into Y such that Ψ(x) ⊂ F (x) + Φ(0) for all x ∈ X.

Theorem 3 can be easily derived from Theorem 4 by using the fact that
any two members of the family {F (x − z) + ϕ(z)}z∈Z have a nonvoid in-
tersection whenever the relation F is in particular sublinear. The necessary
prerequisites about relations will be briefly laid out in the next preparatory
section.

1. A few basic facts about relations. A subset F of a product set
X × Y is usually called a relation or a multifunction between X and Y . In
particular, F is called a function if (x, y) ∈ F and (x, z) ∈ F imply y = z.
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To make an easily visible distinction between relations and functions, the
latter will usually be denoted by lower case letters.

If F is a relation between X and Y and x ∈ X, then the set

F (x) = {y ∈ X : (x, y) ∈ F}

is called the relation class or the image of x under F . If in particular F is
a function and y ∈ F (x), then by identifying singletons with their elements
we may simply write F (x) = y in place of F (x) = {y}.

If F is a relation between X and Y , then the set

DF = {x ∈ X : F (x) 6= ∅}

is called the domain of F . And if in particular X = DF , then by adopting
the functional point of view we say that F is a relation from X into Y .

If F and Φ are relations from X into Y such that Φ ⊂ F , or equivalently
Φ(x) ⊂ F (x) for all x ∈ X, then we say that Φ is a selection relation or a
multiselection of F . In contrast to these total selections, the selections of
the restriction F |Z = F ∩ (Z × Y ) of F to a subset Z of X will be called
partial selections of F .

If X is an additive group and A,B ⊂ X, then we set A + B = {x + y :
x ∈ A, y ∈ B}, −A = {−x : x ∈ A}, and A − B = A + (−B). Moreover,
if in particular X is a vector space over a field K, then we also write λA =
{λx : x ∈ A} for all λ ∈ K.

A relation F between two groups X and Y will be called superadditive
(resp. subadditive) if

F (x) + F (y) ⊂ F (x+ y) (resp. F (x+ y) ⊂ F (x) + F (y))

for all x, y ∈ X, and additive if it is both superadditive and subadditive.
Moreover, F will be called odd if

F (−x) = −F (x)

for all x ∈ X. Note that F is odd if and only if −F (x) ⊂ F (−x) (or
equivalently F (−x) ⊂ −F (x)) for all x ∈ X.

It can be easily shown that an odd superadditive relation between groups
is necessarily additive. Moreover, the importance of odd superadditive re-
lations is also apparent from the fact that a relation between groups X and
Y is odd and superadditive if and only if it is a subgroup of the product
group X×Y . Therefore, the oddness is frequently included in the definition
of additive relations. (See, for instance, MacLane [18, pp. 51 and 63].)

In particular, a relation F between vector spaces X and Y over K is
called homogeneous if

F (λx) = λF (x)
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for all λ ∈ K \ {0} and x ∈ X. Note that F is homogeneous if and only if
λF (x) ⊂ F (λx) (or equivalently F (λx) ⊂ λF (x)) for all λ ∈ K \ {0} and
x ∈ X.

Now, a homogeneous relation between vector spaces may be called su-
perlinear, sublinear and linear if it is superadditive, subadditive and addi-
tive, respectively. Note that homogeneous relations are in particular odd.
Therefore, superlinear relations are necessarily linear. Moreover, a relation
F between vector spaces X and Y is linear if and only if it is a subspace of
the product space X × Y . (See, for instance, Arens [2] and Száz–Száz [29].)

2.The intersection convolution and its inclusion properties. Mo-
tivated by the ordinary convolution of integrable functions and the infimal
convolution of extended real-valued functions [25], we make the following

Definition 2.1. If F is a relation from one group X into another Y
and Φ is a relation from a subgroup Z of X into Y , then the relation F ∗ Φ
defined by

(F ∗ Φ)(x) =
⋂
z∈Z

(F (x− z) + Φ(z))

for all x ∈ X will be called the intersection convolution of F and Φ.

Remark 2.2. The intersection convolution can be naturally extended to
arbitrary relations between semigroups. It surely deserves a further investi-
gation, together with the union convolution.

However, in the sequel we shall only need the particular case of Definition
2.1 when Φ is a selection relation of F |Z. Namely, we shall only be interested
in the extension of Φ to a suitable selection relation of F + Φ(0).

Theorem 2.3. If F is a relation from one group X into another Y and
Φ is a relation from a subgroup Z of X into Y , then

F ∗ Φ ⊂ F + Φ(0) and F ∗ Φ|Z ⊂ F (0) + Φ.

P r o o f. By Definition 2.1,

(F ∗ Φ)(x) ⊂ F (x− 0) + Φ(0) = (F + Φ(0))(x)

for all x ∈ X and

(F ∗ Φ)(z) ⊂ F (z − z) + Φ(z) = (F (0) + Φ)(z)

for all z ∈ Z.

An immediate consequence of Theorem 2.3 is

Corollary 2.4. If F and Φ are as in Theorem 2.3, then F ∗ Φ ⊂ F if
Φ(0) = {0} and F ∗ Φ|Z ⊂ Φ if F (0) = {0}.

We can also easily prove
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Theorem 2.5. If F is a relation from one group X into another Y , and
moreover Z is a subgroup of X and Φ is a subadditive selection relation of
F |Z, then

Φ ⊂ F ∗ Φ|Z.
Moreover , if F (0) = {0}, then this inclusion turns into equality.

P r o o f. If z ∈ Z, then

Φ(z) = Φ(z − w + w) ⊂ Φ(z − w) + Φ(w) ⊂ F (z − w) + Φ(w)

for all w ∈ Z, that is, Φ ⊂ F ∗ Φ|Z. If F (0) = {0}, then by Corollary 2.4
the converse inclusion is also true.

An immediate consequence of Theorem 2.5 is

Corollary 2.6. If F is a relation from one group X into another Y
such that F (0) = {0} and Φ is a subadditive selection relation of F , then
Φ = F ∗ Φ.

In particular, we also have

Corollary 2.7. If F is a subadditive relation from one group X into
another Y such that F (0) = {0}, then F = F ∗ F .

We can also easily prove

Theorem 2.8. If F is a relation from one group X into another Y , and
moreover Z is a subgroup of X and Φ is an additive selection relation of
F |Z, then Φ is also a selection relation of F + Φ(0)|Z and

F ∗ Φ = (F + Φ(0)) ∗ Φ.
P r o o f. In this case

Φ(z) = Φ(z) + Φ(0) ⊂ F (z) + Φ(0) = (F + Φ(0))(z)

for all z ∈ Z and

(F ∗ Φ)(x) =
⋂
z∈Z

(F (x− z) + Φ(z)) =
⋂
z∈Z

(F (x− z) + Φ(0) + Φ(z))

=
⋂
z∈Z

((F + Φ(0))(x− z) + Φ(z)) = ((F + Φ(0)) ∗ Φ)(x)

for all x ∈ X.

3. Further inclusion properties of the intersection convolution.
From Theorem 2.5, by using Definition 2.1, we easily get

Theorem 3.1. If F is a relation from one group X into another Y , and
Z is a subgroup of X, and Φ is a subadditive selection relation of F |Z and
Ψ is a subadditive selection relation of F such that Φ = Ψ |Z, then

Ψ ⊂ F ∗ Φ.
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P r o o f. In this case,

Ψ(x) ⊂ (F ∗ Ψ)(x) =
⋂
z∈X

(F (x− z) + Ψ(z))

⊂
⋂
z∈Z

(F (x− z) + Ψ(z)) =
⋂
z∈Z

(F (x− z) + Φ(z)) = (F ∗ Φ)(x)

for all x ∈ X.

An immediate consequence of Theorem 3.1 is

Corollary 3.2. If F and Φ are as in Theorem 3.1 and Φ can be extended
to a subadditive selection relation of F , then (F ∗ Φ)(x) 6= ∅ for all x ∈ X.

Hence, by using Theorem 2.8, we also get

Corollary 3.3. If F is a relation from one group X into another Y ,
and moreover Z is a subgroup of X and Φ is an additive selection relation
of F |Z such that Φ can be extended to a subadditive selection relation of
F + Φ(0), then (F ∗ Φ)(x) 6= ∅ for all x ∈ X.

P r o o f. In this case Φ is also a selection relation of F + Φ(0)|Z and

(F ∗ Φ)(x) = ((F + Φ(0)) ∗ Φ)(x) 6= ∅
for all x ∈ X by Theorem 2.8 and Corollary 3.2.

An immediate consequence of Theorem 3.1 and Corollary 2.4 is

Corollary 3.4. If F is a subadditive relation from one group X into
another Y such that F (0) = {0} and Z is a subgroup of X, then F =
F ∗ (F |Z).

Complementing Theorems 2.3 and 2.8, we can also prove

Theorem 3.5. If F is a superadditive relation from one group X into
another Y , and moreover Z is a subgroup of X and Φ is a selection relation
of F |Z such that 0 ∈ Φ(0), then

F = F + Φ(0).

P r o o f. In this case,

F (x) ⊂ F (x) + Φ(0) = (F + Φ(0))(x)

and
(F + Φ(0))(x) = F (x) + Φ(0) ⊂ F (x) + F (0) ⊂ F (x)

for all x ∈ X.

Theorem 3.6. If F is a superadditive relation from one group X into an-
other Y , and moreover Z is a subgroup of X and Φ is a subadditive selection
relation of F |Z, then

F ∗ Φ = F + Φ(0).
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P r o o f. If x ∈ X, then

(F + Φ(0))(x) = F (x) + Φ(0) ⊂ F (x) + Φ(−z) + Φ(z)
⊂ F (x) + F (−z) + Φ(z) ⊂ F (x− z) + Φ(z)

for all z ∈ Z, that is, (F + Φ(0))(x) ⊂ (F ∗ Φ)(x). By Theorem 2.3, the
converse inclusion is always true.

An immediate consequence of Theorems 3.5 and 3.6 is

Corollary 3.7. If F and Φ are as in Theorem 3.6 and 0 ∈ Φ(0), then
F = F ∗ Φ.

In particular, we also have

Corollary 3.8. If F is an additive relation from one group X into
another Y such that 0 ∈ F (0) and Z is a subgroup of X, then F = F ∗(F |Z).

Corollary 3.9. If F is an additive relation from one group X into
another Y such that 0 ∈ F (0), then F = F ∗ F .

4. Additivity and homogeneity properties of the intersection
convolution. Since the ordinary convolution of integrable functions inherits
several useful regularity properties of its factors, it may be expected that
the relation F ∗ Φ also inherits some algebraic properties of F and Φ.

Theorem 4.1. If F is a relation from one group X into another Y and
Φ is an odd additive relation from a subgroup Z of X into Y , then

(F ∗ Φ)(x+ z) = (F ∗ Φ)(x) + Φ(z)

for all x ∈ X and z ∈ Z.

P r o o f. Set G = F ∗ Φ. If x ∈ X and z ∈ Z, then

G(x) + Φ(z) ⊂ F (x− (w − z)) + Φ(w − z) + Φ(z) = F ((x+ z)− w) + Φ(w)

for all w ∈ Z. Therefore

G(x) + Φ(z) ⊂ G(x+ z).

Hence, G(x + z) + Φ(−z) ⊂ G(x), and thus the converse inclusion is also
true:

G(x+ z) ⊂ G(x)− Φ(−z) = G(x) + Φ(z).
From Theorems 4.1 and 2.5, in particular we also have

Corollary 4.2. If F is a relation from one group X into another Y
such that F (0) = {0}, and moreover Z is a subgroup of X and ϕ is an
additive selection function of F |Z, then

(F ∗ ϕ)(x+ z) = (F ∗ ϕ)(x) + (F ∗ ϕ)(z)

for all x ∈ X and z ∈ Z.
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Whenever the groups X and Y are commutative, we also have

Theorem 4.3. If F is an odd relation from one Abelian group X into
another Y and Φ is an odd relation from a subgroup Z of X into Y , then
the relation F ∗ Φ is also odd.

The proof is obvious from the λ = −1 case of the proof of

Theorem 4.4. If F is a homogeneous relation from one vector space X
into another Y and Φ is a homogeneous relation from a subspace Z of X
into Y , then the relation F ∗ Φ is also homogeneous.

P r o o f. Set G = F ∗ Φ. If λ ∈ K \ {0} and x ∈ X, then

λG(x) ⊂ λ(F (x− λ−1z) + Φ(λ−1z))

= λF (x− λ−1z) + λΦ(λ−1z) = F (λx− z) + Φ(z)

for all z ∈ Z. Therefore, λG(x) ⊂ G(λx), and thus G is homogeneous.

Example 4.5. Note that if

ϕ = {(x, x) : x ∈ R} and Φ = {0} × R,

then F = ϕ ∪ Φ is a homogeneous relation on R such that ϕ and Φ are the
only partial linear selection relations of F . Moreover,

F ∗ ϕ = ϕ and F ∗ Φ = R2.

But the partial linear selection relation Φ can only be extended to a total
linear selection relation of F + Φ(0) = R2.

Therefore, in the forthcoming extension theorems we shall rather give
some necessary and sufficient conditions in order that a partial linear se-
lection relation Φ0 of a homogeneous relation F can be extended to a total
linear selection relation Φ of F + Φ0(0). Note that if in particular Φ0 is a
function, then so is Φ.

5. Linear selections of homogeneous relations. By using the re-
sults of the previous sections, we can easily prove the next simple extension
theorem.

Theorem 5.1. If F is a homogeneous relation from one vector space X
into another Y , and moreover Z is a subspace of X such that codim(Z) = 1
and Φ0 is a linear selection relation of F |Z, then the following assertions
are equivalent :

(1) (F ∗ Φ0)(x) 6= ∅ for some x ∈ X \ Z;
(2) there exists a linear selection relation Φ of F +Φ0(0) such that Φ0 =

Φ|Z.
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P r o o f. Set G = F ∗ Φ0. If (1) holds, then there exist x0 ∈ X \ Z and
y0 ∈ Y such that y0 ∈ G(x0). We have X = Kx0⊕Z because codim(Z) = 1.

Define a relation Φ from X into Y by

Φ(λx0 + z) = λy0 + Φ0(z)

for all λ ∈ K and z ∈ Z. The definition is clearly correct. Moreover, Φ is a
linear relation from X into Y such that Φ0 = Φ|Z.

On the other hand, by Theorems 4.4, 4.1 and 2.3,

Φ(λx0 + z) = λy0 + Φ0(z) ⊂ λG(x0) + Φ0(z) = G(λx0) + Φ0(z)
= G(λx0 + z) ⊂ F (λx0 + z) + Φ0(0)

for all λ ∈ K \ {0} and z ∈ Z. Since by Theorems 2.5 and 2.3 we have

Φ(z) = Φ0(z) ⊂ G(z) ⊂ F (z) + Φ0(0)

for all z ∈ Z, it is clear that Φ is a selection relation of F + Φ0(0), that is,
(2) holds.

Conversely, if (2) holds, then by Corollary 3.3 we have (F ∗ Φ0)(x) 6= ∅
for all x ∈ X, showing (1).

From Theorem 5.1, by using the Hausdorff maximality principle, we now
easily get the following more general extension theorem.

Theorem 5.2. If F is a homogeneous relation from one vector space X
into another Y , and moreover Z0 is a subspace of X and Φ0 is a linear
selection relation of F |Z0, then (2)⇒(1), where:

(1) there exists a linear selection relation Φ of F +Φ0(0) such that Φ0 =
Φ|Z0;

(2) if Φ ⊂ F + Φ0(0) is a linear relation such that Φ0 = Φ|Z0, then
(F ∗ Φ)(x) 6= ∅ for all x ∈ X \DΦ.

P r o o f. Denote by F the family of all linear relations Ψ ⊂ F+Φ0(0) such
that Φ0 = Ψ |Z0. It is a nonvoid set partially ordered by inclusion. Namely,
by Theorem 2.8, we have Φ0 ∈ F . Therefore, by the Hausdoff maximality
principle, there exists a maximal totally ordered subset G of F .

Define Φ =
⋃
G. Since for any Ψ1, Ψ2 ∈ G we have either Ψ1 ⊂ Ψ2 or

Ψ2 ⊂ Ψ1, it is clear that Φ is a linear relation from a certain subspace
Z of X into Y . Moreover, since for any Ψ ∈ G we have Φ0 = Ψ |Z0 and
Ψ ⊂ F + Φ0(0), it is clear that Φ0 = Φ|Z0 and Φ ⊂ F + Φ0(0).

Therefore, we need only show that if (2) holds, then Z = X. Assume
that, on the contrary, there exists an x0 ∈ X such that x0 6∈ Z. Then, by
Theorem 2.8 and (2), we have

((F + Φ0(0)) ∗ Φ)(x0) = ((F + Φ(0)) ∗ Φ)(x0) = (F ∗ Φ)(x0) 6= ∅.
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Therefore, by Theorem 5.1, there exists a linear selection relation Ψ of
the restriction of the homogeneous relation

F + Φ0(0) = F + Φ0(0) + Φ0(0) = (F + Φ0(0)) + Φ(0)

to the subspace Ω = Kx0 ⊕ Z of X such that Φ = Ψ |Z, and hence Φ0 =
Ψ |Z0. But G ∪{Ψ} is a totally ordered subset of F , and this contradicts the
maximality of G since Ψ 6∈ G.

An immediate consequence of Theorem 5.2 is

Corollary 5.3. If F is a homogeneous relation from one vector space
X into another Y and W is a subspace of Y such that W ⊂ F (0) and for
every linear relation Φ ⊂ F + W with Φ(0) = W we have (F ∗ Φ)(x) 6= ∅
for all x ∈ X \DΦ, then there exists a linear selection relation Φ of F +W
such that Φ(0) = W .

P r o o f. In this case Φ0 = {0}×W is a linear selection relation of F |{0}
such that Φ0(0) = W , and thus Theorem 5.2 can be applied.

6. Linear selections of linear relations. From Theorem 5.2, by using
Theorem 3.5 and Corollary 3.7, we can easily get the following extension
theorem.

Theorem 6.1. If F is a linear relation from one vector space X into
another Y , and moreover Z is a subspace of X and Φ0 is a linear selection
relation of F |Z, then there exists a linear selection relation Φ of F such that
Φ0 = Φ|Z.

P r o o f. In this case, by Theorem 3.5,

F = F + Φ0(0).

Therefore, if Φ ⊂ F + Φ0(0) is a linear relation, then by Corollary 3.7 we
have

(F ∗ Φ)(x) = F (x) 6= ∅
for all x ∈ X. Thus, by Theorem 5.2, there exists a linear selection relation
Φ of F = F + Φ0(0) such that Φ0 = Φ|Z.

Remark 6.2. It is a curious fact that, in contrast to Theorem 5.2, the
above theorem can also be proved directly by taking a Hamel basis of Z and
enlarging it to a Hamel basis of X.

From Theorem 6.1, we at once get

Corollary 6.3. If F is a linear relation from one vector space X into
another Y , and moreover Z is a subspace of X and ϕ0 is a linear selection
function of F |Z, then there exists a linear selection function ϕ of F such
that ϕ0 = ϕ|Z.
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Remark 6.4. Hence, in particular, each linear relation has a linear se-
lection function.

From Corollary 6.3, we also easily get the following more delicate

Corollary 6.5. If F is a linear relation from one vector space X into
another Y , then there exists a linear selection function ϕ of F such that
ϕ ◦ F−1 is a function.

P r o o f. Note that F−1(0) is a subspace of X. Moreover, x ∈ F−1(0)
implies 0 ∈ F (x). Therefore, ϕ0 = F−1(0)×{0} is a linear selection function
of F |F−1(0). Thus, by Corollary 6.3, there exists a linear selection function
ϕ of F such that ϕ0 = ϕ|F−1(0). Hence, (ϕ ◦ F−1)(0) = {0}, and thus the
linear relation ϕ ◦ F−1 is also a function.

Remark 6.6. For the above linear functions ϕ and f = ϕ◦F−1, we can
also prove that F = f−1 ◦ ϕ.

From Theorem 5.2, we at once get the following particular extension
theorem.

Theorem 6.7. If F is a homogeneous relation from one vector space
X into another Y , and moreover Z is a subspace of X and ϕ0 is a linear
selection function of F |Z, then (2)⇒(1), where:

(1) there exists a linear selection relation ϕ of F such that ϕ0 = ϕ|Z;
(2) if ϕ ⊂ F is a linear function such that ϕ0 = ϕ|Z, then (F ∗ϕ)(x) 6= ∅

for all x ∈ X \Dϕ.

P r o o f. To derive this from Theorem 5.2, note that now we have F =
F +ϕ0(0). Moreover, if Φ is a linear relation such that ϕ0 = Φ|Z, then Φ is
necessarily a function.

An immediate consequence of Theorem 6.7 is

Corollary 6.8. If F is a homogeneous relation from one vector space
X into another Y such that 0 ∈ F (0) and for every linear function ϕ ⊂ F
we have (F ∗ϕ)(x) 6= ∅ for all x ∈ X \Dϕ, then there exists a linear selection
function ϕ of F .

Moreover, from Theorem 6.7, by using Remark 6.4 and Corollary 3.2, we
get the following universal extension theorem.

Theorem 6.9. If F is a homogeneous relation from one vector space X
into another Y , then the following assertions are equivalent :

(1) if ϕ ⊂ F is a linear function, then (F ∗ϕ)(x) 6= ∅ for all x ∈ X \Dϕ;
(2) if Φ0 ⊂ F is a linear relation, then there exists a linear selection

relation Φ of F + Φ0(0) such that Φ0 = Φ|DΦ0 .
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P r o o f. If Φ0 is a linear relation from a subspace Z of X into Y , then
by Remark 6.4 there exists a linear selection function ϕ0 of Φ0. Hence, if
Φ0 ⊂ F and (1) holds, then by Theorem 6.7 there exists a linear selection
function ϕ of F such that ϕ0 = ϕ|Z.

Now, Φ = ϕ+ Φ0(0) is a linear relation from X into Y such that

Φ(x) = ϕ(x) + Φ0(0) ⊂ F (x) + Φ0(0) = (F + Φ0(0))(x)

for all x ∈ X and

Φ(z) = ϕ(z) + Φ0(0) = ϕ0(z) + Φ0(0) = Φ0(z)

for all z ∈ Z. Therefore, (2) holds.
The converse implication (2)⇒(1) is an immediate consequence of a par-

ticular case of Corollary 3.2. Namely, if (2) holds, then every linear function
ϕ ⊂ F can be extended to a linear selection function of F .

7.Linear selections of sublinear relations. To provide an applicable
sufficient condition for (1) of Theorem 6.9 to hold, we shall need the binary
intersection property of Nachbin [19] which is closely related to Riesz’s char-
acterization of compactness and Cantor’s characterization of completeness
[17, pp. 136 and 193].

However, in contrast to Nachbin’s original terminology, but in accordance
with the standard definition of the finite intersection property, we adhere to
the following

Definition 7.1. A family A of sets will be said to have the binary
intersection property if A ∩B 6= ∅ for all A,B ∈ A.

The importance of the binary intersection property for extension of par-
tial linear selection relations of sublinear relations is already apparent from

Theorem 4.7. If F is an odd subadditive relation from one Abelian group
X into another Y , and moreover Z is a subgroup of X and Φ is an odd
subadditive selection relation of F |Z, then the family

{F (x− z) + Φ(z)}z∈Z
has the binary intersection property for all x ∈ X.

P r o o f. If z, w ∈ Z and x ∈ X, then

0 ∈ (F (w − z)− Φ(w − z)) = F ((x− z)− (x− w))− Φ(w − z)
⊂ (F (x− z)− F (x− w))− (Φ(w)− Φ(z))
= (F (x− z) + Φ(z))− (F (x− w) + Φ(w)).

Therefore, we also have

(F (x− z) + Φ(z)) ∩ (F (x− w) + Φ(w)) 6= ∅.
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In view of Nachbin’s fundamental investigations concerning the binary
intersection property, it seems appropriate to introduce the following

Definition 7.3.A family A of subsets of a set X will be called a Nachbin
system in X if every subfamily of A having the binary intersection property
has a nonvoid intersection.

Remark 7.4. Quite similarly, a family of subsets of a set may be called
a Riesz system if every subfamily having the finite intersection property has
a nonvoid intersection.

Moreover, a family of subsets of a uniform space may be called a Can-
tor system if every subfamily containing small sets and having the finite
intersection property has a nonvoid intersection.

This terminology, according to Kelley [17, pp. 136 and 193], allows us
to briefly state that a topological (resp. uniform) space is compact (resp.
complete) if and only if the family of its closed subsets forms a Riesz (resp.
Cantor) system.

Now, by using Theorem 7.2, from Theorem 6.9 we can easily get the
following generalization of a fundamental extension theorem of Rodŕıguez-
Salinas and Bou [22]. (See also the implication (a)⇒(b) in Theorem B of
Ioffe [15].)

Theorem 7.5. If F is a sublinear relation from one vector space X into
another Y and A is a translation invariant Nachbin system in Y such that
F (x) ∈ A for all x ∈ X, then for every linear subspace Z of X and every
linear selection relation Φ0 of F |Z there exists a linear selection relation Φ
of F + Φ0(0) such that Φ0 = Φ|Z.

P r o o f. If ϕ ⊂ F is a linear function and x∈X, then by Theorem 7.2
the family {F (x−z)+ϕ(z)}z∈Dϕ

has the binary intersection property. Since
this family is a subfamily of A, it is clear that

(F ∗ ϕ)(x) =
⋂
z∈Dϕ

(F (x− z) + ϕ(z)) 6= ∅.

Therefore, by Theorem 6.9, the required assertion is true.

An immediate consequence of Theorem 7.5 is

Corollary 7.6. If F and A are as in Theorem 7.5, then for every linear
subspace Z of X and every linear selection function ϕ0 of F |Z there exists
a linear selection function ϕ of F such that ϕ0 = ϕ|Z.

In particular, we also have

Corollary 7.7. If F and A are as in Theorem 7.5 and 0 ∈ F (0), then
there exists a linear selection function ϕ of F .
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Remark 7.8. To feel the range of the applicability of the above results
the reader is referred to Nachbin [19], Rodŕıguez-Salinas and Bou [22] and
Ioffe [15].
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