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Multiple positive solutions of a nonlinear fourth

order periodic boundary value problem

by Lingbin Kong (Anda) and Daqing Jiang (Changchun)

Abstract. The fourth order periodic boundary value problem u(4)−m4u+F (t, u)=0,

0 < t < 2π, with u(i)(0) = u(i)(2π), i = 0, 1, 2, 3, is studied by using the fixed point index
of mappings in cones, where F is a nonnegative continuous function and 0 < m < 1. Under
suitable conditions on F , it is proved that the problem has at least two positive solutions
if m ∈ (0,M), where M is the smallest positive root of the equation tanmπ = − tanhmπ,
which takes the value 0.7528094 with an error of ±10−7.

1. Introduction. This paper deals with the fourth order periodic
boundary value problem

(1.1)

{

u(4) − m4u + F (t, u) = 0, 0 < t < 2π,
u(i)(0) = u(i)(2π), i = 0, 1, 2, 3,

where 0 < m < 1 and F : [0, 2π] × [0,∞) → [0,∞) is a nonnegative contin-
uous function.

Recently, the periodic boundary value problems have been studied ex-
tensively (see [1–2, 4–7] and references therein). In [1], A. Cabada studied a
fourth order periodic boundary value problem similar to (1.1), using a gen-
eralized method of upper and lower solutions and developing the monotone
iterative technique in the presence of upper and lower solutions, but he did
not study the multiplicity of the solutions.

The purpose of this paper is to study the existence of multiple positive
solutions to the problem (1.1) by using the fixed point index of mappings in
cones. Our method is different from [1] and yields a multiplicity result for
positive solutions.

The following hypotheses are adopted in this paper, depending on various
circumstances:
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(H1) There exists a p > 0 such that 0 ≤ u ≤ p implies F (t, u) < λp,
where

(1.2) λ =
1

2πG(π,m)
, G(π,m) =

1

4m3

(

1

sinhmπ
+

1

sin mπ

)

.

(H2) There exists a p > 0 such that σp ≤ u ≤ p implies F (t, u) > (λ/σ)p,
where

(1.3) σ =
(e2mπ − 1) cos mπ + (e2mπ + 1) sin mπ

e2mπ + 2emπ sin mπ − 1
.

We call a function u(t) a positive solution of (1.1) if it satisfies:

(1) u ∈ C3[0, 2π]∩C4(0, 2π), u(i)(0) = u(i)(2π), i = 0, 1, 2, 3, and u(t) >
0 for all t ∈ (0, 2π), and

(2) the equality u(4) − m4u = −F (t, u) holds for all t ∈ (0, 2π).

The main result of this paper is as follows.

Theorem 1. If m ∈ (0,M), then the problem (1.1) has at least two

positive solutions u1 and u2 satisfying 0 < ‖u1‖ < p < ‖u2‖ provided that

(I) the condition (H1) holds and

lim
u→0

min
t∈[0,2π]

F (t, u)

u
>

λ

σ2
, lim

u→∞

min
t∈[0,2π]

F (t, u)

u
>

λ

σ2
, or

(II) the condition (H2) holds and

lim
u→0

max
t∈[0,2π]

F (t, u)

u
< λ, lim

u→∞

max
t∈[0,2π]

F (t, u)

u
< λ,

where M is the smallest positive root of the equation tan mπ = − tanh mπ,
and λ is given by (1.2).

The following theorem will be used in our proof (see [3]).

Theorem 2. Let E be a Banach space, and K ⊆ E a cone in E. For

p > 0, define Kp = {u ∈ K : ‖u‖ ≤ p}. Assume that Φ : Kp → K is a

compact map such that Φu 6= u for u ∈ ∂Kp = {u ∈ K : ‖u‖ = p}.

(i) If ‖u‖ ≤ ‖Φu‖ for u ∈ ∂Kp, then i(Φ,Kp,K) = 0.

(ii) If ‖u‖ ≥ ‖Φu‖ for u ∈ ∂Kp, then i(Φ,Kp,K) = 1.

2. Proof of Theorem 1. As shown in [1], problem (1.1) is equivalent
to the integral equation

(2.1) u(t) =

2π\
0

G(t, s,m)F (s, u(s)) ds
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where

G(t, s,m) = G(|t − s|,m)(2.2)

=















f(t − s) + g(t − s)

4m3(emπ − e−mπ)2(1 − cos 2mπ)
, 0 ≤ s ≤ t ≤ 2π,

f(2π + t − s) + g(2π + t − s)

4m3(emπ − e−mπ)2(1 − cos 2mπ)
, 0 ≤ t ≤ s ≤ 2π,

and

f(t) = (emπ − e−mπ)2(sin mt + sinm(2π − t)),(2.3)

g(t) = (emt − e−mt + em(2π−t) − e−m(2π−t))(1 − cos 2mπ).(2.4)

Lemma 1. If m ∈ (0, 1), then the function G(t,m) in the interval [0, 2π]
attains its minimum for t = 0 and its maximum for t = π.

P r o o f. Let w(t) = f(t) + g(t). Since w(2π − t) = w(t), it suffices to
consider the function w in the interval [0, π].

If m ∈ (0, 1/2], then by a direct computation, we get w(4)(t) > 0 in
[0, π] and w′′′(π) = 0, and hence w′′′(t) ≤ 0 in [0, π]. Thus, w′(t) is a
concave function in [0, π]. Moreover, since w′(0) = 0 and w′(π) = 0, we
have w′(t) ≥ 0 in [0, π]. Therefore, w(t) is nondecreasing in [0, π].

In [1] it is proved that, if m ∈ (1/2, 1), then the unique root of f in
[0, π] is 2m−1

2m
π, and w(t) is nondecreasing in

[

0, 2m−1
2m

π
]

. We claim that,

if m ∈ (1/2, 1), then w(t) is also nondecreasing in
[

2m−1
2m

π, π
]

. In fact, it

is not difficult to show that w(4)(t) > 0 in
[

2m−1
2m

π, π
]

and w′′′(π) = 0,

so w′′′(t) ≤ 0 in
[

2m−1
2m

π, π
]

, and hence w′(t) is concave in
[

2m−1
2m

π, π
]

.

Moreover, since w′
(

2m−1
2m

π
)

> 0 and w′(π) = 0, we have w′(t) ≥ 0 in
[

2m−1
2m

π, π
]

. This shows our claim.
To sum up, the function w(t) attains its minimum in [0, 2π] at t = 0 and

its maximum at t = π, and so does G(t,m). The proof is complete.

By Lemma 1, the greatest value of m for which G(t,m) is positive in
[0, 2π] will be the smallest positive zero of the expression

w(0) = (e2mπ − e−2mπ)(1 − cos 2mπ) + (emπ − e−mπ)2 sin 2mπ.

This expression is zero if and only if either m ∈ N or

(2.5) tan mπ = − tanh mπ.

The smallest positive root of (2.5), which we denote by M , takes a value
of 0.7528094 with an error of ±10−7. This is the unique root in (0, 1) (see [1]).

Let m ∈ (0,M) ⊂ (0, 1). Then G(0,m) > 0. Define the mapping
Φ : C[0, 2π] → C[0, 2π] by

(2.6) (Φu)(t) :=

2π\
0

G(t, s,m)F (s, u(s)) ds.
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It is obvious that Φ is completely continuous. We define a cone in the Banach
space C[0, 2π] by

K := {u ∈ C[0, 2π] : u(t) ≥ 0 for all t and min
t∈[0,2π]

u(t) ≥ σ‖u‖},

where ‖u‖ = supt∈[0,2π] |u(t)| and σ is given by (1.3).

Lemma 2. Φ(K) ⊂ K.

P r o o f. Lemma 1 implies

σ =
G(0,m)

G(π,m)
≤

G(t, s,m)

G(π,m)
≤ 1,

and hence for u ∈ K we have

min
t∈[0,2π]

(Φu)(t) = min
t∈[0,2π]

2π\
0

G(t, s,m)F (s, u(s)) ds

≥ σ

2π\
0

G(π,m)F (s, u(s)) ds

≥ σ max
t∈[0,2π]

2π\
0

G(t, s,m)F (s, u(s)) ds = σ‖Φu‖.

This shows that Φ(K) ⊂ K.

Now we prove the first part of Theorem 1. Since

lim
u→0

min
t∈[0,2π]

F (t, u)

u
>

λ

σ2
,

there exists a 0 < r < p such that F (t, u) > (λ/σ2)u for 0 ≤ u ≤ r. For
u ∈ ∂Kr = {u ∈ K : ‖u‖ = r}, we have

‖Φu‖ = max
t∈[0,2π]

2π\
0

G(t, s,m)F (s, u(s)) ds >
λ

σ
G(π,m)

2π\
0

u(s) ds

≥ 2πλG(π,m)‖u‖ = ‖u‖,

i.e. ‖Φu‖ > ‖u‖ for u ∈ ∂Kr, and hence Theorem 2 implies

(2.7) i(Φ,Kr,K) = 0.

In much the same way, we may prove that there exists an R > p such that
‖Φu‖ > ‖u‖ for u ∈ ∂KR by using limu→∞ mint∈[0,2π] F (t, u)/u > λ/σ2.
Hence Theorem 2 again implies

(2.8) i(Φ,KR,K) = 0.
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On the other hand, by (H1), for u ∈ ∂Kp we have

‖Φu‖ = max
t∈[0,2π]

2π\
0

G(t, s,m)F (s, u(s)) ds ≤ G(π,m)

2π\
0

F (s, u(s)) ds

< 2πλpG(π,m) = ‖u‖,

i.e. ‖Φu‖ < ‖u‖ for u ∈ ∂Kp. It follows from Theorem 2 that

(2.9) i(Φ,Kp,K) = 1.

Now, the additivity of the fixed point index and (2.7)–(2.9) together imply

i(Φ,Kp \ K̊r,K) = 1, i(Φ,KR \ K̊p,K) = −1.

Consequently, Φ has a fixed point u1 in Kp \ K̊r, and a fixed point u2 in

KR \K̊p. Both are positive solutions of the problem (1.1). It is obvious that
0 < ‖u1‖ < p < ‖u2‖. This completes the proof of the first part.

We now prove the second part of Theorem 1. Since

lim
u→0

max
t∈[0,2π]

F (t, u)

u
< λ,

there exists a 0 < r < p such that F (t, u) < λu for 0 ≤ u ≤ r. For u ∈ ∂Kr,
we have

‖Φu‖ = max
t∈[0,2π]

2π\
0

G(t, s,m)F (s, u(s)) ds ≤ G(π,m)

2π\
0

F (s, u(s)) ds

< 2πλG(π,m)‖u‖ = ‖u‖.

This shows that ‖Φu‖ < ‖u‖ for u ∈ ∂Kr, and hence Theorem 2 implies

(2.10) i(Φ,Kr,K) = 1.

Similarly, we may prove that there exists R > p such that ‖Φu‖ < ‖u‖
for u ∈ ∂KR by using limu→∞ maxt∈[0,2π] F (t, u)/u < λ. Hence Theorem 2
again implies

(2.11) i(Φ,KR,K) = 1.

In addition, since mint∈[0,2π] u(t) ≥ σ‖u‖ = σp for u ∈ ∂Kp, using (H2)
we have, for such u,

‖Φu‖ = max
t∈[0,2π]

2π\
0

G(t, s,m)F (s, u(s)) ds ≥ σG(π,m)

2π\
0

F (s, u(s)) ds

> 2πλpG(π,m) = ‖u‖,

i.e. ‖Φu‖ > ‖u‖ for u ∈ ∂Kp. Thus, Theorem 2 implies

(2.12) i(Φ,Kp,K) = 0.
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As before, (2.10)–(2.12) show that Φ has two positive fixed points, which
means that the problem (1.1) has two positive solutions. The proof is com-
plete.
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