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Convolution equations in the space
of Laplace distributions

by MARIA E. PLi$ (Krakéw) and [BOGDAN ZIEMIAN |

Abstract. A formal solution of a nonlinear equation P(D)u = g(u) in 2 variables
is constructed using the Laplace transformation and a convolution equation. We assume
some conditions on the characteristic set Char P.

1. Introduction. In this paper we consider a nonlinear PDE of the form
(1) P(D)u = g(u) =Y c;u,
§=0

where P(z) is a (complex) polynomial of 2 variables, D = (0/0x1,0/0z3),
and g is an entire function of v with all ¢; constant (complex or real).

We are interested in finding solutions of (1) represented at infinity as
formal sums of Laplace transforms of Laplace distributions (see [P-Z] and
[P]). In [P-Z] we have solved (1) under the assumption that the coefficients
c; =c¢j(x), j =1,2,..., are Laplace integrals of some Laplace holomorphic
functions Tj, and ¢y = 0. In [P] we have assumed g(0) = 0, a condition not

required here. However, we will need to assume more on the set of zeros
of P.

Similarly to [P-Z] we solve the convolution equation generated by (1)
with an unknown Laplace distribution T'. It is clear that we will need some
results on the convolution algebra structure in the space of Laplace distri-
butions.

This paper was written by the first author after many fruitful discussions
with Professor Bogdan Ziemian, who did not live to see this work completed.
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2. Notation, definitions and general assumptions. Following [S-Z],
for a € R™ we define

L,(R}) ={¢p € C*(RY): sup |e”"(0/0x)" ¢(z)| < o0, v € Ny}
zeRT
with convergence defined by the seminorms

[@lla.y = sup [e**(0/0x)" p()],

reRi

and for w € (RU {oo})™ we define
Ly () = lim L,(BY),
a<w
equipped with the inductive limit topology. The dual space L’(w)(ﬁi) is a
subspace of D’ (@ﬁ), and we call it the space of Laplace distributions on @ﬁ.
We write simply L, L), L’(w) when n = 2 and no confusion can arise.

Let Char P = {z € C?: P(z) = 0}. Our basic assumptions on P are the
following:

(i) 0 ¢ Char P;

(i) there exists an unbounded curve Z C Char P such that after some
linear transformation A : C2 — C2 with det A # 0, Z = A(Z) C R?;

(i) Z = {(z, f(x)) : 2 € Ry} for some f: Ry — Ry, feC® f’">0,
flx+y) < f(z)+ f(y) for every z,y € Ry, and Z is a curve with ends at
infinity; B B

(iv) with the notation P = P o A™!, we assume P # 0 on R% \ Z and
either lgzl = 8?/8,21 > 0 and ﬁZ2 = 815/8,22 >0, or lgzl > (0 and ﬁZQ >0
on Ri.

To simplify notation we use the same letter P for P.

By (iii) it is obvious that 27 N Z = (). Here and subsequently jZ stands
for the algebraic sum Z + ...+ Z with j summands.

3. Properties of 7
LEMMA 1. Let assumptions (1)—(iv) hold. Then for j > 2,
iZ ={(z,y) € Ry : P(/j,y/j) = 0}

Proof If (z,y) € jZ,thenx = x1+...+x; and y = f(z1)+...+ f(x;).
The convexity of f and monotonicity of P in y give

(53 T} ()

Conversely, if P(x/j,y/j) > 0, then y > jf(x/j). Writing xp = z/j
for k =3,...,j and 21 = ax/j, ©o = (2 — a)z/j for a € (0,2) we obtain
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x = x1+...+x;. We proceed to show that there exists a such that y =
fx) +.. + f(z;). Let F(a) = flaz/j) + f((2—a)z/j) = 2f (z/j) and let
B=y—jf(z/j). It is easy to check that F(1) = 0 and lim F(o) = oo at 0
and 2. By continuity of F', there exists « such that F'(a) = 3. This proves
the lemma.

Clearly, if k£ < j then 72 C kZ.

LEMMA 2. For every k =2,3,...,

kZ\(k+1)Z #0

and R% = [J;2,(R% \ kZ).

Proof. Taking x = kt for some ¢t € Ry, and y = kf(t) we get (z,y) € kZ
and P(x/k,y/k) = P(t, f(t)) = 0. But

x Y B k k B
P<k+1’ /<;+1> _P<k+1t’ /<;+1f(t)> <Pt /(1) =0
This gives (z,y) € (k+1)Z.
Let (z,y) € R3. Since P(z/k,y/k) tends to P(0,0) < 0 as k — oo, we
have P(z/k,y/k) < 0 for k sufficiently large, and by Lemma 1, (z,y) & kZ.

4. Convolution equation. The function ¢, (z) = e~** belongs to the
space L,)(R%) for every w € R” with w > —z (2 € R™ fixed). Our aim is
to find a solution u of equation (1) in the form
(2) u(@) = Tp.] = Tle"],
with T" being a Laplace distribution on @i. Applying P(D) and g to u in
the form (2) we get the convolution equation

(3) P()T = g.(T) = 3 e,
§=0

where T*Y = §, (Dirac delta at (0,0)). We are looking for a solution T' of
(3) in the form of a formal series of Laplace distributions

o0
(4) T=> T
k=0
For convenience we consider a slightly modified equation
(5) P(:)T =) ;T
j=0

with € > 0 and we look for T in the form

(6) T=3Y
k=0
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Inserting (6) in (5) we get
z:»skP(z)T,€ :»30050—1—2 [ch Z Ty, *...*Tk],]ek.
k=0 k=1 j=1 ki+..+kj=k—1

Hence, comparing the summands with the same power of € we obtain the
recurrence system

(7) P(2)Ty =0,
8) P()T1 = codo + Y ¢;T57 = 9. (To),
j=1
(9) P(2)T = Z ¢ Z Tyy %o x Ty,

Jj=1 k1+...+k:]':]€—1

LEMMA 3. Let w € R2 and & € L_yy. If Ty is defined by
(10) Tol¢] = | ¢(x)®(x) dz
Z
for Z defined in (iii) and for ¢ € L., then Ty € L’(w) and Ty solves (7).

Proof. The proof is immediate.

Observe that suppTy C Z and for ¢ € L, a < w,

Tolg]] < § [o(z)e™ | - |B()e" | dw < [[dlla0Ka
z
where K, = |, |®(z)|e*” da.
Let L{, (Z) denote the subspace of L, defined by
@ﬂ@z{SEL@:SzSﬁ&,%za%wmm&CkZaEC}
k=0
LEMMA 4. L’(w)(Z) s a convolution algebra, i.e. if S,R € L’(w)(Z) then

S Re L, (2).

Proof. This follows immediately from the properties of Z and of con-
volution. Namely if S = Z;io S; and R = z;‘io R; then

oo J
S*R:ZZSP*R]-_,)

and for every p < j, supp(Sp* Rj_p,) = supp Sy +supp Rj_, C pZ+(j—p)Z
—iZ.
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Moreover, if

Splo] = S dxr+ ...+ xp)Pp(x1, ..., xp)day ... dxp,

Zp
Ri6) =\ 61+ + w)Wlyrs. ) dys - dy
71
for b, € L(,ww'y,w)((@i)p), Y, € L(,w _____ ,w)((ﬁi)l), 1<p,l<j5—1, then
Sp * Rj_p[d]
= S @(Zl + ...+ zj)ép(zl, PN ,zp)LPj_p(zp+1, PN ,zj)dzl PN de
73

= S gb(zl +...+ zj)@jm(zl, ce ,Zj) dzy ... de,
Zi
and @J}P S L(,ww'y,w)((@i)j).
Observe that for ¢ € Ly, a < w,
T57[g) = | d(ar + ...+ 2))B(z1) ... B(x;) day ... daj,
Zi
hence
T3 (01 < I8llao § [B(x1)]. .. | ()4 dey . da
Zi

= l8llao( § 9@ dr)” = 16la0(Ka)',
4

and supp Ty’ C jZ. Therefore we see clearly that g (To) € Li,,(2) for

vr=0,1,...,

19(T0)[@]l < llao D lej|(Ka) = l|0lla0lg<|(Ka)
j=0

and
19 (T0)[¢]] < [1¢llao Z il G+ 1) G+ D)Ko = [16]la0lgt™ | (Ka),
where .

l9:1(x) = Z lejla?, 198 |(x) = Z il +v) . (G + D)2

5. Problem of division

LEMMA 5. Let Ty be a Laplace distribution defined by (10) and suppose
a polynomial P satisfies (1)—(iv). If Py, >0 on Ri, then the distribution Sy
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defined by
(11) Sol¢] = \(/Pr, ), ()0 () dx
z
is a solution of the equation PS =Ty, Sy € L’(w) and supp Sy C Z.
Proof. It is obvious that if ¢ € L) then also P¢ € L. Therefore

(by the definition of multiplication of distributions by regular functions) an
easy computation shows that

mwwz&wwzw

Z

P¢
P,

>x1 (2)®(z) dz

¢
P,

= | 6(2)®(z) dw + | P(m)(

Z Z

) (2)8(x) do = Tol4].

It is seen immediately that Sy € L’(w) and supp Sy C Z. We also have

) Pria
0611 = | § a0 s dr = [ 0le) 22 a)
4 z1 A z1
< Ko ll9lla,1,0) + K 10lla0 < Kall9llao
where
! di(l') axr " __ lexl (x)@(a;) axr
K= Vp |t Ko=) |

The distribution Sy defined by (11) will be denoted by Z2.
Now we are in a position to solve the equation (8).

LEMMA 6. Under the assumptions of Lemma 5 the distribution Ty defined
by

9:(Ty) =~ T
12 T, — _ Z A
( ) 1 = Cj P

P

is a solution of (8) and Ty € L, (Z).
Proof. The distribution 77 is well defined. Indeed, for j = 0,

do. . o] 1
ol = o 5| = 5700l
For j =1, % is defined by (11), and for j > 2, T}(f makes sense because

P #£ 0 on suppng C jZ. It is also clear that T} € L’(w)(Z). Moreover, we
can choose constants N, and M, such that

I T1[8]] < Nalg«|(Ma)ll¢lla0
for every ¢ € Ly, a < w.
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LEMMA 7. For every k > 2, there exists a solution Ty, of (9) such that
Ty € L’(w)(Ri).

Proof. We write (9) as a sum of a finite number of summands:

k—1 - ‘
PTk:Z Z Tkl*...*Tkp*zcj<i)>Tg(j—p)

p=1 ki+...+kp=k—1 Jj=p
1<k;<k—1

k—1 1
:Z Z Tkl*---*TkP*_g£p)(T0)-
p=1 kit ..thp=h—1 P
1<k;<k—1
From Lemma 4 and from remarks of Section 3 it follows that the right-hand
side of the expression above is a Laplace distribution belonging to L’(w)(Z ),
hence by Lemma 5 it can be divided by P. Therefore

k—1
1 1
(13) Tk = Z Z F <Tk1 * ...k Tkp * Hgip) (T0)>

p=1 ki+...+kp=k—1
1<ki<k—1

is a Laplace distribution, T}, € Ly, (2).

6. Solution of the main problem. Given w € R? and & € L_., by
Lemmas 3, 6 and 7 we obtain a formal series (6) as a solution of (5) with
T given by (10), T; given by (12) and T} given by (13), for k£ > 2. Putting
e =11n (5) and (6) we have a formal solution of (3) in the form (4).

Thus we have proved

THEOREM. Let assumptions (i)—(iv) hold. Then for every w € R? and
every € L(_,, there exists a formal solution u of equation (1) of the form

k=0

where uy, € C°([—a,0)) = C*([—a1,00) X [—ag,00)) for all a < w and k,
and uy(x) = Ty[e™**] for some T}, € L(_).

REMARK. By a “formal solution” here we understand that the series
> e o uk(z) only formally solves the equation (1), and it does not necessarily
converge. Convergence results in some cases will appear in a forthcoming
publication.

7. Example. The problem considered in this paper was motivated by
attempts to solve at infinity the well known equation

(14) Ay = e,
where A = 9% /022 + 0% /0y>.
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The problem has a long history, beginning with early results of Bieber-
bach [B] and of many other authors. Most of them have been solving (14)
in bounded domains in R", with some assumptions on the boundaries. Re-
cently, using various methods, many people have been constructing global
solutions; for example Popov [Po] has constructed global exact solutions
of (14) from solutions of the Laplace equation. Here we find formal solu-
tions represented at infinity as sums of the Laplace transforms of Laplace
distributions.

If we write P(D) = A — 1, then (14) is a particular case of (1) with
g(u) =1+ 372, u/. Here P(2) = 27 + 25 — 1.

We now show that P satisfies conditions (i)—(iv) of Section 2. Indeed,
0 ¢ Char P and the set

Z: {(21,2’2) 1z =ik, 29 =/ 1+k2, ke R}
is an unbounded curve in Char P. Set A = (7 1) Then det A = —2i £ 0
and
Z =AZ) ={(z,y) €RY 1y = 1/a},
hence (iii) holds with f(z) = 1/x. An easy calculation shows that P(z) =
P(A71(2)) = 2120 — 1, P.,(2) = 29, P.,(2) = 21, so (iv) holds, too.
Now, putting u(z) = T[e=**] and T =T o A~ we have

P(D)u(x) = (P(u)T)[e™""] = (P(z)D)[e~* ). 1/2]

Z)f[e—(i/Q)(Zl—Zz)l‘l—(l/?)(zl-i-@)m -1/2]

= P(
— %ﬁ(z)f[e—(l/Q)(ixl—‘rl‘g)zl—(1/2)(—i1‘1+1‘2)Z2]
= P(D)ﬂ(%(le + 1’2), %(—z’xl + 1’2))
where u(y) = %TV [e~¥#]. Therefore, by the method described in the previous
sections we solve the equation
(122 — DT =dg+ » i i,
j=2

Namely, for w € Ri, ¢ € L(_,, we put, according to (10),

To[¢) = | ¢(2)B(2) dz = | o(t,1/6)®(t) dt
Z 0

where &(t) = &(t,1/t)v/1 + t—%. Then
up(z) = Tole **] = | et~ (/D20(1) dt.
0
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Now, according to (11), we have

T 0 ~
FO[(M = (S] ¢z (L, 1/t)t¢(t) dt,

S
To: .. T i —(1/t) 2213
f[e =21 S e 2td(t) dt.
0

We observe that

1 1 1 1
P<t1+...+tj,a+...+;> :(t1+...+tj)<—+...+—> -1
J

1<k<I<j

Hence, lf we deﬁne P](tl, ,t]) = P(tl 4+ ... —|—t],1/t1 + ...+ 1/t]), then

T57[¢] = | ¢<t1+...+tj,ti+...+ 1>q3(t1)...q3(tj)dt1...dtj,

t;
R, ! !
and for j > 2,
T(;kj *7 ¢
-0 =Tz
1 1\ B(t1) ... D(t;)
= t et — 4 — | =—————=Cdty ... dt;
S_¢<1+ A +tj>Pj(t1,...,tj) bt
RJ
+
Therefore, by (12) we get
uy(z) = Tife™*]
1 ¢ N s D(t1) .. (1)
=1+ =\ etAto—Q ot tl/ty)oe 0 7300 gt
2_:2]! S Pj(tla---atj) ! /
=27 R

Of course ¢'(u) = Z;;
for k > 2, hence, applying (

1 N1 T\ 1,
n=p((-0r X7 ) L)

1)/j!)uj7 and g (u) = ¢ (u) = 3272 (1/5)w/

(
13), e.g. for k = 2, we obtain

j=2 7=0
T =1 Ty & 1 1/T .l
- iy X omp(ew
7j=2 p=3 k+l=p

k>2,1>1
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Putting p =k + 1 for kK > 2 and [ > 1, we have
1 T*k . B T*k . e 2%
$5 - ()l

_ S o (bt ty)er —(1/ 411y P(th) .. (1) dt, ... dt
... dty,
Poltrse st Pelts oo ln)

RY
hence
u2($) = — I S eitmlf(l/t)mzt;i(t) dt
0
_ Z l' S e—(tl'i‘m-‘rtj)xl—(1/t1+...+1/tj)x2M "
=27 g Pi(ty,. .t
+i S 67(t1+---+tp)x1*(1/t1+---+1/tp)x2M
p=3 RP Pp(tly---,tp)
+
1 1
X e S
k;p KU Py(te, . tr)
k>2,1>1
Now, for k = 3 in (13), we have
Ty = 5 (T g (T0) + 57 - 5(I7 ¢ (1))
0o ok
LSy LT
Kl P\ P
p=2 k+Il=p
k,i>1

> 1 1 1/1[T™ . L
Y _.7._<_< 0Ly 2>*T;3 |
| Vol kol
e 2 ikl PAPTP
k12>2,ka,k3>1
By analogy to the previous cases we can calculate ug(z) = Ts[e™*"].
Finally, by similar calculations we find wy.
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