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Convolution equations in the space

of Laplace distributions

by Maria E. Plís (Kraków) and Bogdan Ziemian

Abstract. A formal solution of a nonlinear equation P (D)u = g(u) in 2 variables
is constructed using the Laplace transformation and a convolution equation. We assume
some conditions on the characteristic set CharP .

1. Introduction. In this paper we consider a nonlinear PDE of the form

(1) P (D)u = g(u) =
∞∑

j=0

cju
j ,

where P (z) is a (complex) polynomial of 2 variables, D = (∂/∂x1, ∂/∂x2),
and g is an entire function of u with all cj constant (complex or real).

We are interested in finding solutions of (1) represented at infinity as
formal sums of Laplace transforms of Laplace distributions (see [P-Z] and
[P]). In [P-Z] we have solved (1) under the assumption that the coefficients
cj = cj(x), j = 1, 2, . . . , are Laplace integrals of some Laplace holomorphic
functions Tj , and c0 ≡ 0. In [P] we have assumed g(0) = 0, a condition not
required here. However, we will need to assume more on the set of zeros
of P .

Similarly to [P-Z] we solve the convolution equation generated by (1)
with an unknown Laplace distribution T . It is clear that we will need some
results on the convolution algebra structure in the space of Laplace distri-
butions.

This paper was written by the first author after many fruitful discussions
with Professor Bogdan Ziemian, who did not live to see this work completed.
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2.Notation, definitions and general assumptions. Following [S-Z],
for a ∈ R

n we define

La(Rn
+) = {φ ∈ C∞(Rn

+) : sup
x∈R

n
+

|e−ax(∂/∂x)νφ(x)| < ∞, ν ∈ N
n
0}

with convergence defined by the seminorms

‖φ‖a,ν = sup
x∈R

n
+

|e−ax(∂/∂x)νφ(x)|,

and for ω ∈ (R ∪ {∞})n we define

L(ω)(R
n
+) = lim−→

a<ω

La(Rn
+),

equipped with the inductive limit topology. The dual space L′
(ω)(R

n
+) is a

subspace of D′(Rn
+), and we call it the space of Laplace distributions on R

n
+.

We write simply La, L(ω), L
′
(ω) when n = 2 and no confusion can arise.

Let Char P = {z ∈ C
2 : P (z) = 0}. Our basic assumptions on P are the

following:

(i) 0 6∈ CharP ;

(ii) there exists an unbounded curve Z̃ ⊂ Char P such that after some

linear transformation A : C
2 → C

2 with detA 6= 0, Z = A(Z̃) ⊂ R
2
+;

(iii) Z = {(x, f(x)) : x ∈ R+} for some f : R+ → R+, f ∈ C∞, f ′′ > 0,
f(x + y) < f(x) + f(y) for every x, y ∈ R+, and Z is a curve with ends at
infinity;

(iv) with the notation P̃ = P ◦ A−1, we assume P̃ 6= 0 on R
2
+ \ Z and

either P̃z1
= ∂P̃ /∂z1 > 0 and P̃z2

= ∂P̃ /∂z2 ≥ 0, or P̃z1
≥ 0 and P̃z2

> 0
on R

2
+.

To simplify notation we use the same letter P for P̃ .
By (iii) it is obvious that 2Z ∩Z = ∅. Here and subsequently jZ stands

for the algebraic sum Z + . . . + Z with j summands.

3. Properties of Z

Lemma 1. Let assumptions (i)–(iv) hold. Then for j ≥ 2,

jZ = {(x, y) ∈ R
2
+ : P (x/j, y/j) ≥ 0}.

P r o o f. If (x, y) ∈ jZ, then x = x1+ . . .+xj and y = f(x1)+ . . .+f(xj).
The convexity of f and monotonicity of P in y give

P

(
x

j
,
y

j

)
= P

(
x1

j
+ . . . +

xj

j
,
f(x1)

j
+ . . . +

f(xj)

j

)
≥ P

(
x

j
, f

(
x

j

))
= 0.

Conversely, if P (x/j, y/j) ≥ 0, then y ≥ jf(x/j). Writing xk = x/j
for k = 3, . . . , j and x1 = αx/j, x2 = (2 − α)x/j for α ∈ (0, 2) we obtain
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x = x1 + . . . + xj . We proceed to show that there exists α such that y =
f(x1) + . . . + f(xj). Let F (α) = f(αx/j) + f((2−α)x/j)− 2f(x/j) and let
β = y − jf(x/j). It is easy to check that F (1) = 0 and lim F (α) = ∞ at 0
and 2. By continuity of F , there exists α such that F (α) = β. This proves
the lemma.

Clearly, if k < j then jZ ⊂ kZ.

Lemma 2. For every k = 2, 3, . . . ,

kZ \ (k + 1)Z 6= ∅
and R

2
+ =

⋃∞

k=2(R
2
+ \ kZ).

P r o o f. Taking x = kt for some t ∈ R+, and y = kf(t) we get (x, y) ∈ kZ
and P (x/k, y/k) = P (t, f(t)) = 0. But

P

(
x

k + 1
,

y

k + 1

)
= P

(
k

k + 1
t,

k

k + 1
f(t)

)
< P (t, f(t)) = 0.

This gives (x, y) 6∈ (k + 1)Z.
Let (x, y) ∈ R

2
+. Since P (x/k, y/k) tends to P (0, 0) < 0 as k → ∞, we

have P (x/k, y/k) < 0 for k sufficiently large, and by Lemma 1, (x, y) 6∈ kZ.

4. Convolution equation. The function φx(z) = e−xz belongs to the
space L(ω)(R

n
+) for every ω ∈ R

n with ω > −x (x ∈ R
n fixed). Our aim is

to find a solution u of equation (1) in the form

(2) u(x) = T [φx] = T [e−xz],

with T being a Laplace distribution on R
2
+. Applying P (D) and g to u in

the form (2) we get the convolution equation

(3) P (z)T = g∗(T ) =
∞∑

j=0

cjT
∗j ,

where T ∗0 = δ0 (Dirac delta at (0, 0)). We are looking for a solution T of
(3) in the form of a formal series of Laplace distributions

(4) T =
∞∑

k=0

Tk.

For convenience we consider a slightly modified equation

(5) P (z)T = ε

∞∑

j=0

cjT
∗j

with ε > 0 and we look for T in the form

(6) T =

∞∑

k=0

εkTk.
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Inserting (6) in (5) we get

∞∑

k=0

εkP (z)Tk = εc0δ0 +

∞∑

k=1

[ ∞∑

j=1

cj

∑

k1+...+kj=k−1

Tk1
∗ . . . ∗ Tkj

]
εk.

Hence, comparing the summands with the same power of ε we obtain the
recurrence system

P (z)T0 = 0,(7)

P (z)T1 = c0δ0 +

∞∑

j=1

cjT
∗j
0 = g∗(T0),(8)

P (z)Tk =

∞∑

j=1

cj

∑

k1+...+kj=k−1

Tk1
∗ . . . ∗ Tkj

.(9)

Lemma 3. Let ω ∈ R
2
+ and Φ ∈ L(−ω). If T0 is defined by

(10) T0[φ] =
\
Z

φ(x)Φ(x) dx

for Z defined in (iii) and for φ ∈ L(ω), then T0 ∈ L′
(ω) and T0 solves (7).

P r o o f. The proof is immediate.

Observe that suppT0 ⊂ Z and for φ ∈ La, a < ω,

|T0[φ]| ≤
\
Z

|φ(x)e−ax| · |Φ(x)eax| dx ≤ ‖φ‖a,0Ka

where Ka =
T
Z
|Φ(x)|eax dx.

Let L′
(ω)(Z) denote the subspace of L′

(ω) defined by

L′
(ω)(Z) =

{
S ∈ L′

(ω) : S =

∞∑

k=0

Sk, S0 = aδ0, suppSk ⊂ kZ, a ∈ C

}
.

Lemma 4. L′
(ω)(Z) is a convolution algebra, i.e. if S,R ∈ L′

(ω)(Z) then

S ∗ R ∈ L′
(ω)(Z).

P r o o f. This follows immediately from the properties of Z and of con-
volution. Namely if S =

∑∞

j=0 Sj and R =
∑∞

j=0 Rj then

S ∗ R =

∞∑

j=0

j∑

p=0

Sp ∗ Rj−p

and for every p ≤ j, supp(Sp ∗Rj−p) = suppSp +suppRj−p ⊂ pZ +(j−p)Z
= jZ.
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Moreover, if

Sp[φ] =
\

Zp

φ(x1 + . . . + xp)Φp(x1, . . . , xp) dx1 . . . dxp,

Rl[φ] =
\

Zl

φ(y1 + . . . + yl)Ψl(y1, . . . , yl) dy1 . . . dyl

for Φp ∈ L(−ω,...,−ω)((R
2
+)p), Ψl ∈ L(−ω,...,−ω)((R

2
+)l), 1 ≤ p, l ≤ j − 1, then

Sp ∗ Rj−p[φ]

=
\

Zj

φ(z1 + . . . + zj)Φp(z1, . . . , zp)Ψj−p(zp+1, . . . , zj) dz1 . . . dzj

=
\

Zj

φ(z1 + . . . + zj)Θj,p(z1, . . . , zj) dz1 . . . dzj ,

and Θj,p ∈ L(−ω,...,−ω)((R
2
+)j).

Observe that for φ ∈ La, a < ω,

T ∗j
0 [φ] =

\
Zj

φ(x1 + . . . + xj)Φ(x1) . . . Φ(xj) dx1 . . . dxj ,

hence

|T ∗j
0 [φ]| ≤ ‖φ‖a,0

\
Zj

|Φ(x1)| . . . |Φ(xj)|ea(x1+...+xj) dx1 . . . dxj

= ‖φ‖a,0

(\
Z

|Φ(x)|eax dx
)j

= ‖φ‖a,0(Ka)j ,

and suppT ∗j
0 ⊂ jZ. Therefore we see clearly that g

(ν)
∗ (T0) ∈ L′

(ω)(Z) for
ν = 0, 1, . . . ,

|g∗(T0)[φ]| ≤ ‖φ‖a,0

∞∑

j=0

|cj |(Ka)j = ‖φ‖a,0|g∗|(Ka)

and

|g(ν)
∗ (T0)[φ]| ≤ ‖φ‖a,0

∞∑

j=0

|cj+ν |(j + ν) . . . (j + 1)(Ka)j = ‖φ‖a,0|g(ν)
∗ |(Ka),

where

|g∗|(x) =

∞∑

j=0

|cj |xj , |g(ν)
∗ |(x) =

∞∑

j=0

|cj+ν |(j + ν) . . . (j + 1)xj .

5. Problem of division

Lemma 5. Let T0 be a Laplace distribution defined by (10) and suppose

a polynomial P satisfies (i)–(iv). If Px1
> 0 on R

2
+, then the distribution S0
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defined by

(11) S0[φ] =
\
Z

(φ/Px1
)x1

(x)Φ(x) dx

is a solution of the equation PS = T0, S0 ∈ L′
(ω) and suppS0 ⊂ Z.

P r o o f. It is obvious that if φ ∈ L(ω) then also Pφ ∈ L(ω). Therefore
(by the definition of multiplication of distributions by regular functions) an
easy computation shows that

(PS0)[φ] = S0[Pφ] =
\
Z

(
Pφ

Px1

)

x1

(x)Φ(x) dx

=
\
Z

φ(x)Φ(x) dx +
\
Z

P (x)

(
φ

Px1

)

x1

(x)Φ(x) dx = T0[φ].

It is seen immediately that S0 ∈ L′
(ω) and suppS0 ⊂ Z. We also have

|S0[φ]| =

∣∣∣∣
\
Z

φx1
(x)

Φ(x)

Px1
(x)

dx −
\
Z

φ(x)
Px1x1

(x)

Px1
(x)2

Φ(x) dx

∣∣∣∣

≤ K ′
a‖φ‖a,(1,0) + K ′′

a‖φ‖a,0 ≤ K̂a‖φ‖a,0

where

K ′
a =

\
Z

∣∣∣∣
Φ(x)

Px1
(x)

∣∣∣∣e
ax dx, K ′′

a =
\
Z

∣∣∣∣
Px1x1

(x)Φ(x)

[Px1
(x)]2

∣∣∣∣e
ax dx.

The distribution S0 defined by (11) will be denoted by T0

P
.

Now we are in a position to solve the equation (8).

Lemma 6. Under the assumptions of Lemma 5 the distribution T1 defined

by

(12) T1 =
g∗(T0)

P
=

∞∑

j=0

cj
T ∗j

0

P

is a solution of (8) and T1 ∈ L′
(ω)(Z).

P r o o f. The distribution T1 is well defined. Indeed, for j = 0,

δ0

P
[φ] = δ0

[
φ

P

]
=

1

P (0)
δ0[φ].

For j = 1, T0

P
is defined by (11), and for j ≥ 2,

T ∗j

0

P
makes sense because

P 6= 0 on suppT ∗j
0 ⊂ jZ. It is also clear that T1 ∈ L′

(ω)(Z). Moreover, we
can choose constants Na and Ma such that

|T1[φ]| ≤ Na|g∗|(Ma)‖φ‖a,0

for every φ ∈ La, a < ω.
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Lemma 7. For every k ≥ 2, there exists a solution Tk of (9) such that

Tk ∈ L′
(ω)(R

2
+).

P r o o f. We write (9) as a sum of a finite number of summands:

PTk =

k−1∑

p=1

∑

k1+...+kp=k−1
1≤ki≤k−1

Tk1
∗ . . . ∗ Tkp

∗
∞∑

j=p

cj

(
j

p

)
T

∗(j−p)
0

=

k−1∑

p=1

∑

k1+...+kp=k−1
1≤ki≤k−1

Tk1
∗ . . . ∗ Tkp

∗ 1

p!
g
(p)
∗ (T0).

From Lemma 4 and from remarks of Section 3 it follows that the right-hand
side of the expression above is a Laplace distribution belonging to L′

(ω)(Z),
hence by Lemma 5 it can be divided by P . Therefore

(13) Tk =
k−1∑

p=1

∑

k1+...+kp=k−1
1≤ki≤k−1

1

P

(
Tk1

∗ . . . ∗ Tkp
∗ 1

p!
g
(p)
∗ (T0)

)

is a Laplace distribution, Tk ∈ L′
(ω)(Z).

6. Solution of the main problem. Given ω ∈ R
2 and Φ ∈ L(−ω), by

Lemmas 3, 6 and 7 we obtain a formal series (6) as a solution of (5) with
T0 given by (10), T1 given by (12) and Tk given by (13), for k ≥ 2. Putting
ε = 1 in (5) and (6) we have a formal solution of (3) in the form (4).

Thus we have proved

Theorem. Let assumptions (i)–(iv) hold. Then for every ω ∈ R
2 and

every Φ ∈ L(−ω) there exists a formal solution u of equation (1) of the form

u(x) =

∞∑

k=0

uk(x)

where uk ∈ C∞([−a,∞)) = C∞([−a1,∞) × [−a2,∞)) for all a < ω and k,
and uk(x) = Tk[e−zx] for some Tk ∈ L(−ω).

Remark. By a “formal solution” here we understand that the series∑∞

k=0 uk(x) only formally solves the equation (1), and it does not necessarily
converge. Convergence results in some cases will appear in a forthcoming
publication.

7. Example. The problem considered in this paper was motivated by
attempts to solve at infinity the well known equation

(14) ∆u = eu,

where ∆ = ∂2/∂x2 + ∂2/∂y2.
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The problem has a long history, beginning with early results of Bieber-
bach [B] and of many other authors. Most of them have been solving (14)
in bounded domains in R

n, with some assumptions on the boundaries. Re-
cently, using various methods, many people have been constructing global
solutions; for example Popov [Po] has constructed global exact solutions
of (14) from solutions of the Laplace equation. Here we find formal solu-
tions represented at infinity as sums of the Laplace transforms of Laplace
distributions.

If we write P (D) = ∆ − 1, then (14) is a particular case of (1) with
g(u) = 1 +

∑∞

j=2
1
j!u

j . Here P (z) = z2
1 + z2

2 − 1.

We now show that P satisfies conditions (i)–(iv) of Section 2. Indeed,
0 6∈ CharP and the set

Z̃ = {(z1, z2) : z1 = ik, z2 =
√

1 + k2, k ∈ R}
is an unbounded curve in CharP . Set A =

(
−i
i

1
1

)
. Then detA = −2i 6= 0

and

Z = A(Z̃) = {(x, y) ∈ R
2
+ : y = 1/x},

hence (iii) holds with f(x) = 1/x. An easy calculation shows that P̃ (z) =

P (A−1(z)) = z1z2 − 1, P̃z1
(z) = z2, P̃z2

(z) = z1, so (iv) holds, too.

Now, putting u(x) = T [e−vx] and T̃ = T ◦ A−1 we have

P (D)u(x) = (P (v)T )[e−vx] = (P̃ (z)T̃ )[e−A−1(z)x · 1/2]
= P̃ (z)T̃ [e−(i/2)(z1−z2)x1−(1/2)(z1+z2)x2 · 1/2]
= 1

2 P̃ (z)T̃ [e−(1/2)(ix1+x2)z1−(1/2)(−ix1+x2)z2 ]

= P̃ (D)ũ
(

1
2
(ix1 + x2),

1
2
(−ix1 + x2)

)

where ũ(y) = 1
2 T̃ [e−yz]. Therefore, by the method described in the previous

sections we solve the equation

(z1z2 − 1)T = δ0 +

∞∑

j=2

1

j!
T ∗j .

Namely, for ω ∈ R
2
+, Φ ∈ L(−ω) we put, according to (10),

T0[φ] =
\
Z

φ(z)Φ(z) dz =

∞\
0

φ(t, 1/t)Φ̂(t) dt

where Φ̂(t) = Φ(t, 1/t)
√

1 + t−4. Then

u0(x) = T0[e
−zx] =

∞\
0

e−tx1−(1/t)x2 Φ̂(t) dt.
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Now, according to (11), we have

T0

P
[φ] =

∞\
0

φz1
(t, 1/t)tΦ̂(t) dt,

so

T0

P
[e−zx] = x1

∞\
0

e−tx1−(1/t)x2 tΦ̂(t) dt.

We observe that

P

(
t1 + . . . + tj ,

1

t1
+ . . . +

1

tj

)
= (t1 + . . . + tj)

(
1

t1
+ . . . +

1

tj

)
− 1

= j − 1 +
∑

1≤k<l≤j

(
tk
tl

+
tl
tk

)
.

Hence, if we define Pj(t1, . . . , tj) = P (t1 + . . . + tj , 1/t1 + . . . + 1/tj), then

T ∗j
0 [φ] =

\
R

j

+

φ

(
t1 + . . . + tj ,

1

t1
+ . . . +

1

tj

)
Φ̂(t1) . . . Φ̂(tj) dt1 . . . dtj ,

and for j ≥ 2,

T ∗j
0

P
[φ] = T ∗j

0

[
φ

P

]

=
\

R
j

+

φ

(
t1 + . . . + tj ,

1

t1
+ . . . +

1

tj

)
Φ̂(t1) . . . Φ̂(tj)

Pj(t1, . . . , tj)
dt1 . . . dtj .

Therefore, by (12) we get

u1(x) = T1[e
−zx]

= −1 +

∞∑

j=2

1

j!

\
R

j

+

e−(t1+...+tj)x1−(1/t1+...+1/tj)x2
Φ̂(t1) . . . Φ̂(tj)

Pj(t1, . . . , tj)
dt1 . . . dtj .

Of course g′(u) =
∑∞

j=1(1/j!)u
j , and g(k)(u) = g′′(u) =

∑∞

j=0(1/j!)u
j

for k ≥ 2, hence, applying (13), e.g. for k = 2, we obtain

T2 =
1

P

((
−δ0 +

∞∑

j=2

1

j!
· T ∗j

0

P

)
∗

∞∑

j=0

1

j!
T ∗j

0

)

= −T0

P
−

∞∑

j=2

1

j!
· T ∗j

0

P
+

∞∑

p=3

∑

k+l=p
k≥2, l≥1

1

k!l!
· 1

P

(
T ∗k

0

P
∗ T ∗l

0

)
.
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Putting p = k + l for k ≥ 2 and l ≥ 1, we have

1

P

(
T ∗k

0

P
∗ T ∗l

0

)
[e−zx] =

(
T ∗k

0

P
∗ T ∗l

0

)[
e−zx

P

]

=
\

R
p

+

e−(t1+...+tp)x1−(1/t1+...+1/tp)x2
Φ̂(t1) . . . Φ̂(tp)

Pp(t1, . . . , tp)Pk(t1, . . . , tk)
dt1 . . . dtp,

hence

u2(x) = − x1

∞\
0

e−tx1−(1/t)x2 tΦ̂(t) dt

−
∞∑

j=2

1

j!

\
R

j

+

e−(t1+...+tj)x1−(1/t1+...+1/tj)x2
Φ̂(t1) . . . Φ̂(tj)

Pj(t1, . . . , tj)
dt1 . . . dtj

+
∞∑

p=3

\
R

p

+

e−(t1+...+tp)x1−(1/t1+...+1/tp)x2
Φ̂(t1) . . . Φ̂(tp)

Pp(t1, . . . , tp)

×
∑

k+l=p
k≥2, l≥1

1

k!l!
· 1

Pk(t1, . . . , tk)
.

Now, for k = 3 in (13), we have

T3 =
1

P
(T2 ∗ g′(T0)) +

1

2!
· 1

P
(T ∗2

1 ∗ g′′(T0))

= −
∞∑

p=2

∑

k+l=p
k,l≥1

1

k!l!
· 1

P

(
T ∗k

0

P
∗ T ∗l

0

)

+

∞∑

p=4

∑

k1+k2+k3=p
k1≥2, k2,k3≥1

1

2!
· 1

k1!k2!k3!
· 1

P

(
1

P

(
T ∗k1

0

P
∗ T ∗k2

0

)
∗ T ∗k3

0

)
.

By analogy to the previous cases we can calculate u3(x) = T3[e
−zx].

Finally, by similar calculations we find uk.
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[P] M. E. Pl i ś, Poincaré theorem and nonlinear PDE’s, Ann. Polon. Math. 69 (1998),
99–105.
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