ANNALES
POLONICI MATHEMATICI
LXIX.3 (1998)

Intersection theory and separation exponent
in complex analytic geometry

by EwA CYGAN (Krakéw)

Abstract. We consider the intersection multiplicity of analytic sets in the general
situation. We prove that it is a regular separation exponent for complex analytic sets
and so it estimates the Lojasiewicz exponent. We also give some geometric properties of
proper projections of analytic sets.

1. Introduction. The aim of this paper is to find a connection between
two indices which characterize locally the intersection of analytic sets: inter-
section multiplicity and separation exponent. In [CT], [T3] such a relation
has been established in two particular cases: proper intersection and isolated
intersection of analytic sets.

The definition of the intersection multiplicity in the improper case, pro-
posed recently by P. Tworzewski [Ts], raises the natural question about a
generalization of these results. The main theorem of this paper (Thm. 4.4)
confirms the hypothesis that the intersection multiplicity is a separation ex-
ponent for analytic sets. Moreover, some geometric properties of proper pro-
jections of analytic sets are given (Section 3), which can represent interesting
tools in the investigation of geometric characterizations of analytic sets.

The main result presented here has already found nice applications in
estimating the Lojasiewicz exponent at infinity for polynomial mappings; in
particular, using it one can improve Kolldr’s well-known results (see [CKT],

[K])-

2. Intersection multiplicity. For the convenience of the reader we
compile in this section some basic notions of intersection theory (see [ATW],
[Ch], [D], [Ts] for more details).
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1. Analytic cycles and their multiplicities. In this paper analytic means
complex analytic, and manifold means a complex manifold satisfying the
second axiom of countability. Let M be a manifold of dimension m. An
analytic cycle on M is a formal sum

A= ZO[]ZJ

where o # 0 for j € J are integers and {Z;};c; is a locally finite family of
pairwise distinct irreducible analytic subsets of M.

The analytic set Uje ;Z; is called the support of the cycle A and is
denoted by |A]. If all the components of A have the same dimension k, then
A is called a k-cycle. We say that A is positive if a; > 0 for all j € J.

We consider the natural extension of the local multiplicity of analytic
sets. Namely, if « € M and v(Z;,a) denotes the multiplicity of Z; at the
point a (see [D], p. 194), then the sum

v(Aya) = Z a;v(Zj,a)
jed
is well defined and called the multiplicity of the cycle A at the point a.
There exists a unique decomposition

A= T(m) + T(m—l) 4+ ...+ T(O),

where T;) is a j-cycle for j = 0,...,m. For our purpose it will be useful to
introduce the notion of extended multiplicity of A at a by the formula

D(Aa a) = (V(T(m)a a)7 cee V(T(O)va)) € .
Denote by v(A) and v(A) the functions
v(A):M>2 —v(Ax)eZ, v(A):M>z—v(Ax)eZm™

—

Observe that v(A, z) = U(A, z), where U denotes the sum of the coordinates
of v e Zm+1.

II. Proper intersections and reqular directions. Let now X and Y be pure
dimensional analytic subsets of M. We say that X and Y meet properly on
M if dim(X NY) = dim X + dimY — m. Then we have the intersection
product X -Y which is an analytic cycle on M defined by the formula

X-Y=YiXY2)Z,
Z

where the summation extends over all the analytic components Z of X NY
and i(X - Y, Z) denotes the intersection multiplicity along Z in the sense of
Draper ([D], Def. 4.5; cf. [W]). Such multiplicities are positive integers.
Consider now the special situation when M is a neighbourhood of zero
in a normed complex vector space N. Take a pure k-dimensional analytic
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subset Z in M and a linear subspace A of dimension m — k such that zero is
an isolated point of Z N A. We say that A is a reqular direction for Z in N
if i(Z-A,0) =v(Z,0). Recall that A is a regular direction for Z if and only
if ANC(Z,0) = {0}, where C(Z,0) is the tangent cone to Z at zero ([D],
Thm. 6.3). Hence the subset of all regular directions for Z in N is open and
dense in the grassmannian manifold G™~* (V).

III. Intersections of analytic sets with submanifolds. Let M be an m-
dimensional manifold. Fix a closed s-dimensional submanifold S of M and
an open subset U of M such that U NS # (. For a given cycle A =
ZJ.GJ a;Z; analytic on M, by its part supported by S we mean the cycle
A% = ZjeJ,Zst «;Z;. Denote by H(U) the set of all H := (Hy, ..., Hy—s)
satisfying the following conditions:

(1) H, is a smooth hypersurface of U containing UNS for j = 1,...,m—s,
(2) ﬂ;n;ls T,(H;) =T,S foreachx € UNS.

For a given analytic subset Z of M of pure dimension k we denote by
H(U, Z) the set of all H € H(U) such that (U\S)NZ)NH;N...NH,is an
analytic subset of U \ S of pure dimension k — j (or empty) for j =1,... k.

Following [T3] we present here an algorithm which produces for every
H € H(U, Z) an analytic cycle Z-H in SNU. At each step of the algorithm
we get a cycle Z; = Z° + (Z; — Z?). Denote by iy € {0,...,m — s} the first
index for which |Z;,, — Z | = 0.

(2.1) ALGORITHM.

STEP 0. Let Zy = ZNU. Then Zy = Z§ + (Zo — Z§), where Z§ is the
part of Zy supported by SNU.

STEP 1. Let Z; = (Zy — Z§) - Hy. Then Z; = Z{ + (Zy — Z7), where
77 is the part of Z; supported by SN U.

STEP 2. Let Zy = (Z1 — Z7) - Hy. Then Zy = Z5 + (Zo — Z5 ), where
7§ is the part of Z, supported by SN U.

STEP iy. Let Z;,, = (Zi,,—1 — Zi_l) - H;,,. Now we have the decompo-

sition Z;,, = 22 + (Zi,, — Z5)), and | Zs,, — 22 |0 S = 0.
We call the positive analytic cycle Z - H = Z5 + Z¢ + ... + Zii in SNU
the result of the above algorithm.

At an arbitrary point a € S the set Z can be characterized by two indices
g(a) and p(a) which we now define. Let

g(a) =9(Z,8)(a) := mine {7(Z - H,a) : H € H(U, Z), a € U} € N*H!

and g(a) = g(Z,5)(a) = @/(\a)) The number g(a) is called the index of
intersection of Z and S at a (see [Tq], Def. 4.2).
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From our point of view the following index is much more interesting for
applications in regular separation.

DEFINITION 2.2. For a € S we call
p(a) =p(Z,5)(a) :=min{v(Z - H,a) - He H{U,Z), ac U} €N
the indez of contact of Z and S at a.
Observe that we always have p(a) < g(a).

III. Intersection of analytic sets—general case. Let X and Y be irre-
ducible analytic subsets of an m-dimensional manifold M and let a € M.
By standard diagonal construction the multiplicity of intersection of X and
Y at a is defined to be

d(a) =d(X,Y)(a) = g(X x Y, Ap, (a,a)).

The intersection product of X and Y is a unique analytic cycle X ¢ Y in M
such that v(X ¢Y) = d(X,Y) (see [Tq], Def. 6.3).

The above definition can be naturally extended to the case of the in-
tersection of a finite number of irreducible analytic subsets and next to the
case of arbitrary analytic cycles by multilinearity.

3. Special properties of proper projections of analytic sets. Let
M be a complex inner product space of dimension m and {2 a neighbour-
hood of zero in M. Consider a positive k-cycle A in 2. If A is an (m — k)-
dimensional linear subspace of M such that AN |A| = {0} then there exists
a connected neighbourhood of zero in M = A+ + A = A+ x A of the form
G =UxW C 12, where U and W are balls in the spaces A+, A respectively,
such that the natural projection mx|jajne : |[A| NG — U is a p-sheeted
branched covering with p = v(|A4] - 4,0), i.e.

(1) mal|4) is surjective and proper,

(2) for every x € U the fibre (ma|4)) ! () is finite,

(3) there exists a proper analytic subset S of U such that 74| 4 is locally
biholomorphic on |A|\ 7;'(S) and

#(7TA||A‘)_1(33):p ifzeU\S,
#(malia) (@) <p ifzes.

The set S is called the critical set of the branched covering 74/ 4, and U\ S
its regular set.

Without loss of generality we can assume that all the components of A
pass through zero and G = {2. For each component Z of A the projection
malz is also a branched covering and we denote its multiplicity by pa,z.
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For every cycle A we now define a certain useful real function on G. First
for each component Z of A we define
PA,Z
de/LZ(Z) = H ‘Z - Zi‘ for (WA’Z)il(ﬂ-A(Z)) = {217 oo 7ZPA,Z}7
i=1
where z; are counted with their multiplicities. Next for the cycle A =
Y., azZ we put
da.aa(z) =[] d& a.2(2)-
z
Further we consider the germ of dg 4 4 at zero, denoted by d, 4. For rep-
resentatives of d4, 4 we use the notation dx 4.
The next remark will be used in the proof of the main theorem.

REMARK 3.1. If M’ is a linear subspace of M, A C M’ and the inter-
section of A and M’ is proper then for A’ = A- M’ considered as a positive
cycle on G' = GN M’ we have dgr p,a/(2) = dg a,4(2) for z € G'.

Proof. Notice that for all z € G’ we have dg a,4(2) = [[1_; |z — zi|* if
A (A+2)=>"_jai{zi} As Ay (A+2)= Ay M)y (A+2) ([TWo],
Thm. 2.2), the equality follows. m

Consider now a non-zero linear form [ : A — C and define the linear

mapping
L:M=A"xA3(z,y) — (2,1(y)) € A x C.
Note that ker L N |A| = {0} and for each component Z of A we get some
standard properties:
(i) L|z is proper (see [TWy]),

(ii) Zr, = L(Z) is an irreducible analytic subset of U x [(W) of pure
dimension k,

(i) L|z : Z — Zy, is a ur, z-sheeted analytic covering (see [D]),

(iv) the natural projection m4|z, : Z1, 3 (z,t) — = € U is a pyz, -sheeted
analytic covering for some pz, € N.

In consequence there exists a unique system of functions a1z, ..., oy, 2,7
holomorphic on U such that

Zr ={(z,t) e U x (W) : P, z(z,t) = 0},

where P, z(x,t) = tPZe 4+ oy z(2)tPZe 1t + ...+ py, 2 (T).

For a cycle A on G we now introduce a holomorphic function determined
by the linear form [ as follows:

Fgua(z) = [[(PLz(L(2))) =707
z
We denote by F; 4 the germ of Fiz; 4 at zero, and by Fj 4 its representatives.
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It is useful to introduce another holomorphic mapping. Let ly,...,[. be
non-zero linear forms on A. We put

(*) FG,(ll,...,lr),A(Z) = (FG,ll,A(Z)7 ... aFG,lr,A(Z)) for z € G.
The germ of this mapping at zero will be denoted by F(;, ;) 4, and its
representatives by F(ll,...,lr),A-

To simplify the notation, an inequality for germs of real functions will
mean the inequality between some of their representatives.

Let us now recall the following general lemma (see [CT]).

LEMMA 3.2. Suppose that n,d are positive integers, r = (n—1)d+1 and
ly, ..., 1 are linear forms on A such that l;,,...,l; are linearly independent
foriy, ... i, €{1,...,7} such that is # i; for s #t. Define

d d
BN (vr,. .. vg) — <Hl1(vi),...,HlT(vi)> cC.
i=1 i=1

Then there exists a positive constant ¢ > 0 such that |P(vy,...,vq)| >
clvy] ... |vg| for vy, ... ,vq4 € A.

The next lemma establishes relations between all the functions intro-
duced before.

LEMMA 3.3. Let lq,...,l, be linear forms as in Lemma 3.2 with n =
m—k and d=v(A-A,0), andl: A — C a non-zero linear form on A. Then
there exist constants ¢, " > 0 such that

|Fpal <daa <, )4l
Proof. It suffices to show that for some constants ¢’,c¢” > 0,
d|Fg1,4(2)] < dg,a,a(z) < "|Fg,ay,.0.),4(2)] for z € G
Denote by S the critical set of the analytic covering 74| : |A| — U and
fix z=(r,y) € G withx € U\ S. Let

(WA’Z)il(‘T) = {(x7 yl,Z)7 SRR (LE, yPA,z,Z)}
for every component Z of |A|. Applying Lemma 3.2 to the system vy, ..., v,
€ A where each of the points y —y1. z,...,y — Yp, ,,z is repeated oz times
we get constants ¢’,¢” > 0 such that '

ﬁl(vi) < ﬁ\vil <’ <ﬁll(vi),...,ﬁlr(vi)>‘.
i=1 i=1 i=1 i=1

So according to our definitions it follows that

cl

c H <pﬁ Wy — yi,z)>az
Z i=1

pa,z PA,z

(H < H l1(l/—yi,z))azv--->H ( H lr(y_yi,Z))aZ>‘

Z i=1 4 i=1

<dgaalz) <’
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and after standard calculations we finally get
ANFaua(z)| <dgaa(z) < NFa . 0,),4(2) forze G\ (SxW).

By continuity of all the functions considered we have the required inequali-
ties on the whole G. =

LEMMA 3.4. Let A, B be positive analytic k-cycles on {2 and A an
(m — k)-dimensional linear subspace of M such that AN |A| = {0} and
dim C(|B[,0) N A =1 > 0. Then there exist Ay,..., A, € G™ (M) and
¢ > 0 such that

(1) dim C(|Bl,0) N A; <,

(2) daa <c)oi_yda, a.

Proof. Without loss of generality we can assume that M = C™, A =
{0} xC™F ={ze€C™:2 =..=2z =0}and dmC(B/,0) N A =
dim C(|B],0)NA =1, where A = {z € C™ : 2y = ... = z,_1 = 0}. Put
Z = C(|B|,0) N A and consider § = {¢ € G™1(C™) :dimZ N ¢ > 1}

According to [T4], Lemma 4.12, we know that G™~1(C™)\ S is an open
and dense subset in the manifold G™~(C™).

So it is possible to choose a system of hyperplanes (; = {z € C™ : [;(z)
=0}, j=1,...,r, where r = (m — k — 1)v(A - A,0) + 1, satisfying the
following conditions:

(1) ¢G={2€Cm:lj(x) =0} &8,

(2) every system of linear forms [, |4,...,1;, _,|a is linearly independent
for ji,...,jm—x €{1,...,r} provided js # j; for s # t.

Applying Lemma 3.3 to the subspace A and the system Iy, ... 1|4 we
get

T
() daa < CZ‘FIJ-\A,A"

Jj=1

Now consider the subspaces A; = (; N A. For each of the epimorphisms

Li:C™ 3 (21,...,2m) = (2155 2k, L a(Zkg1s - - 2m)) € CFFL we have
ker L; C A;. Since dim(ker L;) = m — k — 1 it is possible to choose for
every j € {1,...,r} a linear form /; on A; such that ker L; = ker L; for

Lj:C" = /1]-L x A; 3 (z,y) — (x,1;(y)) € C**1. Consequently, there exist
linear isomorphisms I; : Ck*1 — C*+1 for which Ej = I; o L;. Hence it
is easy to see that for every component Z of the cycle A the multiplicities
pr,,z and 1, z coincide. As the germs of P, 7 and PTj,A oI at zero in

Ck+1 generate the ideal of the germ of L;(Z), we get
(%) Fy,,,4] < E]F;j 4| for some ¢ > 0.
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Combining now (x) and (#x) and applying once more Lemma 3.3 to each
of the forms [; we finally get dj 4 < 025:1 dy,,a-

As dim C(|B|,0)nAN¢; < I we obtain dim C(|B|,0)NA; < dim C(|B],0)
N A and this completes the proof. m

THEOREM 3.5. Let A, B be positive analytic k-cycles on {2 and A an
(m — k)-dimensional linear subspace of M with AN|A| = {0}. Then there
exist Ay,..., A, € G (M) and ¢ > 0 such that

(1) Ay, ..., As are regular directions for the cycle B in M,
(2) daa < cdioyda,al2).
Proof. Thanks to the characterization of regular directions in terms

of the dimension of the intersection of A with the tangent cone to B (see
Section 2), the assertion follows by repeated application of Lemma 3.4. m

REMARK 3.6. Observe that the assertion of Theorem 3.5 can be formu-
lated in a more convenient way:

There exist reqular directions Ai,...,As for B, representatives da a,
da, Ay da, a, ¢ > 0 and a neighbourhood G of zero in M such that
for every z € G there exists ig € {1,...,s} such that da () < cda,, a(2).

We call the subspace A;, chosen in the above way the maximal subspace
for the point z where the following elements are supposed to be given: the
subspace A, system Aq,..., A, neighbourhood G and constant c.

The following proposition, closely related to [JKS], Lemma 8, establishes
the relations between the function d, 4 and the distance to the support of A.

PROPOSITION 3.7. Let A be a positive analytic k-cycle on 2, and A an
(m — k)-dimensional linear subspace of M such that AN|A| = {0}. If da.a
is a representative of the germ dj a then there exist a constant ¢ > 0 and a
neighbourhood G of zero in M such that

co(z, |A]) = da,a(z) 2 o(z, |A])P
forp=v(A-A0) and z € G.

Proof. Without loss of generality we can assume that {2 = G, where
G is the neighbourhood of zero chosen at the beginning of this section.
Suppose also that B(0,2R) C G for some R > 0. Note that the zero set of
the function F' = Fg (,,...1,),4 is just |A].

By the mean value theorem there exists ¢ > 0 such that |F(z')—F(z")] <
cle! = 2" if 2/,2" € B(0,2R). For z € B(0, R) there is w € |A| N B(0,2R)
such that o(z,|A|) = |z — w|. Then, by Lemma 3.3,

o(z |A]) = |z —w| 2 €7HF(2) = F(w)| 2 'da,a(z).

As the second inequality follows directly from the definition of d, 4 this
ends the proof. m
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4. Separation exponent of analytic sets. We first repeat some basic
facts on regular separation, thus making our exposition self-contained. For
the proofs we refer the reader to [CT] (cf. [L;i]-[L3]).

Let M be an m-dimensional normed complex vector space and X, Y
closed sets in an open subset G of M. For p € [1,00), we say that X and YV’
are p-separated at a € G ifa € X NY and

0(z,X) +0(2,Y) = co(z, X NY)”
in a neighbourhood of a, for some ¢ > 0.

LEMMA 4.1. Let Hy C G and Hs be open subsets of normed, finite-
dimensional complex vector spaces and let f : Hi — Hsy be a biholomor-
phism. Then closed subsets X and Y of G are p-separated at a point a € Hq
if and only if f(X N Hy) and f(Y N Hy) are p-separated at f(a).

According to the above lemma we can consider p-separation for closed
subsets of complex manifolds. Namely, we say that closed subsets X and Y
of an m-dimensional complex manifold M are p-separated at a € M if for
some (and hence every) chart ¢ : 2 — G C C™ such that a € {2, the sets
(X N 2) and p(Y N §2), closed in G, are p-separated at p(a).

LEMMA 4.2. Let G be an open subset of a normed finite-dimensional
complex vector space. Then, forp > 1, X and Y are p-separated at a if and
only if there exists a neighbourhood U of a and ¢ > 0 such that

o(x,Y) > co(x, XNY)P forzeXnU.

LEMMA 4.3. Let M be a complex manifold. If a € M and p > 1 then
the following conditions are equivalent:

(1) X and Y are p-separated at a,
(2) X XY and Ay are p-separated at (a,a),

where Ay = {(x,x) € M? : 2z € M} is the diagonal in M?>.
We can now formulate our main result.

THEOREM 4.4. Let Z be a pure k-dimensional analytic subset of a com-
plex manifold M, S a closed s-dimensional submanifold of M and a € ZNS.
Then Z and S are p-separated for p = p(Z,S)(a).

Proof. First choose a neighbourhood U of a and a system of hypersur-
faces H = (Hy,...,Hy) € H(U, Z) such that for every i € {1,...,m — s}
all the components of | Z7| pass through a. Define n = i,.

To prove the theorem we will show, using Algorithm (2.1), that the sets
Z and S are py = v(Z - H,a)-separated. Applying an appropriate chart
we can assume that Z, S are subsets of C™, a = 0 and H,,..., H, can be
regarded as linear subspaces.
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Fix a linear subspace A,, in Hy N...N H, which is a regular direction
for |Z5|in HyN...N H,.
We will choose a special system of linear subspaces in C'™ in n steps.

(1) Applying Theorem 3.5 for the cycles A = Z,, 1—Z5 |, B = Z,_1 and

the subspace A = A,, in HiN...NH,, we find a neighbourhood U,,_1 C U of
zero in C™, representatives of the germs d, »  zs ,dy _ 7z, zs

n—1
and regular directions A,—1.1),..., Apn—1,s,) € Gm™*(H, N...NH,_) for
|Zp—1|in HiN...NH,,_q such that if z € U,,_1NHN...NH, C HiN...NH,_
then

(1) da, 20 y—zs_ (2) <1 D30 AAen_y iy Znr—z5_,(2),

(it) ¥(|1Zn-1] - An-1.0),0) = v(|Z-11,0).

(2) Applying Theorem 3.5 for A = Z,, o — Z5 5, B = Z, 5 and A =
An—1,5y in HyN...NH,_1 we find a neighbourhood U, ;y C U, 1 of zero
in C™, representatives of the germs

dA(7L—1,7L),Zn72—Z§72 and dA(n—Q,i,j)7Zn—2_Z§,2

and regular directions A(n,ziyl),...,A(n,Q’iys(n_lyi)) € G"FH, N...N
Hy, ) for |Z, 5| in HyN...N H,_o such that if z € U1,y N Hy NN
H, 1CH{N...NH,_s then

(l) dA(n—l,i)vZn—Q*Zs_g(Z) S fcv(n7277;) ng{l,l) dA(n—Q,i,j)yzn—Zfzs_g(2)7
(i) v([Zn-2| - An-2,i,5),0) = v(|Zn—2],0).

Define U, —2) = Nz Uln—2,i)s Cn—2 = MaX; C(n_2,i), Sn—1 = MaX; S(n—1,i)-
Inductively at step (I) we make the following choice:

(1) Applying Theorem 3.5 for A = Z,,_; — fol, B=7,,and A =

Atn—i41,n in HiN...N H, 11 we find a neighbourhood U, 1) C Up—1-1
of zero in C™, representatives of the germs

dA(nflfl,I) Tn1—25_, and dA(nfz,z,j),anl—Z;?,l

and regular directions A,—; 1.1, -- ,A(nfly_[“g(n_l_'_l’i)) c G FH N...N
H, ) for |Z,, | in HyN...N Hy,_; such that if z € Up,—1 7, )N HN...N
H, ;1 CHN...NHy_; then

: ~ S(n—1+1,I)
(l) dA(n—H—l,I)VZn—l*ZS—l(2) S c(n_lJ) ijl dA(n—lnyj)VZ"—lfzs—l7
(i) v(|Zn—il - A—1,1,5),0) = v(|Zn—1],0).
Define U(n—l) = nll—l U(n—l,I)a fcvn,l = maX[fCV(n_l,]) and Spn—1+1 —

mMaxr S(n—i41,I)-

Finally in the last nth step we get a certain number s; of linear subspaces
Ao,y (I = I,, = (i1,...,i,)), which are the regular directions for |Zy| in
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C™. From Proposition 3.7 applied to the cycle Zy we get, for I = I,,,

(*) Q(Z7 Z) = Q(Z7 |Z0|) > EdA(o,I),Zo(z)

for some constant ¢>0, independent of I, and for z € W(q 1), where W r) C
Uy is a neighbourhood of zero in C™. Put W = (), W(q ).

Fixnow z€ WNS. Asz€ HyN...N H,, Remark 3.1 shows that for
some representatives of the germs d,,  ,_zs and d,, zs we have

() da, 2, ,—zs_ (2) =dqa, z5(2),
(ii) o(z, Z N S)* < dy, zs(2) for a, = v(Z2,0).
We will choose a special subspace from each of the systems Aq 1 ).

(1) For the point z choose from the system A;,—1,1),..., A(n-1,,) the
maximal subspace A,_1(2) = A1) (Remark 3.6). We get

(%) A z,1—z5_ (2) S en1dp, ).z, —z5_(2)
where ¢;,_1 = Ch_15n.
Since z € Hy N...N H,_1, for some representatives of the germs

dAn—lyzn—l_Z}?,l’ dAn—hZ,f,l and dAn—17Zn—2_Z§,2 we have

(1) da,_,(2), 20125 (%) da,_ ()25 (2) =da,_ (), 2, o—z5_,(2);
(ii) o(z,Z N S)* =1 <dy,_ (2,25, (2) for an_1 = v(Z3_1,0).

Combining the properties (xx), (i), (ii) we have
Q(Z7 Z m S)an+an_l S Cn—ldAn,l(z),Zn,ng§72(Z)'
() Having A, —1(2),..., An_111(2) = A@n—i41,1,_,) We choose from the

system A(n*lvll—lyl)""A(n*lvll—lysll—l) the maximal subspace A,_;11(2)
and we get

(%) dAn,,+1(z),zn,l—z§4(Z) < cenaidy, y(2),2,_1—25 (2),

n—I1

where ¢, = Cp_1Sp—1+1-

Asze HyN...N H,_; we can repeat the same observation:

(l) dAn_l(z),Zn_le;f_l(Z) : dAn—hZS_l (Z) = dAn—l(Z)vzn—l—l*ZS_l_l(2)7

(ii)) o(z, Z N S)n-t < dAnfz(z),Zf,l(z) for a,,_; = I/(ZS_“O).

Combining (xx), (i), (ii) we obtain

o(z,ZNG)onttom—t e L Cn—1dp, (), Zn_1_1—2z5_, (%)
After the last step we get
o(z,ZNS)omt -t < ) - codpy(2), Zo-

Since o, +. .. +ag = py, applying (x) we finally get o(z, ZNS)P* < co(z, Z)

forc=c¢p_1...co-¢ N
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The constant ¢ is independent of z so the above inequality holds for all
z € WnNS and Lemma 4.2 ends the proof. =

COROLLARY 4.5. Let X and Y be analytic subsets of M, and a € XNY'.
Then X and Y are p-separated at a with p=v(X eY, a).

Proof. First note that for irreducible analytic subsets X, Y of M we
get v(X oY, a) =g(X xY,Ap,(a,a)). As

p(X X Y7 AMa (CL,Q)) < g(X X Y7 AM? (CL,Q)),

Theorem 4.4 and Lemma 4.3 imply that X and Y are v(X oY, a)-separated
at a.

Now consider arbitrary X,Y analytic in M and let W be an open neigh-
bourhood of a such that

XNw=XinNnWu..uX;nW, YnNnW=YInWu..Uuy,nw

where X;, Y} are irreducible components of X,Y respectively such that a €
X; NY; for all 4,5. Then X; and Y are p;; = v(X; Y}, a)-separated at
a. Take a chart (p, £2) of M such that 2 C W, ¢(§2) C B(0,1) € C™ and
@(a) = 0. Then, as (2N X;) and p(2NY;) are p;;-separated at zero, there
exist U;; C {2 and ¢;; > 0 such that for x € X; N U;; we have

oleo(x), p(Y; N 2)) > cijo(p(x), p(Xi NY; N 2)Ps.

Take U = (U;j, c = min;; ¢;; and fix x € U N X. There exist 7, j such that
z € UNX; and o(p(x), (Y N12)) = o(p(x), p(Y; N 12)). We get

Q(‘:D(x)a CP(Y n Q)) = Q((P(ﬂf)y 4,0(}/] N Q)) > cg(gp(x)7 (P(Xi N Yj N Q))pij
> co(ip(x), p(X NY N 0Q2))P

2 CQ(SD(UC), QO(X NnNY N Q))Zz,] Pij
As Zz‘j Pij = v(X oY, a) Lemma 4.2 ends the proof. m

Let us recall that for isolated intersection one can separate the sets X
and Y with a better exponent, p = v(X - Y,a) — v(X,a) - v(Y,a) + 1 (see
[Ts5]). The following example shows that even in the situation of proper but
not isolated intersection we cannot improve Corollary 4.5.

EXAMPLE 4.6. In C3 take the intersection of X = {(x,y,2) € C3 :
2% + zy + 2% = 0} with the subspace Y = {(z,y,2) € C3: 2 = 0}.

It is easy to verify that v(X - Y,0) = v(X,0) = 2, v(Y,0) = 1 and the
best separation exponent for these two sets at zero is 2.
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