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Some applications of a new integral formula for 0y,

by MOULAY-YOUSSEF BARKATOU (Poitiers)

Abstract. Let M be a smooth g-concave CR submanifold of codimension k in C". We
solve locally the 8},-equation on M for (0,7)-forms, 0 < r < g—lorn—k—q+1 < r < n—k,
with sharp interior estimates in Holder spaces. We prove the optimal regularity of the 9 -
operator on (0, g)-forms in the same spaces. We also obtain LP estimates at top degree.
We get a jump theorem for (0, r)-forms (r < ¢—2 or r>n—k — ¢+ 1) which are CR on a
smooth hypersurface of M. We prove some generalizations of the Hartogs—Bochner-Henkin
extension theorem on 1-concave CR manifolds.

In [7] we proved the following

THEOREM 0.1. Let M be a C*T'-smooth q-concave CR generic subman-
ifold of codimension k in C™. Let zo € M and s € N with s < n. Then
there exist an open neighborhood My C M of zy and kernels R ,((,z) for
r=0,...,g—1,n—k—gq,...,n—k with the following properties:

(1) Rs.r(¢,2) is of class C= in z (resp. () and C' in ¢ (resp. z) with
C#zforr>n—k—q (resp. r <q—1);

(ii) Rsr(C,2) is of bidegree (s,r) with respect to z and of bidegree
(n—s,n—k—r—1) with respect to (;

(iil) 0, Rsr-1(¢,2) = —0¢Rsr(C,2) forO<r<g—1lorn—k—q+1<
r<mn-—k and ECRS,O(C7 Z) = ngs,n—k(Cv Z) = 07

(iv) there is a constant C > 0 such that for every e > 0, we have

| IR (G 2)] dA(Q) < Cr

¢eMpo
[(—=z|<e

(v) for every domain 2 @ My with piecewise C* boundary, if f is a C
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(s,r)-formon 2 (0<r<qg—1lorn—k—q+1<r<n-—k), then

szbe/\Rs,rfl_ Sgbf/\,R’s,r"i_ S f/\Rs,r
2 b2

Q

on {2,

(vi) for every open set 2 € My the integral operator SQ- NRsyr 15 a
bounded linear operator from LS, 1(£2) to Ci/rz(ﬁ) for any r < q—1 (pro-
vided 1l > 1) and anyr >n—k —q+1;

(vii) let £2 €@ Mo be an open set; if f € L. 1(82) is of class C! then
§o f ARy is of class CHY2 for r > n — k — q, and the same holds for
r <q—1if M is supposed to be of class C>t1.

By a different method, Polyakov [24] proved sharp estimates in Lipschitz—
Stein spaces (cf. [28]) for global solutions of d;, on C* g-concave CR man-
ifolds. Optimal Holder estimates for solutions of 9y, on hypersurfaces were
obtained in [12] and [27].

The aim of this paper is to give some applications of Theorem 0.1.

In Sections 2 and 3 respectively we construct local integral solution oper-
ators for 0}, on forms of low and high degrees. Estimates for these operators
are a consequence of Theorem 0.1(vii). An example showing that our esti-
mates are sharp is also given.

In Section 4 we obtain LP estimates for dy, at top degree on 1-concave
CR manifolds. Such estimates were proven on hypersurfaces in [8].

It is known from [3] that on g-concave CR manifolds one cannot solve in
general the dy, equation for (0, q)-forms. A criterion for global solvability on
such forms was given by Henkin in [14]. In Section 5 we prove the optimal
regularity for the dp-operator in this critical case.

In Section 7 we show a jump theorem for differential forms on ¢-concave
CR manifolds.

In [17] Henkin stated an analogous result to the classical Hartogs—Boch-
ner theorem on smooth 1-concave CR manifolds. In Section 8 we prove some
generalizations of Henkin’s result to CR manifolds and CR functions with
less smoothness.

Theorem 0.1 and the applications given in this paper essentially improve
the results of Airapetjan and Henkin [14], [1], [2] and also of the author in
[5] where homotopy formulas for 0y, were obtained with less explicit kernels
giving almost optimal but not optimal estimates.

The study of the tangential Cauchy—-Riemann equations by means of
explicit integral formulas with uniform estimates was initiated by Henkin
[15] and further developed later on in [10], [14], [1], [21],[22], [27]. For further
references and results on CR manifolds we refer the reader to the survey by
Henkin [16], the memoir of Tréves [29] and the book by Boggess [9].
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1. Preliminaries

1.1. CR manifolds. Let M be a real submanifold of class C? in C" de-
fined by

(1.1) M={z€2:01(2)=...=0k(2) =0}, 1<k<n,

where (2 is an open subset of C™ and the functions o,, 1 < v < k, are
real-valued functions of class C? on 2 with doi(2) A...Adox(2) # 0 for each
ze M.

We denote by TS (M) the complex tangent space to M at z € M, i.e.,

TE(M {g cCn: Zgij =0, v=1,. k}

We have dime¢ TS(M) > n — k. The submanifold M is called a Cauchy-
Riemann manifold (CR-manifold) if dimg TS (M) does not depend on z €
M. M is said to be CR generic if dime TS(M) = n — k for every z € M. If
M is CR generic, then we call M g-concave, 0 < g < (n — k)/2, if for each
z € M and every x € R*\ {0} the hermitian form

OQQI
8za 0Z3

COlC,Bu

where o, = 101 +. ..+ Zpok, has at least g negative eigenvalues on T (M).
If M is CR generic then we denote by Cém(M ) the space of differential

forms of type (s,r) on M which are of class C'. Here, two forms f and
g in Cém(M ) are considered to be equal if and only if for each form ¢ €
00 (£2) with compact support, we have

n—s,n—k—r

Vrne={gne

M M
We denote by [C ,.(M)]’ the dual space to Cfg,r(M). We define the tangential
Cauchy-Riemann operator on forms in [C,_,, _,_.(M)]" as follows. If u €
CL,.(M), 1 > 1, then u can be extended to a smooth form u € C. .(£2) and
we may set

Opu := Ot

It follows from the condition for equality of forms on M that this definition
does not depend on the choice of the extended form @. In general, for forms

u€lCh yn g (M) and felCl_,, (M), by definition
abu: f

will mean that for each form ¢ € C°
have

(Q) with compact support we

n—s,n—k—r
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S fAp=(-1)"*s S u A Op.
M M

We denote by C¢',.(M) (0 < a < 1) the space of differential forms which
are of type (s,r) and whose coefficients are a-Holder continuous on each
compact set in M.

Let [ be a nonnegative integer and 0 < o« < 1. Then we say that f is a
Cl*e form on M if f is of class C' and all derivatives of order < [ of f are
a-Holder continuous on M.

By Déyr (M) we denote the space of all f € Céyr (M) with compact support
and by [D. .(M)]’ its dual.

We denote by Lg.(M) the Banach space of (s,r)-forms with bounded
measurable coefficients on M endowed with the sup-norm.

1.2. The generalized Koppelman lemma. In this section we recall a formal
identity (the generalized Koppelman lemma) which will be used in the def-
inition of the kernels R ,. The exterior calculus we use here was developed
by Harvey and Polking in [13].

Let V be an open subset of C* x C"™. Suppose G : V — C" is a C! map.
We write

G(Ca Z) = (gl (C? Z), cee 7gn(C7 Z))

and we use the following notations:

G(G2)-(C=2) = 3 05(62)(G = %),
G(C,2).d(C —2) =Y _ g;(¢, 2)d(G — 2),
j=1

9¢.2G(C,2).d(C —2) = > c.2;(C, 2)d(¢ — 25),
j=1

where 5472 = gg +0,.

We define the CauchyFantappié form w€ by

G — G(Ca Z)d(< B Z)
G(¢2).(C —2)

on the set where G((, 2).(¢ — z) # 0.

Given m such maps, G7, 1 < j < m, we define the kernel
(G, ...,G™)

=w% AL AW A > @ .wC) A LA (D)

)

aj+t...tam=n—m

on the set where all the denominators are nonzero.
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LEMMA 1.2 (The generalized Koppelmann lemma).
Fe (G, :Z SN E NN
Jj=1

on the set where the denominators are monzero; the symbol G’ means that
the term G7 is deleted.

For a proof of this lemma we refer the reader to [13] or [9].

1.3. Barrier function. In this section, we construct a barrier function for
a hypersurface at a point where the Levi form has some positive eigenvalues.
For a detailed proof of what will follow we refer the reader to Section 3 in [19].

Let H be an oriented real hypersurface of class C2 in C™ defined by
H={z€2:p0(z) =0}
where (2 is an open subset of C" and p is a real-valued function of class C?

on (2 with do(z) # 0 for each z € H.
Denote by F((,-) the Levi polynomial of o at a point ¢ € (2, i.e.

22 8(] Z 8(]&( Zj)(Ck_Zk)

for(GQande(C”.

Let zg € H and T be the largest vector subspace of C™ such that the
Levi form of ¢ at 2% is positive definite on 7. Set dimT = d and suppose
d>1.

Denote by P the orthogonal projection from C™ onto 7', and set ) =
I — P. Then it follows from Taylor’s theorem that there exist a number R
and two positive constants A and « such that

(1.2) Re F(C,2) > o(C) — o(2) + al¢ — 2* = A|Q(C — 2)|?

for |20 — ¢| < R and |zg — 2| < R. Since g is of class C? on (2, we can find
C*> functions a*/ (k,j = 1,...,n) on a neighborhood U of z such that

9%0(¢)
9Cr9¢;

a

" (¢) ~

for all { € U. Set

n

F(¢2) =23 859—2@(@‘ —2z) = > d(OG = 2) (G — %)
j=1 95

k,j=1

for (z,{) € C* x U. Denote by Qj; the entries of the matrix @, i.e. Q =
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(Qkj)k j=1 (k= column index). For (z,() € C" x U we set

9;(C, 2) = 26;20 - Zakj(C)(Ck —z) + AZij(Ck — 2k),
J k=1 k=1

G(Ca Z) = (gl(gv Z), cee agn(Cv Z)),
¢(<7 Z) = G(Ca Z)(C - Z).
Since @ is an orthogonal projection, we have
O(¢,2) = F((,2) + AQ(C — =),
hence it follows from (1.2) that

(13) Red((,2) > o(¢) - o(=) + 51 - 2

for |z9 — (| < R and |29 — z| < R.
G is called a Leray map and & is called a barrier function of H (or p)
at zg.

DEFINITION 1.3. A map f defined on some complex manifold X will
be called k-holomorphic if, for each point £ € X, there exist holomorphic
coordinates hiy,...,h; in a neighborhood of £ such that f is holomorphic
with respect to hq, ..., hk.

LEMMA 1.4. For every fized ¢ € U, the map G((,z) and the function
&((,z) defined above are d-holomorphic in z € C™.

1.4. Some algebraic topology. Here we state some elementary facts from
algebraic topology which we need to define the kernels Rs,. Let N be a
positive integer. Then a p-simpler, 1 < p < N, will be every collection of
p linearly independent vectors in RY. We define S, as the set of all finite
formal linear combinations, with integer coefficients, of p-simplices.

Let 0 = [a1,...,a,] be a collection of p vectors in RY. Then we set

8j0’ = [al,...,?ij,...,ap]

for 1 <j<pand
p
0o =Y (~1)'9;0.
j=1

If1<75 <p,...,1 <7, <p—r, we define
&, 5,0 =0;(0;" ;0

J1 Jr—1---J1

where 8}0’ = 0jo. If 0 is a p-simplex defined as above then we define the
barycenter of o by

b(o) =

|

p
E aj.
J=1



Integral formula for Oy, 7

Now we define the first barycentric subdivision of o by

sd(o) = (—1)P+! Z (—1)itHir=1 (o), b(0j,0),... ,b(@f;ll___jla)].

jlv---yjpfl
1<ji<p—i+1

By linearity we can also define the first barycentric subdivision of any ele-
ment of S,. It is easy to see that
LEMMA 1.5. If o is an element of Sy, then sd(0o) = Osd(o).

The barycentric subdivision of higher order of an element o of S, is
defined as follows: for m > 2 we set
sd™ (o) = sd(sd™ (o).
sd’(0) and sd' (o) are defined respectively as o and sd (o).
The following lemma is basic in algebraic topology ([23]).

LEMMA 1.6. Given a simplex o and € > 0, there is an m such that each
simplex of sd™ o has diameter less than €.

2. The kernels R ,. In this section, we recall the kernels R ;.. First
we define some notations. Let k& be an integer. Let Z denote the set of all
subsets I C {%1,...,£k} such that |i| # |j| for all ¢,5 € I with i # j. For
I € 7, |I| denotes the number of elements in I. We set

7]
Al.-.|]\ = {()\1, Sy )‘\I|) S (R+)|I‘ : Z)\J = 1}
j=1
We define Z(1),1 <1 < k,as thesetofall I € Z with |I| =1;Z'(]),1 <1 <k,
denotes the set of all I € Z(1) of the form I = {ji,..., 5} with |j,| = v for
v=1,...,0. If I € Z, then we set

con ] — 1 if the number of negative elements in [ is even,
847\ —1  if the number of negative elements in [ is odd.

Let now M be a C2-smooth CR g-concave manifold of codimension k in
C™. Let zg € M, U C C™ be a neighborhood of zg and 91,...,0r : U — R
be functions of class C? such that

MﬁU:{§1::§k:O} and 8@1(20)/\.../\8@\k(20)750.

Since M is g-concave, it follows from Lemma 3.1.1 of [1] that we can find a
constant C' > 0 such that the functions

k
GHCYE (G=1...,h),
R v=1
Qj = k
v=1
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have the following property: for each I € 7 and every A € A, ;| the Levi
form of Aior, + ...+ Ajrjo1,, at zo has at least ¢ + k positive eigenvalues.

Let (e1,...,ex) be the canonical basis of R and set e_; := —e; for every
1<j<k. Let I=(j1,...,7x) bein Z'(k); set

k k
ANI = {Z)‘ieﬁ : Ay >0 for all 4, and Z)‘i = 1},

i=1 i=1

and for each a = Zle Ai€j,, let G, and @, be respectively the Leray map
and the barrier function at zy corresponding to g, = A19j, + ... + Apoy,
(see Sect. 1.3). We call g, (resp. ¢,) the defining function (resp. barrier
function) of M in direction a.

Let 0 = [a',...,a?], p > 1, be a collection of p vectors where a’ €
Ulel/(k) Ap for every 1 < i < k. Define

Qo] == 2(Gar,...,Gap).
We denote by S, the set of all finite formal linear combinations of such

collections with integer coefficients and we extend Q by linearity to S,. For

every 0 < s <n,every 0 <r <n-—pandany 7 €S, we define (NZS,T[T] as

the piece of £2[r] which is of type (s,7) in z. We may rewrite Lemma 1.2 as

follows:

LEMMA 2.7. For every T € S, we have 54,2(5[7'] = [07] outside the
stngularities.

Let I = (j1,...,51) beinZ’(l),1 <l < kando; = [ej,,...,e;]. Then by

continuity of the Levi form, by Lemma 1.4 and 1.6, we can find a positive

integer m independent of I and [ such that for every simplex 7 = [a', ..., d!]

in sd™(oy), the Leray maps of G,1,...,G, are ¢ + k-holomorphic in the
same directions with respect to the variable z € C". Therefore we have

LEMMA 2.8. There is a positive integer m such that for every I € T'(1),
1<I<Ek,anys>0and everyr >n—k—q-+1,

(1) 2ur(sd™ (o)) = 0.

(ii) 0,92 ,—1(sd™(o7)) = 0,
on the set where all the denominators are nonzero.

Let m be as in the previous lemma and v* € UIGI,(k) A; be such that

for any k-simplex 7 in sd"(o7), each collection of k elements in [v*, 7] is a
k-simplex. We adopt the following notation:

[l/*, ZZ: ciai] = Z cilv*, o4

(2
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for any element ), c;o; in S},. Set
(2.1) R((,2) = Z (sgn I)fZ[V*,Sdm(UI)](C, z).
I€T' (k)

DEFINITION 2.9. Let s € N with s <n. We define

R (C Z) — (_1)T(k+1)R57r(<7 Z) ifn—%k— q <r<n- k,’
s,r(G,2) ¢ (—1)"* DR, k1 r(2,¢) fO<Tr<g—1.
The coefficients of the kernel R ,.(¢, z) have the following form (see [7]):
N(¢ 2)
I (@0 (G, 2))
1 k1

where a',...,a*T! are vectors in R* such that every collection of k elements
in {a!,...,a¥"1} is a family of linearly independent vectors, r; > 1 for all
1<i<k+1, Zf;roln =n and |N(¢,2)| < C|¢ — z|.

(2.2)

3. Local solvability of J,, in low degrees. In this section we are
concerned with the local solvability of 0, when the data is of bidegree (0,7)
where r < g — 1.

We construct a local homotopy formula for r < g — 2. Such a formula
does not hold for r = g—1 (see [27]); instead we construct a solution operator
in this case. We give an example showing that our estimates are sharp. We
also derive a known result on the holomorphic extension of CR functions
from 1-concave CR manifolds [14].

THEOREM 3.10. Let M be a C*t'-smooth (I > 0) g-concave CR generic
submanifold of codimension k in C™ and zy a point in M. Then for every
open neighborhood U C M of zy and every r with 1 < r < q — 1, there exist
an open neighborhood V- C U of zg and linear integral operators

TT“ : Cg,r(U) - Cg,rfl(v)v ST : C[(]),T(U) - C[(]),rfl(v)
with the following properties:
(1) f = ngrf + Sr—i—lgbf fOT’ 1<r<qg-2
(i) f =0T f ifr=q—1 and Opf =0,
(iii) if f € Ch,.(U) then T, f € Co12 (V).
Proof. Without loss of generality we may assume that U = My N B &
My where M is defined as in Theorem 0.1 and B is a small ball centered

at 29. So we can use the integral formula from Theorem 0.1(v): for every C !
(0,7)-form fon U (0 <r <qg—1), we have

(3.1) f(2) = ORI, f(2) = RO f(2) + RV f(2),
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where

(3:2) R f(z)= | FOARos1(C,2) and
CeUu

(33) RUf(2) = | F(O ARG 2).
¢ebU

We must now analyze the boundary term. From the definition of the
kernel Ry, (see (2.2) and inequality (1.3)) it is clear that there is a small
ball B’ € B centered at zy such that the kernel Ry ,-((, z) is nonsingular for
¢ €bU and z € B’ and therefore REV f is of class C'*! on B'.

Let H be Henkin’s d-homotopy operator on B’. Then on B’ we have
(3.4) RPUf = HOREV f + 0. HRPV f.

Lemma 1.2 implies that for r < g —1, ( € bU and £ € B/,
(3:5)  9¢Ro,(C:€)

= —0cRo.r11(C,€) £ Z (sgn 1) 2 n—k—r—1(sd™o7)(£, ),
IeT/ (k)
because
> (sgnD)R(v*,sd™dor)(€,¢) = 0.
1T/ (k)

Now for r < ¢ — 2 the second term on the right-hand side of (3.5)
vanishes by Lemma 2.8(i). Part (i) then follows from (3.1), (3.4), (3.5)
and Stokes’ theorem if we set V. = B’ N My, T, = HREY + RV | and
Spi1 = (—1)**"HRPY, — RY.

For r = ¢ — 1, suppose that 0, f = 0 on U. First by Stokes’ theorem for
any £ € B’ we have

(3.6) | (O AIR4(¢,6) = 0.

¢ebU

On the other hand, by Lemma 2.8(ii) we have, for every I € Z'(k),
5@“ ﬁn,nfqu(SdeI)(fa C) =0

off the singularities. So after shrinking B’ we can use similar arguments to
[20] (see Lemma 5.4 and Lemma 5.5) to approach for every fixed £ € B’ the
form (2, ,_p_q(sd™o7)(€,¢) uniformly on bU by a sequence of dc-closed
forms on a neighborhood of U. Thus by Stokes’ theorem for every I € Z'(k)
and any £ € B’ we obtain

(3.7) V FOAunkq(sd™or)(€C) = 0.

¢eblU
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Now (3.5)-(3.7) imply that 9RPY, f = 0 on B’. Therefore by setting T,_; =
HREZ + R 5, we obtain (i) from (3.1) and (3.4). (iii) is a consequence
of the estimates from Theorem 0.1 and the regularity of the operator H. =

We now exhibit an example showing that our estimates for the solution
of Oy, are optimal.

Let D = {2z € C°: |21]?>—|222 +|23)> —|24)?*+ 25/ < 1} and M = bDNB
where B is a small ball centered at zp = (1,0,0,0,0). Then M is 2-concave
near zg. It is clear that for all z € D,

Re(l — 21 + |ZQ|2 + |Z4|2) > %(|Z1 — 1|2 + |22|2 + |23|2 + |Z4|2 + |Z5|2).

Let In be the principal branch of logarithm in C\ R~. We consider the
function defined by u(zp) = 0 and
u(z)

Z2

_ f D .
ml—z =P+ ) 7€ \ {20}

The function u is continuous on D and of class C* on D\ {2} It is easy
to see that du extends to a continuous (0, 1)-form on D. Set f = dpu.

PROPOSITION 3.11. There exists no function v on M with Oyv = f such
that ||v]|a,m < 00 with o > 1/2.

Proof. See [4]. m

Let M be a C3-smooth 1-concave CR submanifold of C". Let zy, Mj,
Ro,0 be as in Theorem 0.1. Let U = My N B @ My, where B is a small
ball centered at zy. It follows from the proof of Theorem 3.10 that if f is
a C! function with 9, f = 0 on U then ORSY f = 0 on a C"-neighborhood
of zp. By using the fact that CR generic manifolds are uniqueness sets for
holomorphic functions (see [9]), this yields a proof of the following known
extension theorem (see [14]).

PROPOSITION 3.12. Let M be a 1-concave CR submanifold of class C3.
Then any C* CR function defined on an open set U C M extends to a
holomorphic function on some C™-neighborhood of U.

4. Local solvability of ), in high degrees. This section is devoted
to the construction of a local 9, homotopy formula for forms of bidegree
(0,7) with » > n—k — g+ 1. In contrast to low degree forms the homotopy
formula here needs no shrinking of the domains.

THEOREM 4.13. Let M be a g-concave CR generic submanifold of codi-
mension k and of class C'*2 in C™ (I > 0), 2y a point in M, and My an
open neighborhood of zy as in Theorem 0.1. Let V be a convexr domain with
C? boundary such that U =V N My € My and bU is of class C*. Then for
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every rwithn —k —q+1<r <n—k, there exist linear integral operators
T"“ : C((]),T(U) - C((]),T—I(U)7 S’f : C((]),T(U) - C((]),T—I(U)

with the following properties:

(i) f=0Tf + Sr110f,

(ii) if f € €3, (T)NCh (U) then T,.f € Cy*(U).

Proof. By the integral formula from Theorem 0.1, for every C L(0,7r)-
form fon U (n—k—q+1<r <n—k) we have

f(2) = ORI f(2) = RYOLf(2) + RV f(2),

where RU | f and REV f are defined respectively by (3.2) and (3.3).

Let Gy (-, z) be the Leray map of bV defined for z € C™. It is known that

Go(, z) is holomorphic with respect to z and the associated barrier function

does not vanish for z € U and ¢ € bU. Define

Q7] := 2(Go,Gors ..., Gor)
for any simplex 7 = [v,...,v*] in S,. Extend this operation, by linearity,
to all elements of S; (see Section 2 for notations). Set

Fop = (=1)r:+D Z (sgnI)ﬁg,r[V*,Sdm(m)].

1€/ (k)
For each I € T'(k) and every component 7 = [v!, ..., v¥] in sd™ (o),
(4.1) 20,71 =0

for r > n—k—q+1, because the maps Go, G,1, ..., G, are g+k-holomorphic
with respect to the variable z in the same directions. Since

Z (sgn 1)2°(v*, sd™do)(¢, 2) = 0,
1€T/ (k)
it follows from Lemma 2.7, Lemma 1.5 and (4.1) that
OcFor(C,2) + 0. Fpr1(¢,2) = —Ro (¢, 2)
for (,z € My with ( # z and r > n—k — g+ 1. Part (i) then follows by
setting
Trf = (_1)k S f A FO,r—l + R'r[{fl!ﬂ
bU
Syp10nf = (1)1 S Ovf A For +RYOLF.
bU
Part (ii) is a direct consequence of (i) and Theorem 0.1(vii). m

5. Holder and L? estimates for 0), at top degree. Let M be a
CR 1-concave manifold of class C2*! (I > 0) and of codimension k in C.
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Let zp € M and My € M be a neighborhood of zy as in Theorem 0.1.
Let {2 C My. Since the boundary term in the integral representation from
Theorem 0.1(v) vanishes at top degree (i.e. for r = n — k), we can say more
about the regularity of Oy, in this case; indeed, we obtain optimal Holder
estimates up to the boundary and L” estimates. For f € Lg5, ;. (§2), define

RO f(z) = S Ron-k-1(¢,2) A f(2).

0

THEOREM 5.14. For f € LgS, ,.(£2) one has

(ii) there is a constant C such that
IR f(z") — R7f(2%)]

|21 — 22|1/2

< Ol flloo

(iil) if moreover fis of class C'(2) then AR f is of class CT1/2(§2),
(iv) for 1 <p <2n and 1 < q < 2np/(2n — p), one has

IR? fllLa < ClIf|lze,
(v) if 2n < p < o0, then
IR fllp= < C|lfllzr-

Proof. (i), (ii) and (iii) follow from Theorem 0.1.
To prove (iv) and (v) we need the following lemma:

LEMMA 5.15. Let M((,z) denote any of the cofficients of the kernel
Ron-k—1(¢,2). For each s with 1 < s < 2n/2n — 1, there is a constant
Cy > 0 such that

B | M) dAz) < C,
z€ES

i) | IM(C )] dAQ) < C..
Cen

Proof. It is easy to see from (1.3) and (2.2) that |M((, 2)|® is majorized
by a finite number of terms of the type

C
Hf:l |Pgi (C, Z)|s+s/lc|< _ Z|(2n—2k—3)s

where a!, ..., a* are linearly independent (cf. [7]).
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Since M is CR generic, Im @1 (-, 2),...,Im P,k (-, z) can be taken as local
coordinates on My (cf. [5]). Taking into account (1.3) we obtain
s dx
S ’M(C7 Z)‘ d)\(C) = ¢ S k 2)s+s/k (2n—2k—3)s
CEN XeRr2n—* Hj:l(‘Xj‘ + ‘X’ ) ’X‘
| X|<A
dX
<C S | X[@n—D(-1) | X |2n—2k—1
X€R2n_2k
| X|<A

where A is a positive number. The last integral is finite if s < 2n/(2n — 1).
(ii) is proved similarly.
The above lemma implies part (v) and also the following:

IR fllpe <C|fllr forl1<q<2n/(2n—1)

(cf. [25], Appendix B). Interpolating this inequality with (v), we obtain
(iv). m

6. Regularity theorem for 0. It is known from [3] that in general
on g-concave CR manifolds one cannot solve locally the tangential Cauchy—
Riemann equation for data of bidegree (0,q). However, we shall prove the
existence of a regular solution when the data is a regular 9y, exact (0, ¢)-form
(see Theorem 6.19). First we need some preparation.

Let M be a C"*3-smooth CR generic g-concave submanifold of codimen-
sion k in C™. Let zp € M and let My C M be a neighborhood of zy as in
Theorem 0.1.

Let 2 C My be a domain. Let 0 <r < ¢g—1or n—k—q <r <n—k and
for f € L2, 1(£2) set

REF(2) = | F(O) ARnr(C,2).

0
By Theorem 0.1 we have

R? : Dfl,r+1(9) - C’Il’L,T(‘Q)'
Define
RE G (D) = [P ia ()
by setting for T' € [C}, ()] and ¢ € D, . ,(£2),
RET(p) = T(RE ).

By duality we obtain from Theorem 0.1

PROPOSITION 6.16. Let 2 C My be a domain. Then for any T €
[C},.. ()] with &T € [C} (D) and0<r<qorn—k—q+1<r<n—k,

n,r—1
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we have
(=1)*T = RZ | 0,T + 0, RIT.
By Fubini’s theorem we obtain the following

LEMMA 6.17. Let 1 <r<qorn—-k—q+1<r<n-k, fEC(l)m(Q)
and let (f) be the current associated with f. Then

Rl = (0§ 1O A Runrk(Q)):

¢en
We also need the following

LEMMA 6.18. If T € [Cf%nfkfl(ﬁ)]’ then there exists g € Céj%l(()\supp T)

such that
(R T)p = (g} for all g € D)y, 1 (2\ suppT) .

Proof. It is sufficient to show that such a function ¢ exists over each
open set U € 2\supp 7. Fix such an open set U. Then choose a C* function
x on C" such that x = 1 in a neighborhood of supp7" and x = 0 in some
neighborhood of U. Then for ¢ € D! (£2) one has

n.n—k

~

(R4 T)e = (X(IT, | (1= 0)(ORnn-1-£(C,2) A2())

cen

= <T, | x(2)1 =) (QRnn-1-£(C, 2) A cp(C)>
Cen

= (=D | T((=) (1 =) ORnn-k-1(¢,2) Ap(C)

cen

because x(2)(1 — x)({)Rn.n—k—1((, 2) is a differential form of class C'*! for
(e 2 and z € suppT. Set

glo = DT ()1 = X)ORpn—k-1(2)). =
THEOREM 6.19. Assume M is a C't3-smooth CR generic g-concave sub-
manifold of codimension k in C".

(i) If ¢ = 1 and T is a distribution of order | on M such that O,T is
defined by a C' 1-form on M, then T is defined by a C**'/2 function.

(ii) Let zo € M. Then there is a neighborhood My C M of zy such that
for each f € C(l)vq(Mg), if T is a compactly supported current of bidegree
(0,q — 1) on My satisfying O,T = (f) then there exists a current S of order
I and of bidegree (0,q — 1) such that T — 0yS is defined by a C'T/? form.

Proof. If My C M is a neighborhood of zy as in Proposition 6.16 then
we can write

(—1)FT — 9, RMo T =RM, _ (f).

n—k—q+1 n—k—q
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The result in (ii) now follows from Lemma 6.17 and Theorem 0.1(vii).

Let us prove (i): It is sufficient to prove the statement on a neighborhood
of each point. Let zyp € M and let My C M be a neighborhood of zy as in
Proposition 6.16. Let {2 € My be a domain and y a compactly supported
function on {2 with x = 1 on a neighborhood of 2. By using Lemma 6.17
one obtains

(DT = (1) xT = (RM, 8y (xT))
= RY, @) AT (| XA QA R-k1(50)).

cen

In this way (i) follows from Lemma 6.18 and Theorem 0.1(vii). m

For hypersurfaces Theorem 6.19 was proved in [12]. For C? g-concave CR
manifolds, nonoptimal versions of this theorem were given in [2] and [5].

REMARK 6.20. In Theorem 6.19, if M is supposed to be only of class
C'*2 then in (i) (resp. (ii)) T (vesp. T — 9,S) will be of class C' (cf. [7]).

Remark 6.20 together with Proposition 3.12 imply the following result
(see [14]):

COROLLARY 6.21. Let M be a C'*t2-smooth 1-concave CR manifold
(I > 1). Then every CR distribution of order v on M with 0 < r <[ is
defined by a function of class C'12.

7. Jump theorem for CR forms. Let M be a C'*3-smooth CR
g-concave submanifold of codimension k in C". Let V be a C**! 1-codimen-
sional submanifold of M such that M \ V has exactly two connected com-
ponents VT and V.

DEFINITION 7.22. Let feC{,. (V). We say that fis CRon V if {, f A
dp = 0 for all forms ¢ € C3%,_,_;_,.(C") such that suppe NV € V.

THEOREM 7.23. Suppose M is of class C'** (resp. C'*3) and let f €
Céﬁ}(V) with0 <r<q—2 (resp. n—k—q+1<r<n-—k) bea CR form
on V. Then, for every point zg € V', there is a neighborhood U of zg in M
and two forms F* € Céﬁl/Q(U NV*) such that F* is CR on UNV* and

_ -
fIVﬂU—F\VmU F|VnU'

Proof. Let zg € V and My C M be a neighborhood of zy where Theo-
rem 0.1 holds. Let x be a smooth cutoff function on M with suppx € M,
and x = 1 on a neighborhood U of z. Let £2 C MyNV* be a relatively com-
pact domain with C'*! boundary in M such that supp NV & bS2. Let f be
a C!t1 extension of f to £2. Suppose 0 < r < g—2orn—k—q+1<r<n—k
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and define
Gt (z) = xfl(2) + Sgb(Xf)(O ARor(C,2) for z € L2,
Q

G (2) = V(X)) ARor(C.2)  for z.€ Mo\ 2.
k9]

Theorem 0.1 yields
GE(z) = | X(OF(Q) AR0r(C2) + Db | xF(Q) ARos-1(C,2)

b2 z€N
for zc UNV* GF € CHY2(UNVH) and
fvou = GF/OU - GFVHU’

Next we show that 9,G* = H where H is a smooth form on a neigh-
borhood of zy. First recall from Theorem 0.1 that

ngO,T(gv Z) = _ECRO,r—kl((v Z).
Then using Stokes’ theorem and the fact that f is a CR form on b{2, we get

BuGE(2) = (1) [ DY) A F(O) AR (C,2) = H(2).
b2
Since x = 1 on U, H is of class C'*! on a neighborhood z, (see Theo-
rem 0.1(i)). Now by Theorems 3.10 and 4.13 we can solve the equation
O,F = H on a neighborhood of z, with a C'*! differential form F. After
shrinking U we may set F*¥ =G+ + F.

8. The Hartogs—Bochner effect on CR manifolds. It is well known
since Ehrenpreis [11] that the Hartogs—Bochner phenomenon is closely re-
lated to the solution of & with compact support. In [17] Henkin studied
the solvability of 9, with compact support in connection with the Hartogs—
Bochner effect for smooth CR functions on 1-concave CR manifolds.

In this section we give some generalizations of Henkin’s result to the case
of CR manifolds and CR functions with less smoothness.

8.1. Jump formulas. Let M be a C3-smooth 1-concave CR submanifold
of C™. Let zp, My and Rg o be as in Theorem 0.1. In this subsection we prove
some jump properties of the kernel Ry ¢ which are analogous to ones enjoyed
by the Martinelli-Bochner kernel in C". To do that we first establish some
estimates for Ry .

LEMMA 8.24. Let 2 @ My be a domain with C? boundary. Let 0 < v <1
and 0 < o <1. Then
(8.1) | IR0 el = 2" dAQ) < Car®,

CELN
[(—z]<y
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(8.2) | I1Ro0(¢ 2)pall dAC) < C(1 —ny),
CELRN
[C—z|>
1 2
83 | 1(Roo(e.2") — Roo(C, 2pallc — 21 da() < o7
CELN
[¢—2'>27

for all 2%, 2% in My with v > |2' — 22|.

Proof. Since Ro,(¢,2) is of maximal holomorphic degree in ¢ and M

is CR generic then for every collection a',...,a* of linearly independent

vectors in R” there is a constant C' > 0 such that
IRo0(C.2), | < CIR00C2) - 19201 (C) A 1 Dt ()

for ( € bf2 and z € My with z # (. For 1 <[ <k set

Boq1 (¢
(8.4) U (¢, ) 1= Im Z Qacj G~ =)

It is clear that (8.4) yields

10041 (C) A - .. A Doar (O pell

<c(lc=2+ 3 et (G2) A Adcug (G2 - I¢ - 211
(j17"'7jl)€Pl(k)

for ¢ € bf2 and z € My. Then it is not difficult to see from (2.2) and (1.3)

(cf. [7]) that the integral in (8.1) is bounded by

¢ Ax(¢)

‘C _ Z’2n7kflfo¢

cebn
[(—z]<vy

and a finite sum of terms of the type

S ||d<ua1(§,z) Ao Ndetgs, ((,Z)|bg||d)\(<)
ceve Tomt (e (2, Q)] +1¢ = 2[2)HV/F|G — 2[2n—h—1-t=a=2l/k
[(=2|<~

where we have used the following fact:

[war (€, 2)] +1¢ = 21* < Clugs (2,Q)] + ¢ — 2)

We obtain estimate (8.1) by using Range—Siu’s trick (see the proof of Propo-
sition 3.7 in [26]), which allows us to consider ugj, (-, 2), ..., Uy (+, 2) as local
coordinates on bf2. (8.2) and (8.3) are shown in the same way. m

Now we can give a jump formula for functions defined on the boundary
of a domain in M.
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PROPOSITION 8.25. Let 2 € My be a domain with C* boundary. Let f
be a continuous Holder function of order a (0 < aw < 1) on bf2 and F the
function defined on My \ b82 by

F(z):= | f(OR00(C 2).
cebe

Then Fq (resp. F\Mo\ﬁ) has a Holder continuous extension '+ (resp. F~)

of order a/2 up to bf2 and Fﬁ:g —Foo=1r

Proof. Let fbe an a-Holder continuous extension of f to My. Set
G(z)= | (f(Q) = F(2))Roo(¢, 2).
cebn

It follows from (8.1) that G is well defined for z€bf2. Let us now show that
G is a/2-Holder continuous on W with 2 € W € M.
Let z', 22 € W and set v = |2' — 22|*/2. Then we have

G -G = | (FO - FEDRC 2

cebn
(-2t <2y
1O - FEB)Ra(G )
¢ebn
I¢—=t<2y
+ | (O = FE))(Roo(C ") = Roo(C,2%))
CEbD
I¢—zt>2y
+(fE) - ) | Reol¢, 2.
CEbD
I¢—z">2y

Then using Lemma 8.24 and the fact that fis a-Holder, one obtains
|G(zY) — G(22)] < Ozt — 2272,

Since 9¢Ro.0(¢, 2) = 0 for (¢, z) € My x My with z # ¢ (cf. Theorem 0.1(iii))
we have by Stokes’ theorem

(8.5) | Roo(¢,2)=0 forze M\ 2.
¢ebs2
On the other hand, Theorem 0.1(v) gives
(8.6) S Roo(C,2) =1 for z € £2.
¢ebs2

(8.5) and (8.6) imply that G(z) = F(z) for z € Mo \ 2 and G(z) = F(z) —
f(z) for z € 2. Setting F* = G + f and F~ = G completes the proof. m
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We now give a C! version of the above jump theorem.

PROPOSITION 8.26. Suppose that M is of class C'T*, 1> 0. Let 2 € M,
be a domain with C*t' boundary. Let f be a C*t! function on b82 and let F
be the function defined on My \ bf2 by

F(z):= | f(ORoo(C 2)-

¢ebL
Then Fp (resp. F\Mo\ﬁ) has a continuous extension Ft* (resp. F~) which
is of class C'T/2 wup to the boundary and F‘gQ —Fo = f-

Proof. Let fbe a C"*! extension of f to My. Then it follows from
Theorem 0.1(v) that

F(2)+ V0uf(Q) ARoo(C,2) for 2 € 12,
Roo(C,2) =4 . -~ ° _
bSQf(O/\ o0(62) Sabf(C)ARO,O(Caz) for z € My \ £2.
P

The result follows from Theorem 0.1(vii) and the fact that dpf is of
class C'. m

8.2. Extension theorems. We are now ready to prove some extension
theorems of Hartogs—Bochner type for CR functions on 1-concave CR man-
ifolds.

THEOREM 8.27. Let X be an n-dimensional complex analytic manifold.
Let M be a C® CR 1-concave submanifold of codimension k in X. Suppose
that M has the following property:

() For every Oy-closed and compactly supported (0,1)-current T of order
0 on M, there is a compactly supported measure S in M such that

S =T.

Let D be a relatively compact domain with C* boundary in M such that
M\ D is connected and let f be a CR Hélder continuous function of order a,
0 < a<1,ondD. Then there exists a unique Holder continuous function
F of order /2 on D which is CR on D and such that F(z) = f(2) for all
z € 0D. Moreover,

F(2)| < .
max [F(2)] < max |f(2)]

Proof. We consider the current T' € [ngn_k_l(M)]’ defined by

T(p) = S fo forpe C?L,nfkfl(M)'
bD
We have supp T’ = bD. Since f is CR on bD we have 9, T = 0. Now by the
condition (*) there exists a measure S € [CO (M)]" such that 0,5 =T.

n,n—k
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Since M is 1-concave, S is defined by a C3 CR function on each connected
component of M \ bD (cf. Corollary 6.21).

Since M \ D is connected and S is a compactly supported CR function
on M\ D, by Proposition 3.12 and uniqueness of holomorphic functions (see
also [1], Theorem 1) one has

(8.7) S=0 onM\D.

Denote by F' the CR function defining S on D and let us study the
regularity of F' up to the boundary. Since the problem is local we may work
in an open subset of C™. Let zy € bD and My be a neighborhood of zg where
the integral representation from Theorem 0.1 holds. Let y be a smooth cutoff
function on M such that supp x € My and x = 1 on a neighborhood U of z.

Set T' = d(xS). Then T € [C)) ,,_,_1(Mp)]'. Tt follows from Proposi-
tion 6.16 that

(88) XS = (DR T".

By Lemma 6.18, Ro_r_1T" is defined on My \ suppT” and in particular on
(Mo \ bD)NU by the continuous function (—1)*T" (R, n—x—1(z,")).

Let £2 € My N D be an open subset of My such that suppxy NbD & b2.
For z € My \ suppT’ we have

(89) T'(Run—k-1(2-) = (Bpx)S, Roo(-2) + | FOX() ARo0(¢, 2).
bs2

Since O,y = 0 on U, we see from Theorem 0.1(i) that
(8.10) {(ObX)S, Ro.0(:,2)) is a C? function on U.

Set 2% := 2 and 27 := M, \ 2. It follows from (8.7)-(8.10) and Proposi-
tion 8.25 that F has an «/2-Hélder continuous extension to 2% N U, which
we denote also by F, such that Fl,ony = fipenu-

Now if w € D is such that max.cpp|F(2)| < |F(w)], it follows from what
we have just proved that the function 1/F(z) — F(w) could be extended
through w. But this is not possible, hence max__5|F(2)| < max.enbpl|f(2)].
This implies in particular that the extension F' is unique. m

On C2-smooth 1-concave CR manifolds, a weaker version of Theorem 8.27
was obtained in [6].

The proof of the following theorem is carried out exactly as above by
using Proposition 8.26 instead of Proposition 8.25.

THEOREM 8.28. Let X be an n-dimensional complex analytic manifold.
Let M be a C'** CR 1-concave submanifold of codimension k in X (I > 0).
Suppose that M satisfies condition (x). Let D be a relatively compact domain
with C'*1 boundary in M such that M \ D is connected and let f be a CR
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function of class C'*! on OD. Then there exists a unique C't'/2 function F
on D which is CR on D and F(z) = f(z) for all z € OD.

In conclusion, a few words on the condition (x). In [17] Henkin gave
some geometric conditions ensuring (x). More general sufficient geometric
conditions were given by Ch. Laurent in [18]. For | = oo Theorem 8.28
was obtained in both papers. Let us recall Henkin’s conditions: Let M be
a C"*2-smooth CR 1-concave submanifold of a complex manifold X defined
by M ={z€ W :p(2) =0,...,05(2) = O}, where W is a domain such
that W € X, and set M® = {z € W : 01(2) = e1,...,0k(2) = ex}, € =
(€1,...,€r). Let 9 >0 be such that the manifold M¢ is 1-concave for all &
with |e| < g9. We let Wy be the union |J,, .., M*. Henkin proved that for
every sufficiently small strictly pseudoconvex € in C" with § € Wy, M N6
satisfies the condition (*). A small modification of Henkin’s arguments yields
the following general result:

THEOREM 8.29. Let zg € M and B a small ball centered at zy with
B € Wy and such that Theorem 0.1 holds on My = M N B. Then for every
Op-closed and compactly supported (0,1)-current T of order | on My, there
is a compactly supported current S of order | on My such that OpS = T.

Proof. We use the notations of Section 6. By Theorem 8 of [1] for
any ¢ € ijn w_1(Mp) the C! form ¢ — Rnn »_10bp, which is CR by
Theorem 0.1, can be approximated in the C! topology by 0-exact k1
forms on B. Since 9,1 = 0, we have T((P—Rfl\/{%,k,lgbﬁﬁ) = 0 and therefore

_abRn VAR T(R%%—k—ﬁb‘ﬁ’) =T(¢p).
Since ijﬁ w_1(Mo) is dense in Df%nfkfl(Mg), we obtain
—O,RMo, T =T.

Now denote by wr the connected component of My \ supp7 whose
boundary contains the boundary of My. From Lemma 6.18 it follows that
on My \ suppT, Rn w_11 is defined by a C! CR function. If we choose
a ball B" € B centered at zg and such that suppT &€ B’, then for each
Y € Dnn (Mo \ B') the form RM o is CR on My N B’ (cf. Theo-

rem 0.1(v)) and then can be approximated there in the C! topology by
d-exact Cpo,_;_, forms on B’ (see Theorem 8 of [1]). But since T = 0

and suppT C B’, this implies that Rn w11 (@) = T(Rﬁ/{%fkflgo) =0 for
all such . Hence Rﬁ/ffkflT:O on Mo\ B’. By Proposition 3.12 and unique-
ness of holomorphic functions, it follows that ﬁan i1l =0 on wr. We set

S = —ﬁnM_Ok_lT. Then S is of order [ since T is of order | and for any
compact subset K of My, there is a positive constant C' such that for every
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k — 1)-form ¢ with support in K,
Ryt k1ol < Clol,

where, |¢|; is the usual C'-norm of ¢ on My (cf. [7]). m

=

=
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