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Some applications of a new integral formula for ∂b

by Moulay-Youssef Barkatou (Poitiers)

Abstract. LetM be a smooth q-concave CR submanifold of codimension k in C
n. We

solve locally the ∂b-equation onM for (0, r)-forms, 0 ≤ r ≤ q−1 or n−k−q+1 ≤ r ≤ n−k,
with sharp interior estimates in Hölder spaces. We prove the optimal regularity of the ∂b-
operator on (0, q)-forms in the same spaces. We also obtain Lp estimates at top degree.
We get a jump theorem for (0, r)-forms (r ≤ q− 2 or r≥n− k− q+1) which are CR on a
smooth hypersurface ofM .We prove some generalizations of the Hartogs–Bochner–Henkin
extension theorem on 1-concave CR manifolds.

In [7] we proved the following

Theorem 0.1. Let M be a C2+l-smooth q-concave CR generic subman-

ifold of codimension k in C
n. Let z0 ∈ M and s ∈ N with s ≤ n. Then

there exist an open neighborhood M0 ⊆ M of z0 and kernels Rs,r(ζ, z) for

r = 0, . . . , q − 1, n − k − q, . . . , n − k with the following properties:

(i) Rs,r(ζ, z) is of class C∞ in z (resp. ζ) and Cl in ζ (resp. z) with

ζ 6= z for r ≥ n − k − q (resp. r ≤ q − 1);

(ii) Rs,r(ζ, z) is of bidegree (s, r) with respect to z and of bidegree

(n − s, n − k − r − 1) with respect to ζ;

(iii) ∂zRs,r−1(ζ, z) = −∂ζRs,r(ζ, z) for 0 < r ≤ q − 1 or n− k − q + 1 ≤
r < n − k and ∂ζRs,0(ζ, z) = ∂zRs,n−k(ζ, z) = 0;

(iv) there is a constant C > 0 such that for every ε > 0, we have\
ζ∈M0

|ζ−z|≤ε

‖Rs,r(ζ, z)‖ dλ(ζ) ≤ Cε;

(v) for every domain Ω ⋐ M0 with piecewise C1 boundary , if f is a C1
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(s, r)-form on Ω (0 ≤ r ≤ q − 1 or n − k − q + 1 ≤ r ≤ n − k), then

f = ∂b

\
Ω

f ∧Rs,r−1 −
\
Ω

∂bf ∧Rs,r +
\

bΩ

f ∧Rs,r

on Ω;

(vi) for every open set Ω ⋐ M0 the integral operator
T
Ω
· ∧ Rs,r is a

bounded linear operator from L∞
s,r+1(Ω) to C

1/2
s,r (Ω) for any r ≤ q − 1 (pro-

vided l ≥ 1) and any r ≥ n − k − q + 1;

(vii) let Ω ⋐ M0 be an open set ; if f ∈ L∞
s,r+1(Ω) is of class Cl thenT

Ω
f ∧ Rs,r is of class Cl+1/2 for r ≥ n − k − q, and the same holds for

r ≤ q − 1 if M is supposed to be of class C3+l.

By a different method, Polyakov [24] proved sharp estimates in Lipschitz–
Stein spaces (cf. [28]) for global solutions of ∂b on C4 q-concave CR man-
ifolds. Optimal Hölder estimates for solutions of ∂b on hypersurfaces were
obtained in [12] and [27].

The aim of this paper is to give some applications of Theorem 0.1.

In Sections 2 and 3 respectively we construct local integral solution oper-
ators for ∂b on forms of low and high degrees. Estimates for these operators
are a consequence of Theorem 0.1(vii). An example showing that our esti-
mates are sharp is also given.

In Section 4 we obtain Lp estimates for ∂b at top degree on 1-concave
CR manifolds. Such estimates were proven on hypersurfaces in [8].

It is known from [3] that on q-concave CR manifolds one cannot solve in
general the ∂b equation for (0, q)-forms. A criterion for global solvability on
such forms was given by Henkin in [14]. In Section 5 we prove the optimal
regularity for the ∂b-operator in this critical case.

In Section 7 we show a jump theorem for differential forms on q-concave
CR manifolds.

In [17] Henkin stated an analogous result to the classical Hartogs–Boch-
ner theorem on smooth 1-concave CR manifolds. In Section 8 we prove some
generalizations of Henkin’s result to CR manifolds and CR functions with
less smoothness.

Theorem 0.1 and the applications given in this paper essentially improve
the results of Airapetjan and Henkin [14], [1], [2] and also of the author in
[5] where homotopy formulas for ∂b were obtained with less explicit kernels
giving almost optimal but not optimal estimates.

The study of the tangential Cauchy–Riemann equations by means of
explicit integral formulas with uniform estimates was initiated by Henkin
[15] and further developed later on in [10], [14], [1], [21], [22], [27]. For further
references and results on CR manifolds we refer the reader to the survey by
Henkin [16], the memoir of Trèves [29] and the book by Boggess [9].
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1. Preliminaries

1.1. CR manifolds. Let M be a real submanifold of class C2 in C
n de-

fined by

(1.1) M = {z ∈ Ω : ̺1(z) = . . . = ̺k(z) = 0}, 1 ≤ k ≤ n,

where Ω is an open subset of C
n and the functions ̺ν , 1 ≤ ν ≤ k, are

real-valued functions of class C2 on Ω with d̺1(z)∧ . . .∧d̺k(z) 6= 0 for each
z ∈ M .

We denote by T C
z (M) the complex tangent space to M at z ∈ M , i.e.,

T C

z (M) =

{
ζ ∈ C

n :

n∑

j=1

∂̺ν

∂zj
(z)ζj = 0, ν = 1, . . . , k

}
.

We have dimC T C
z (M) ≥ n − k. The submanifold M is called a Cauchy–

Riemann manifold (CR-manifold) if dimC T C
z (M) does not depend on z ∈

M . M is said to be CR generic if dimC T C
z (M) = n− k for every z ∈ M . If

M is CR generic, then we call M q-concave, 0 ≤ q ≤ (n − k)/2, if for each
z ∈ M and every x ∈ R

k \ {0} the hermitian form

∑

α,β

∂2̺x

∂zα∂zβ
(z)ζαζβ ,

where ̺x = x1̺1 + . . .+xk̺k, has at least q negative eigenvalues on T C
z (M).

If M is CR generic then we denote by Cl
s,r(M) the space of differential

forms of type (s, r) on M which are of class Cl. Here, two forms f and
g in Cl

s,r(M) are considered to be equal if and only if for each form ϕ ∈
C∞

n−s,n−k−r(Ω) with compact support, we have\
M

f ∧ ϕ =
\

M

g ∧ ϕ.

We denote by [Cl
s,r(M)]′ the dual space to Cl

s,r(M). We define the tangential

Cauchy–Riemann operator on forms in [Cl
n−s,n−k−r(M)]′ as follows. If u ∈

Cl
s,r(M), l ≥ 1, then u can be extended to a smooth form ũ ∈ Cl

s,r(Ω) and
we may set

∂bu := ∂ũ|M .

It follows from the condition for equality of forms on M that this definition
does not depend on the choice of the extended form ũ. In general, for forms
u ∈ [Cl

n−s,n−k−r+1(M)]′ and f ∈ [Cl
n−s,n−k−r(M)]′, by definition

∂bu = f

will mean that for each form ϕ ∈ C∞
n−s,n−k−r(Ω) with compact support we

have
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M

f ∧ ϕ = (−1)r+s
\

M

u ∧ ∂ϕ.

We denote by Cα
s,r(M) (0 < α < 1) the space of differential forms which

are of type (s, r) and whose coefficients are α-Hölder continuous on each
compact set in M .

Let l be a nonnegative integer and 0 < α < 1. Then we say that f is a
Cl+α form on M if f is of class Cl and all derivatives of order ≤ l of f are
α-Hölder continuous on M .

By Dl
s,r(M) we denote the space of all f ∈ Cl

s,r(M) with compact support

and by [Dl
s,r(M)]′ its dual.

We denote by L∞
s,r(M) the Banach space of (s, r)-forms with bounded

measurable coefficients on M endowed with the sup-norm.

1.2. The generalized Koppelman lemma. In this section we recall a formal
identity (the generalized Koppelman lemma) which will be used in the def-
inition of the kernels Rs,r. The exterior calculus we use here was developed
by Harvey and Polking in [13].

Let V be an open subset of C
n ×C

n. Suppose G : V → C
n is a C1 map.

We write

G(ζ, z) = (g1(ζ, z), . . . , gn(ζ, z))

and we use the following notations:

G(ζ, z).(ζ − z) =

n∑

j=1

gj(ζ, z)(ζj − zj),

G(ζ, z).d(ζ − z) =

n∑

j=1

gj(ζ, z)d(ζj − zj),

∂ζ,zG(ζ, z).d(ζ − z) =

n∑

j=1

∂ζ,zgj(ζ, z)d(ζj − zj),

where ∂ζ,z = ∂ζ + ∂z.
We define the Cauchy–Fantappiè form ωG by

ωG =
G(ζ, z).d(ζ − z)

G(ζ, z).(ζ − z)

on the set where G(ζ, z).(ζ − z) 6= 0.
Given m such maps, Gj , 1 ≤ j ≤ m, we define the kernel

Ω(G1, . . . , Gm)

= ωG1

∧ . . . ∧ ωGm

∧
∑

α1+...+αm=n−m

(∂ζ,zω
G1

)α1 ∧ . . . ∧ (∂ζ,zω
Gm

)
αm

on the set where all the denominators are nonzero.
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Lemma 1.2 (The generalized Koppelmann lemma).

∂ζ,zΩ(G1, . . . , Gm) =

m∑

j=1

(−1)jΩ(G1, . . . , Ĝj , . . . , Gm)

on the set where the denominators are nonzero; the symbol Ĝj means that

the term Gj is deleted.

For a proof of this lemma we refer the reader to [13] or [9].

1.3. Barrier function. In this section, we construct a barrier function for
a hypersurface at a point where the Levi form has some positive eigenvalues.
For a detailed proof of what will follow we refer the reader to Section 3 in [19].

Let H be an oriented real hypersurface of class C2 in C
n defined by

H = {z ∈ Ω : ̺(z) = 0}

where Ω is an open subset of C
n and ̺ is a real-valued function of class C2

on Ω with d̺(z) 6= 0 for each z ∈ H.

Denote by F (ζ, ·) the Levi polynomial of ̺ at a point ζ ∈ Ω, i.e.

F (ζ, z) = 2

n∑

j=1

∂̺(ζ)

∂ζj
(ζj − zj) −

n∑

j,k=1

∂2̺(ζ)

∂ζj∂ζk
(ζj − zj)(ζk − zk)

for ζ ∈ Ω and z ∈ C
n.

Let z0 ∈ H and T be the largest vector subspace of C
n such that the

Levi form of ̺ at z0 is positive definite on T . Set dimT = d and suppose
d ≥ 1.

Denote by P the orthogonal projection from C
n onto T , and set Q =

I − P . Then it follows from Taylor’s theorem that there exist a number R
and two positive constants A and α such that

(1.2) ReF (ζ, z) ≥ ̺(ζ) − ̺(z) + α|ζ − z|2 − A|Q(ζ − z)|2

for |z0 − ζ| ≤ R and |z0 − z| ≤ R. Since ̺ is of class C2 on Ω, we can find
C∞ functions akj (k, j = 1, . . . , n) on a neighborhood U of z0 such that

∣∣∣∣a
kj(ζ) −

∂2̺(ζ)

∂ζk∂ζj

∣∣∣∣ <
α

2n2

for all ζ ∈ U . Set

F̃ (ζ, z) = 2

n∑

j=1

∂̺(ζ)

∂ζj
(ζj − zj) −

n∑

k,j=1

akj(ζ)(ζk − zk)(ζj − zj)

for (z, ζ) ∈ C
n × U . Denote by Qkj the entries of the matrix Q, i.e. Q =
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(Qkj)
n
k,j=1 (k = column index). For (z, ζ) ∈ C

n × U we set

gj(ζ, z) = 2
∂̺(ζ)

∂ζj
−

n∑

k=1

akj(ζ)(ζk − zk) + A

n∑

k=1

Qkj(ζk − zk),

G(ζ, z) = (g1(ζ, z), . . . , gn(ζ, z)),

Φ(ζ, z) = G(ζ, z).(ζ − z).

Since Q is an orthogonal projection, we have

Φ(ζ, z) = F̃ (ζ, z) + A|Q(ζ − z)|2,

hence it follows from (1.2) that

(1.3) Re Φ(ζ, z) ≥ ̺(ζ) − ̺(z) +
α

2
|ζ − z|2

for |z0 − ζ| ≤ R and |z0 − z| ≤ R.
G is called a Leray map and Φ is called a barrier function of H (or ̺)

at z0.

Definition 1.3. A map f defined on some complex manifold X will
be called k-holomorphic if, for each point ξ ∈ X, there exist holomorphic
coordinates h1, . . . , hk in a neighborhood of ξ such that f is holomorphic
with respect to h1, . . . , hk.

Lemma 1.4. For every fixed ζ ∈ U , the map G(ζ, z) and the function

Φ(ζ, z) defined above are d-holomorphic in z ∈ C
n.

1.4. Some algebraic topology. Here we state some elementary facts from
algebraic topology which we need to define the kernels Rs,r. Let N be a
positive integer. Then a p-simplex , 1 ≤ p ≤ N , will be every collection of
p linearly independent vectors in R

N . We define Sp as the set of all finite
formal linear combinations, with integer coefficients, of p-simplices.

Let σ = [a1, . . . , ap] be a collection of p vectors in R
N . Then we set

∂jσ = [a1, . . . , âj , . . . , ap]

for 1 ≤ j ≤ p and

∂σ =

p∑

j=1

(−1)j∂jσ.

If 1 ≤ j1 ≤ p, . . . , 1 ≤ jr ≤ p − r, we define

∂r
jr ...j1

σ = ∂jr
(∂r−1

jr−1...j1
σ)

where ∂1
j σ = ∂jσ. If σ is a p-simplex defined as above then we define the

barycenter of σ by

b(σ) =
1

p

p∑

j=1

aj .
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Now we define the first barycentric subdivision of σ by

sd(σ) = (−1)p+1
∑

j1,...,jp−1

1≤ji≤p−i+1

(−1)j1+...+jp−1 [b(σ), b(∂j1σ), . . . , b(∂p−1
jp−1...j1

σ)].

By linearity we can also define the first barycentric subdivision of any ele-
ment of Sp. It is easy to see that

Lemma 1.5. If σ is an element of Sp, then sd(∂σ) = ∂sd(σ).

The barycentric subdivision of higher order of an element σ of Sp is
defined as follows: for m ≥ 2 we set

sdm(σ) = sd(sdm−1(σ)).

sd0(σ) and sd1(σ) are defined respectively as σ and sd(σ).
The following lemma is basic in algebraic topology ([23]).

Lemma 1.6. Given a simplex σ and ε > 0, there is an m such that each

simplex of sdmσ has diameter less than ε.

2. The kernels Rs,r. In this section, we recall the kernels Rs,r. First
we define some notations. Let k be an integer. Let I denote the set of all
subsets I ⊆ {±1, . . . ,±k} such that |i| 6= |j| for all i, j ∈ I with i 6= j. For
I ∈ I, |I| denotes the number of elements in I. We set

∆1...|I| =
{
(λ1, , . . . , , λ|I|) ∈ (R+)|I| :

|I|∑

j=1

λj = 1
}

.

We define I(l), 1 ≤ l ≤ k, as the set of all I ∈ I with |I| = l; I ′(l), 1 ≤ l ≤ k,
denotes the set of all I ∈ I(l) of the form I = {j1, . . . , jl} with |jν | = ν for
ν = 1, . . . , l. If I ∈ I, then we set

sgn I :=

{
1 if the number of negative elements in I is even,
−1 if the number of negative elements in I is odd.

Let now M be a C2-smooth CR q-concave manifold of codimension k in
C

n. Let z0 ∈ M , U ⊆ C
n be a neighborhood of z0 and ̺̂1, . . . , ̺̂k : U → R

be functions of class C2 such that

M ∩ U = {̺̂1 = . . . = ̺̂k = 0} and ∂ ̺̂1(z0) ∧ . . . ∧ ∂ ̺̂k(z0) 6= 0.

Since M is q-concave, it follows from Lemma 3.1.1 of [1] that we can find a
constant C > 0 such that the functions

̺j :=





̺̂j + C

k∑

ν=1

̺̂2
ν (j = 1, . . . , k),

−̺̂−j + C

k∑

ν=1

̺̂2
ν (j = −1, . . . ,−k),
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have the following property: for each I ∈ I and every λ ∈ ∆1...|I| the Levi
form of λ1̺I1 + . . . + λ|I|̺I|I| at z0 has at least q + k positive eigenvalues.

Let (e1, . . . , ek) be the canonical basis of R
k and set e−j := −ej for every

1 ≤ j ≤ k. Let I = (j1, . . . , jk) be in I ′(k); set

∆̃I =
{ k∑

i=1

λieji
: λi ≥ 0 for all i, and

k∑

i=1

λi = 1
}

,

and for each a =
∑k

i=1 λieji
, let Ga and Φa be respectively the Leray map

and the barrier function at z0 corresponding to ̺a = λ1̺j1 + . . . + λk̺jk

(see Sect. 1.3). We call ̺a (resp. φa) the defining function (resp. barrier

function) of M in direction a.

Let σ = [a1, . . . , ap], p ≥ 1, be a collection of p vectors where ai ∈⋃
I∈I′(k) ∆I for every 1 ≤ i ≤ k. Define

Ω̃[σ] := Ω(Ga1 , . . . , Gap).

We denote by S′
p the set of all finite formal linear combinations of such

collections with integer coefficients and we extend Ω̃ by linearity to S′
p. For

every 0 ≤ s ≤ n, every 0 ≤ r ≤ n − p and any τ ∈ S′
p, we define Ω̃s,r[τ ] as

the piece of Ω̃[τ ] which is of type (s, r) in z. We may rewrite Lemma 1.2 as
follows:

Lemma 2.7. For every τ ∈ S′
p, we have ∂ζ,zΩ̃[τ ] = Ω̃[∂τ ] outside the

singularities.

Let I = (j1, . . . , jl) be in I ′(l), 1 ≤ l ≤ k and σI = [ej1 , . . . , ejl
]. Then by

continuity of the Levi form, by Lemma 1.4 and 1.6, we can find a positive
integer m independent of I and l such that for every simplex τ = [a1, . . . , al]
in sdm(σI), the Leray maps of Ga1 , . . . , Gal are q + k-holomorphic in the
same directions with respect to the variable z ∈ C

n. Therefore we have

Lemma 2.8. There is a positive integer m such that for every I ∈ I ′(l),
1 ≤ l ≤ k, any s ≥ 0 and every r ≥ n − k − q + 1,

(i) Ω̃s,r(sd
m(σI)) = 0,

(ii) ∂zΩ̃s,r−1(sd
m(σI)) = 0,

on the set where all the denominators are nonzero.

Let m be as in the previous lemma and ν∗ ∈
⋃

I∈I′(k) ∆̃I be such that

for any k-simplex τ in sdm(σI), each collection of k elements in [ν∗, τ ] is a
k-simplex. We adopt the following notation:

[
ν∗,

∑

i

ciσi

]
=

∑

i

ci[ν
∗, σi]
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for any element
∑

i ciσi in S′
p. Set

(2.1) R(ζ, z) =
∑

I∈I′(k)

(sgn I)Ω̃[ν∗, sdm(σI)](ζ, z).

Definition 2.9. Let s ∈ N with s ≤ n. We define

Rs,r(ζ, z) :=

{
(−1)r(k+1)Rs,r(ζ, z) if n − k − q ≤ r ≤ n − k,
(−1)r(k+1)Rn−s,n−k−1−r(z, ζ) if 0 ≤ r ≤ q − 1.

The coefficients of the kernel Rs,r(ζ, z) have the following form (see [7]):

(2.2)
N (ζ, z)

∏k+1
i=1 (Φai(ζ, z))ri

where a1, . . . , ak+1 are vectors in R
k such that every collection of k elements

in {a1, . . . , ak+1} is a family of linearly independent vectors, ri ≥ 1 for all

1 ≤ i ≤ k + 1,
∑k+1

i=0 ri = n and |N (ζ, z)| ≤ C|ζ − z|.

3. Local solvability of ∂b in low degrees. In this section we are
concerned with the local solvability of ∂b when the data is of bidegree (0, r)
where r ≤ q − 1.

We construct a local homotopy formula for r ≤ q − 2. Such a formula
does not hold for r = q−1 (see [27]); instead we construct a solution operator
in this case. We give an example showing that our estimates are sharp. We
also derive a known result on the holomorphic extension of CR functions
from 1-concave CR manifolds [14].

Theorem 3.10. Let M be a C3+l-smooth (l ≥ 0) q-concave CR generic

submanifold of codimension k in C
n and z0 a point in M . Then for every

open neighborhood U ⊂ M of z0 and every r with 1 ≤ r ≤ q − 1, there exist

an open neighborhood V ⊂ U of z0 and linear integral operators

Tr : C0
0,r(U) → C0

0,r−1(V ), Sr : C0
0,r(U) → C0

0,r−1(V )

with the following properties:

(i) f = ∂bTrf + Sr+1∂bf for 1 ≤ r ≤ q − 2,

(ii) f = ∂bTrf if r = q − 1 and ∂bf = 0,

(iii) if f ∈ Cl
0,r(U) then Trf ∈ C

l+1/2
0,r (V ).

P r o o f. Without loss of generality we may assume that U = M0 ∩ B ⋐

M0 where M0 is defined as in Theorem 0.1 and B is a small ball centered
at z0. So we can use the integral formula from Theorem 0.1(v): for every C1

(0, r)-form f on U (0 ≤ r ≤ q − 1 ), we have

(3.1) f(z) = ∂bR
U
r−1f(z) −RU

r ∂bf(z) + RbU
r f(z),
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where

RU
r−1f(z) =

\
ζ∈U

f(ζ) ∧R0,r−1(ζ, z) and(3.2)

RbU
r f(z) =

\
ζ∈bU

f(ζ) ∧R0,r(ζ, z).(3.3)

We must now analyze the boundary term. From the definition of the
kernel R0,r (see (2.2) and inequality (1.3)) it is clear that there is a small
ball B′

⋐ B centered at z0 such that the kernel R0,r(ζ, z) is nonsingular for
ζ ∈ bU and z ∈ B′ and therefore RbU

r f is of class Cl+1 on B′.

Let H be Henkin’s ∂-homotopy operator on B′. Then on B′ we have

(3.4) RbU
r f = H∂RbU

r f + ∂zHRbU
r f.

Lemma 1.2 implies that for r ≤ q − 1, ζ ∈ bU and ξ ∈ B′,

(3.5) ∂ξR0,r(ζ, ξ)

= −∂ζR0,r+1(ζ, ξ) ±
∑

I∈I′(k)

(sgn I)Ω̃n,n−k−r−1(sd
mσI)(ξ, ζ),

because ∑

I∈I′(k)

(sgn I)Ω̃(ν∗, sdm∂σI)(ξ, ζ) = 0.

Now for r ≤ q − 2 the second term on the right-hand side of (3.5)
vanishes by Lemma 2.8(i). Part (i) then follows from (3.1), (3.4), (3.5)
and Stokes’ theorem if we set V = B′ ∩ M0, Tr = HRbU

r + RU
r−1 and

Sr+1 = (−1)k+rHRbU
r+1 −RU

r .

For r = q − 1, suppose that ∂bf = 0 on U . First by Stokes’ theorem for
any ξ ∈ B′ we have

(3.6)
\

ζ∈bU

f(ζ) ∧ ∂ζR0,q(ζ, ξ) = 0.

On the other hand, by Lemma 2.8(ii) we have, for every I ∈ I ′(k),

∂ζΩ̃n,n−k−q(sd
mσI)(ξ, ζ) = 0

off the singularities. So after shrinking B′ we can use similar arguments to
[20] (see Lemma 5.4 and Lemma 5.5) to approach for every fixed ξ ∈ B′ the

form Ω̃n,n−k−q(sd
mσI)(ξ, ζ) uniformly on bU by a sequence of ∂ζ-closed

forms on a neighborhood of U . Thus by Stokes’ theorem for every I ∈ I ′(k)
and any ξ ∈ B′ we obtain

(3.7)
\

ζ∈bU

f(ζ) ∧ Ω̃n,n−k−q(sd
mσI)(ξ, ζ) = 0.
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Now (3.5)–(3.7) imply that ∂RbU
q−1f = 0 on B′. Therefore by setting Tq−1 =

HRbU
q−1 + RU

q−2, we obtain (ii) from (3.1) and (3.4). (iii) is a consequence
of the estimates from Theorem 0.1 and the regularity of the operator H.

We now exhibit an example showing that our estimates for the solution
of ∂b are optimal.

Let D = {z ∈ C
5 : |z1|

2−|z2|
2+|z3|

2−|z4|
2+|z5|

2 < 1} and M = bD∩B
where B is a small ball centered at z0 = (1, 0, 0, 0, 0). Then M is 2-concave
near z0. It is clear that for all z ∈ D,

Re(1 − z1 + |z2|
2 + |z4|

2) ≥ 1
2 (|z1 − 1|2 + |z2|

2 + |z3|
2 + |z4|

2 + |z5|
2).

Let ln be the principal branch of logarithm in C \ R
−. We consider the

function defined by u(z0) = 0 and

u(z) =
z2

ln(1 − z1 + |z2|2 + |z4|2)
for z ∈ D \ {z0}.

The function u is continuous on D and of class C∞ on D \ {z0}. It is easy
to see that ∂u extends to a continuous (0, 1)-form on D. Set f = ∂bu.

Proposition 3.11. There exists no function v on M with ∂bv = f such

that ‖v‖α,M < ∞ with α > 1/2.

P r o o f. See [4].

Let M be a C3-smooth 1-concave CR submanifold of C
n. Let z0, M0,

R0,0 be as in Theorem 0.1. Let U = M0 ∩ B ⋐ M0, where B is a small
ball centered at z0. It follows from the proof of Theorem 3.10 that if f is
a C1 function with ∂bf = 0 on U then ∂RbU

0 f = 0 on a C
n-neighborhood

of z0. By using the fact that CR generic manifolds are uniqueness sets for
holomorphic functions (see [9]), this yields a proof of the following known
extension theorem (see [14]).

Proposition 3.12. Let M be a 1-concave CR submanifold of class C3.

Then any C1 CR function defined on an open set U ⊆ M extends to a

holomorphic function on some Cn-neighborhood of U.

4. Local solvability of ∂b in high degrees. This section is devoted
to the construction of a local ∂b homotopy formula for forms of bidegree
(0, r) with r ≥ n− k − q + 1. In contrast to low degree forms the homotopy
formula here needs no shrinking of the domains.

Theorem 4.13. Let M be a q-concave CR generic submanifold of codi-

mension k and of class Cl+2 in C
n (l ≥ 0), z0 a point in M , and M0 an

open neighborhood of z0 as in Theorem 0.1. Let V be a convex domain with

C2 boundary such that U = V ∩ M0 ⋐ M0 and bU is of class C1. Then for
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every r with n − k − q + 1 ≤ r ≤ n − k, there exist linear integral operators

Tr : C0
0,r(U) → C0

0,r−1(U), Sr : C0
0,r(U) → C0

0,r−1(U)

with the following properties:

(i) f = ∂bTrf + Sr+1∂bf ,

(ii) if f ∈ C0
0,r(U) ∩ Cl

0,r(U) then Trf ∈ C
l+1/2
0,r (U).

P r o o f. By the integral formula from Theorem 0.1, for every C1 (0, r)-
form f on U (n − k − q + 1 ≤ r ≤ n − k) we have

f(z) = ∂bR
U
r−1f(z) −RU

r ∂bf(z) + RbU
r f(z),

where RU
r−1f and RbU

r f are defined respectively by (3.2) and (3.3).
Let G0(·, z) be the Leray map of bV defined for z ∈ C

n. It is known that
G0(·, z) is holomorphic with respect to z and the associated barrier function
does not vanish for z ∈ U and ζ ∈ bU . Define

Ω̃0[τ ] := Ω(G0, Gν1 , . . . , Gνk )

for any simplex τ = [ν1, . . . , νk] in S′
k. Extend this operation, by linearity,

to all elements of S′
k (see Section 2 for notations). Set

F0,r := (−1)r(k+1)
∑

I∈I′(k)

(sgn I)Ω̃0
0,r[ν

∗, sdm(σI)].

For each I ∈ I ′(k) and every component τ = [ν1, . . . , νk] in sdm(σI),

(4.1) Ω̃0
0,r[τ ] = 0

for r ≥ n−k−q+1, because the maps G0, Gν1 , . . . , Gνk are q+k-holomorphic
with respect to the variable z in the same directions. Since

∑

I∈I′(k)

(sgn I)Ω̃0(ν∗, sdm∂σI)(ζ, z) = 0,

it follows from Lemma 2.7, Lemma 1.5 and (4.1) that

∂ζF0,r(ζ, z) + ∂zF0,r−1(ζ, z) = −R0,r(ζ, z)

for ζ, z ∈ M0 with ζ 6= z and r ≥ n − k − q + 1. Part (i) then follows by
setting

Trf = (−1)k
\

bU

f ∧ F0,r−1 + RU
r−1f,

Sr+1∂bf = (−1)r+1
\

bU

∂bf ∧ F0,r + RU
r ∂bf.

Part (ii) is a direct consequence of (i) and Theorem 0.1(vii).

5. Hölder and Lp estimates for ∂b at top degree. Let M be a
CR 1-concave manifold of class C2+l (l ≥ 0) and of codimension k in C

n.
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Let z0 ∈ M and M0 ⋐ M be a neighborhood of z0 as in Theorem 0.1.
Let Ω ⊂ M0. Since the boundary term in the integral representation from
Theorem 0.1(v) vanishes at top degree (i.e. for r = n− k), we can say more
about the regularity of ∂b in this case; indeed, we obtain optimal Hölder
estimates up to the boundary and Lp estimates. For f ∈ L∞

0,n−k(Ω), define

RΩf(z) =
\
Ω

R0,n−k−1(ζ, z) ∧ f(z).

Theorem 5.14. For f ∈ L∞
0,n−k(Ω) one has

(i) f = ∂bRΩf,

(ii) there is a constant C such that

‖RΩf(z1) − RΩf(z2)‖

|z1 − z2|1/2
≤ C‖f‖∞,

(iii) if moreover f is of class Cl(Ω) then ∂RΩf is of class Cl+1/2(Ω),

(iv) for 1 ≤ p < 2n and 1 ≤ q < 2np/(2n − p), one has

‖RΩf‖Lq ≤ C‖f‖Lp ,

(v) if 2n < p ≤ ∞, then

‖RΩf‖L∞ ≤ C‖f‖Lp .

P r o o f. (i), (ii) and (iii) follow from Theorem 0.1.

To prove (iv) and (v) we need the following lemma:

Lemma 5.15. Let M(ζ, z) denote any of the cofficients of the kernel

R0,n−k−1(ζ, z). For each s with 1 ≤ s < 2n/2n − 1, there is a constant

Cs > 0 such that

(i)
\

z∈Ω

|M(ζ, z)|s dλ(z) ≤ Cs,

(ii)
\

ζ∈Ω

|M(ζ, z)|s dλ(ζ) ≤ Cs.

P r o o f. It is easy to see from (1.3) and (2.2) that |M(ζ, z)|s is majorized
by a finite number of terms of the type

C
∏k

i=1 |Φai(ζ, z)|s+s/k|ζ − z|(2n−2k−3)s

where a1, . . . , ak are linearly independent (cf. [7]).
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Since M is CR generic, Im Φa1(·, z), . . . , Im Φak(·, z) can be taken as local
coordinates on M0 (cf. [5]). Taking into account (1.3) we obtain\

ζ∈Ω

|M(ζ, z)|s dλ(ζ) ≤ C
\

X∈R
2n−k

|X|<A

dX
∏k

j=1(|Xj | + |X|2)s+s/k|X|(2n−2k−3)s

≤ C
\

X∈R
2n−2k

|X|<A

dX

|X|(2n−1)(s−1) |X|2n−2k−1

where A is a positive number. The last integral is finite if s < 2n/(2n − 1).
(ii) is proved similarly.

The above lemma implies part (v) and also the following:

‖RΩf‖Lq ≤ C‖f‖L1 for 1 ≤ q < 2n/(2n − 1)

(cf. [25], Appendix B). Interpolating this inequality with (v), we obtain
(iv).

6. Regularity theorem for ∂b. It is known from [3] that in general
on q-concave CR manifolds one cannot solve locally the tangential Cauchy–
Riemann equation for data of bidegree (0, q). However, we shall prove the
existence of a regular solution when the data is a regular ∂b exact (0, q)-form
(see Theorem 6.19). First we need some preparation.

Let M be a Cl+3-smooth CR generic q-concave submanifold of codimen-
sion k in C

n. Let z0 ∈ M and let M0 ⊂ M be a neighborhood of z0 as in
Theorem 0.1.

Let Ω ⊂ M0 be a domain. Let 0 ≤ r ≤ q−1 or n−k−q ≤ r ≤ n−k and
for f ∈ L∞

n,r+1(Ω) set

RΩ
r f(z) :=

\
Ω

f(ζ) ∧Rn,r(ζ, z).

By Theorem 0.1 we have

RΩ
r : Dl

n,r+1(Ω) → Cl
n,r(Ω).

Define

R̂Ω
r : [Cl

n,r(Ω)]′ → [Dl
n,r+1(Ω)]′

by setting for T ∈ [Cl
n,r(Ω)]′ and ϕ ∈ Dl

n,r+1(Ω),

R̂Ω
r T (ϕ) = T (RΩ

r ϕ).

By duality we obtain from Theorem 0.1

Proposition 6.16. Let Ω ⊂ M0 be a domain. Then for any T ∈
[Cl

n,r(Ω)]′ with ∂bT ∈ [Cl
n,r−1(Ω)]′ and 0 ≤ r ≤ q or n−k−q+1 ≤ r ≤ n−k,
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we have

(−1)kT = R̂Ω
r−1∂bT + ∂bR̂

Ω
r T.

By Fubini’s theorem we obtain the following

Lemma 6.17. Let 1 ≤ r ≤ q or n − k − q + 1 ≤ r ≤ n − k, f ∈ Cl
0,r(Ω)

and let 〈f〉 be the current associated with f. Then

R̂Ω
n−k−r〈f〉 = (−1)k

〈 \
ζ∈Ω

f(ζ) ∧Rn,n−r−k(·, ζ)
〉
.

We also need the following

Lemma 6.18. If T ∈ [Cl
n,n−k−1(Ω)]′ then there exists g ∈ Cl+1

0,0 (Ω\supp T )
such that

(R̂Ω
n−k−1T )ϕ = 〈g〉ϕ for all ϕ ∈ Dl

n,n−k(Ω \ suppT ) .

P r o o f. It is sufficient to show that such a function g exists over each
open set U ⋐Ω\supp T . Fix such an open set U . Then choose a C∞ function
χ on C

n such that χ = 1 in a neighborhood of suppT and χ = 0 in some
neighborhood of U . Then for ϕ ∈ Dl

n,n−k(Ω) one has

(R̂Ω
n−k−1T )ϕ =

〈
χ(z)T,

\
ζ∈Ω

(1 − χ)(ζ)Rn,n−1−k(ζ, z) ∧ ϕ(ζ)
〉

=
〈
T,

\
ζ∈Ω

χ(z)(1 − χ)(ζ)Rn,n−1−k(ζ, z) ∧ ϕ(ζ)
〉

= (−1)k
\

ζ∈Ω

T (χ(z)(1 − χ)(ζ)Rn,n−k−1(ζ, z)) ∧ ϕ(ζ)

because χ(z)(1 − χ)(ζ)Rn,n−k−1(ζ, z) is a differential form of class Cl+1 for
ζ ∈ Ω and z ∈ suppT . Set

g|U := (−1)kT (χ(z)(1 − χ)(·)Rn,n−k−1(·, z)).

Theorem 6.19. Assume M is a Cl+3-smooth CR generic q-concave sub-

manifold of codimension k in C
n.

(i) If q = 1 and T is a distribution of order l on M such that ∂bT is

defined by a Cl 1-form on M , then T is defined by a Cl+1/2 function.

(ii) Let z0 ∈ M . Then there is a neighborhood M0 ⊂ M of z0 such that

for each f ∈ Cl
0,q(M0), if T is a compactly supported current of bidegree

(0, q − 1) on M0 satisfying ∂bT = 〈f〉 then there exists a current S of order

l and of bidegree (0, q − 1) such that T − ∂bS is defined by a Cl+1/2 form.

P r o o f. If M0 ⊂ M is a neighborhood of z0 as in Proposition 6.16 then
we can write

(−1)kT − ∂bR̂
M0

n−k−q+1T = R̂M0

n−k−q〈f〉.
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The result in (ii) now follows from Lemma 6.17 and Theorem 0.1(vii).

Let us prove (i): It is sufficient to prove the statement on a neighborhood
of each point. Let z0 ∈ M and let M0 ⊂ M be a neighborhood of z0 as in
Proposition 6.16. Let Ω ⋐ M0 be a domain and χ a compactly supported
function on Ω with χ ≡ 1 on a neighborhood of Ω. By using Lemma 6.17
one obtains

(−1)kT = (−1)kχT = (R̂M0

n−k−1∂b(χT ))

= (R̂M0

n−k−1(∂bχ) ∧ T ) ±
〈 \

ζ∈Ω

χ(ζ) ∧ f(ζ) ∧Rn,n−k−1(·, ζ)
〉
.

In this way (i) follows from Lemma 6.18 and Theorem 0.1(vii).

For hypersurfaces Theorem 6.19 was proved in [12]. For C2 q-concave CR
manifolds, nonoptimal versions of this theorem were given in [2] and [5].

Remark 6.20. In Theorem 6.19, if M is supposed to be only of class
Cl+2 then in (i) (resp. (ii)) T (resp. T − ∂bS) will be of class Cl (cf. [7]).

Remark 6.20 together with Proposition 3.12 imply the following result
(see [14]):

Corollary 6.21. Let M be a Cl+2-smooth 1-concave CR manifold

(l ≥ 1). Then every CR distribution of order r on M with 0 ≤ r ≤ l is

defined by a function of class Cl+2.

7. Jump theorem for CR forms. Let M be a Cl+3-smooth CR
q-concave submanifold of codimension k in C

n. Let V be a Cl+1 1-codimen-
sional submanifold of M such that M \ V has exactly two connected com-
ponents V + and V −.

Definition 7.22. Let f ∈C0
0,r(V ). We say that f is CR on V if

T
V

f ∧

∂ϕ = 0 for all forms ϕ ∈ C∞
0,n−k−1−r(C

n) such that suppϕ ∩ V ⋐ V .

Theorem 7.23. Suppose M is of class Cl+4 (resp. Cl+3) and let f ∈
Cl+1
0,r (V ) with 0 ≤ r ≤ q − 2 (resp. n− k − q + 1 ≤ r ≤ n− k) be a CR form

on V. Then, for every point z0 ∈ V , there is a neighborhood U of z0 in M

and two forms F± ∈ C
l+1/2
0,r (U ∩ V ±) such that F± is CR on U ∩ V ± and

f|V ∩U = F+
|V ∩U − F−

|V ∩U .

P r o o f. Let z0 ∈ V and M0 ⊂ M be a neighborhood of z0 where Theo-
rem 0.1 holds. Let χ be a smooth cutoff function on M with suppχ ⋐ M0

and χ ≡ 1 on a neighborhood U of z0. Let Ω ⊂ M0∩V + be a relatively com-
pact domain with Cl+1 boundary in M0 such that suppχ∩V ⋐ bΩ. Let f̃ be
a Cl+1 extension of f to Ω. Suppose 0 ≤ r ≤ q−2 or n−k−q+1 ≤ r ≤ n−k
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and define

G+(z) = χf̃(z) +
\
Ω

∂b(χf̃)(ζ) ∧R0,r(ζ, z) for z ∈ Ω,

G−(z) =
\
Ω

∂b(χf̃)(ζ) ∧R0,r(ζ, z) for z ∈ M0 \ Ω.

Theorem 0.1 yields

G±(z) =
\

bΩ

χ(ζ)f(ζ) ∧R0,r(ζ, z) + ∂b

\
z∈Ω

χf̃(ζ) ∧R0,r−1(ζ, z)

for z ∈ U ∩ V ±, G± ∈ Cl+1/2(U ∩ V ±) and

f|V ∩U = G+
|V ∩U − G−

|V ∩U .

Next we show that ∂bG± = H where H is a smooth form on a neigh-
borhood of z0. First recall from Theorem 0.1 that

∂zR0,r(ζ, z) = −∂ζR0,r+1(ζ, z).

Then using Stokes’ theorem and the fact that f is a CR form on bΩ, we get

∂bG±(z) = (−1)k+r+1
\

bΩ

∂χ(ζ) ∧ f(ζ) ∧R0,r+1(ζ, z) = H(z).

Since χ = 1 on U , H is of class Cl+1 on a neighborhood z0 (see Theo-
rem 0.1(i)). Now by Theorems 3.10 and 4.13 we can solve the equation
∂bF = H on a neighborhood of z0 with a Cl+1 differential form F . After
shrinking U we may set F± = G± + F .

8. The Hartogs–Bochner effect on CR manifolds. It is well known
since Ehrenpreis [11] that the Hartogs–Bochner phenomenon is closely re-
lated to the solution of ∂ with compact support. In [17] Henkin studied
the solvability of ∂b with compact support in connection with the Hartogs–
Bochner effect for smooth CR functions on 1-concave CR manifolds.

In this section we give some generalizations of Henkin’s result to the case
of CR manifolds and CR functions with less smoothness.

8.1. Jump formulas. Let M be a C3-smooth 1-concave CR submanifold
of C

n. Let z0, M0 and R0,0 be as in Theorem 0.1. In this subsection we prove
some jump properties of the kernel R0,0 which are analogous to ones enjoyed
by the Martinelli–Bochner kernel in C

n. To do that we first establish some
estimates for R0,0.

Lemma 8.24. Let Ω ⋐ M0 be a domain with C2 boundary. Let 0 < γ ≤ 1
and 0 < α ≤ 1. Then

(8.1)
\

ζ∈bΩ
|ζ−z|<γ

‖R0,0(ζ, z)|bΩ‖|ζ − z|α dλ(ζ) ≤ Cαγα,
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(8.2)
\

ζ∈bΩ
|ζ−z|>γ

‖R0,0(ζ, z)|bΩ‖ dλ(ζ) ≤ C(1 − ln γ),

(8.3)
\

ζ∈bΩ

|ζ−z1|>2γ

‖(R0,0(ζ, z1) −R0,0(ζ, z2))|bΩ‖|ζ − z2|α dλ(ζ) ≤ C
|z1 − z2|

γ2−α

for all z1, z2 in M0 with γ > |z1 − z2|.

P r o o f. Since R0,0(ζ, z) is of maximal holomorphic degree in ζ and M
is CR generic then for every collection a1, . . . , ak of linearly independent
vectors in R

k there is a constant C > 0 such that

‖R0,0(ζ, z)∣∣bΩ
‖ ≤ C‖R0,0(ζ, z)‖ · ‖∂̺a1(ζ) ∧ . . . ∧ ∂̺ak(ζ)|bΩ‖

for ζ ∈ bΩ and z ∈ M0 with z 6= ζ. For 1 ≤ l ≤ k set

(8.4) ual(ζ, z) := Im

n∑

j=1

∂̺al(ζ)

∂ζj
(ζj − zj).

It is clear that (8.4) yields

‖∂̺a1(ζ) ∧ . . . ∧ ∂̺ak (ζ)|bΩ‖

≤ C
(
|ζ − z|k +

∑

(j1,...,jl)∈P ′(k)

‖dζuaj1 (ζ, z) ∧ . . . ∧ dζuajl (ζ, z)‖ · ‖ζ − z‖k−l
)

for ζ ∈ bΩ and z ∈ M0. Then it is not difficult to see from (2.2) and (1.3)
(cf. [7]) that the integral in (8.1) is bounded by

C
\

ζ∈bΩ
|ζ−z|<γ

dλ(ζ)

|ζ − z|2n−k−1−α

and a finite sum of terms of the type\
ζ∈bΩ

|ζ−z|<γ

‖dζua1(ζ, z) ∧ . . . ∧ dζuajl (ζ, z)|bΩ‖ dλ(ζ)
∏l

s=1(|uajs (z, ζ)| + |ζ − z|2)1+1/k|ζ − z|2n−k−1−l−α−2l/k

where we have used the following fact:

|uajs (ζ, z)| + |ζ − z|2 ≤ C(|uajs (z, ζ)| + |ζ − z|2).

We obtain estimate (8.1) by using Range–Siu’s trick (see the proof of Propo-
sition 3.7 in [26]), which allows us to consider uaj1 (·, z), . . . , uajl (·, z) as local
coordinates on bΩ. (8.2) and (8.3) are shown in the same way.

Now we can give a jump formula for functions defined on the boundary
of a domain in M0.
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Proposition 8.25. Let Ω ⋐ M0 be a domain with C2 boundary. Let f
be a continuous Hölder function of order α (0 < α ≤ 1) on bΩ and F the

function defined on M0 \ bΩ by

F (z) :=
\

ζ∈bΩ

f(ζ)R0,0(ζ, z).

Then F|Ω (resp. F|M0\Ω) has a Hölder continuous extension F+ (resp. F−)

of order α/2 up to bΩ and F+
|bΩ − F−

|bΩ = f .

P r o o f. Let f̃ be an α-Hölder continuous extension of f to M0. Set

G(z) =
\

ζ∈bΩ

(f(ζ) − f̃(z))R0,0(ζ, z).

It follows from (8.1) that G is well defined for z∈bΩ. Let us now show that
G is α/2-Hölder continuous on W with Ω ⋐ W ⋐ M0.

Let z1, z2 ∈ W and set γ = |z1 − z2|1/2. Then we have

G(z1) − G(z2) =
\

ζ∈bΩ

|ζ−z1|≤2γ

(f(ζ) − f̃(z1))R0,0(ζ, z1)

−
\

ζ∈bΩ

|ζ−z1|≤2γ

(f(ζ) − f̃(z2))R0,0(ζ, z2)

+
\

ζ∈bΩ

|ζ−z1|≥2γ

(f(ζ) − f̃(z2))(R0,0(ζ, z1) −R0,0(ζ, z2))

+ (f̃(z2) − f̃(z1))
\

ζ∈bΩ

|ζ−z1|≥2γ

R0,0(ζ, z1).

Then using Lemma 8.24 and the fact that f̃ is α-Hölder, one obtains

|G(z1) − G(z2)| ≤ C|z1 − z2|α/2.

Since ∂ζR0,0(ζ, z) = 0 for (ζ, z) ∈ M0×M0 with z 6= ζ (cf. Theorem 0.1(iii))
we have by Stokes’ theorem

(8.5)
\

ζ∈bΩ

R0,0(ζ, z) = 0 for z ∈ M0 \ Ω.

On the other hand, Theorem 0.1(v) gives

(8.6)
\

ζ∈bΩ

R0,0(ζ, z) = 1 for z ∈ Ω.

(8.5) and (8.6) imply that G(z) = F (z) for z ∈ M0 \ Ω and G(z) = F (z) −

f̃(z) for z ∈ Ω. Setting F+ = G + f̃ and F− = G completes the proof.
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We now give a Cl version of the above jump theorem.

Proposition 8.26. Suppose that M is of class Cl+4, l ≥ 0. Let Ω ⋐ M0

be a domain with Cl+1 boundary. Let f be a Cl+1 function on bΩ and let F
be the function defined on M0 \ bΩ by

F (z) :=
\

ζ∈bΩ

f(ζ)R0,0(ζ, z).

Then F|Ω (resp. F|M0\Ω) has a continuous extension F+ (resp. F−) which

is of class Cl+1/2 up to the boundary and F+
|bΩ − F−

|bΩ = f .

P r o o f. Let f̃ be a Cl+1 extension of f to M0. Then it follows from
Theorem 0.1(v) that\

bΩ

f(ζ) ∧R0,0(ζ, z) =





f̃(z) +
\
Ω

∂bf̃(ζ) ∧R0,0(ζ, z) for z ∈ Ω,\
Ω

∂bf̃(ζ) ∧R0,0(ζ, z) for z ∈ M0 \ Ω.

The result follows from Theorem 0.1(vii) and the fact that ∂bf̃ is of
class Cl.

8.2. Extension theorems. We are now ready to prove some extension
theorems of Hartogs–Bochner type for CR functions on 1-concave CR man-
ifolds.

Theorem 8.27. Let X be an n-dimensional complex analytic manifold.

Let M be a C3 CR 1-concave submanifold of codimension k in X. Suppose

that M has the following property :

(∗) For every ∂b-closed and compactly supported (0, 1)-current T of order

0 on M , there is a compactly supported measure S in M such that

∂bS = T .

Let D be a relatively compact domain with C2 boundary in M such that

M \D is connected and let f be a CR Hölder continuous function of order α,
0 < α ≤ 1, on ∂D. Then there exists a unique Hölder continuous function

F of order α/2 on D which is CR on D and such that F (z) = f(z) for all

z ∈ ∂D. Moreover ,

max
z∈D

|F (z)| ≤ max
z∈bD

|f(z)|.

P r o o f. We consider the current T ∈ [C0
n,n−k−1(M)]′ defined by

T (ϕ) =
\

bD

fϕ for ϕ ∈ C0
n,n−k−1(M).

We have suppT = bD. Since f is CR on bD we have ∂bT = 0. Now by the
condition (∗) there exists a measure S ∈ [C0

n,n−k(M)]′ such that ∂bS = T .



Integral formula for ∂b 21

Since M is 1-concave, S is defined by a C3 CR function on each connected
component of M \ bD (cf. Corollary 6.21).

Since M \ D is connected and S is a compactly supported CR function
on M \D, by Proposition 3.12 and uniqueness of holomorphic functions (see
also [1], Theorem 1) one has

(8.7) S = 0 on M \ D.

Denote by F the CR function defining S on D and let us study the
regularity of F up to the boundary. Since the problem is local we may work
in an open subset of C

n. Let z0 ∈ bD and M0 be a neighborhood of z0 where
the integral representation from Theorem 0.1 holds. Let χ be a smooth cutoff
function on M such that suppχ ⋐ M0 and χ ≡ 1 on a neighborhood U of z0.

Set T ′ = ∂b(χS). Then T ′ ∈ [C0
n,n−k−1(M0)]

′. It follows from Proposi-
tion 6.16 that

(8.8) χS = (−1)kR̂n−k−1T
′.

By Lemma 6.18, R̂n−k−1T
′ is defined on M0 \ suppT ′ and in particular on

(M0 \ bD) ∩ U by the continuous function (−1)kT ′(Rn,n−k−1(z, ·)).
Let Ω ⋐ M0 ∩D be an open subset of M0 such that suppχ∩ bD ⋐ bΩ.

For z ∈ M0 \ suppT ′ we have

(8.9) T ′(Rn,n−k−1(z, ·)) = 〈(∂bχ)S,R0,0(·, z)〉 +
\

bΩ

f(ζ)χ(ζ) ∧R0,0(ζ, z).

Since ∂bχ = 0 on U , we see from Theorem 0.1(i) that

(8.10) 〈(∂bχ)S,R0,0(·, z)〉 is a C2 function on U .

Set Ω+ := Ω and Ω− := M0 \ Ω. It follows from (8.7)–(8.10) and Proposi-
tion 8.25 that F has an α/2-Hölder continuous extension to Ω± ∩U , which
we denote also by F , such that F|bΩ∩U = f|bΩ∩U .

Now if w ∈ D is such that maxz∈bD|F (z)| < |F (w)|, it follows from what
we have just proved that the function 1/F (z) − F (w) could be extended
through w. But this is not possible, hence maxz∈D|F (z)| ≤ maxz∈bD|f(z)|.
This implies in particular that the extension F is unique.

On C2-smooth 1-concave CR manifolds, a weaker version of Theorem 8.27
was obtained in [6].

The proof of the following theorem is carried out exactly as above by
using Proposition 8.26 instead of Proposition 8.25.

Theorem 8.28. Let X be an n-dimensional complex analytic manifold.

Let M be a Cl+4 CR 1-concave submanifold of codimension k in X (l ≥ 0).
Suppose that M satisfies condition (∗). Let D be a relatively compact domain

with Cl+1 boundary in M such that M \ D is connected and let f be a CR
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function of class Cl+1 on ∂D. Then there exists a unique Cl+1/2 function F

on D which is CR on D and F (z) = f(z) for all z ∈ ∂D.

In conclusion, a few words on the condition (∗). In [17] Henkin gave
some geometric conditions ensuring (∗). More general sufficient geometric
conditions were given by Ch. Laurent in [18]. For l = ∞ Theorem 8.28
was obtained in both papers. Let us recall Henkin’s conditions: Let M be
a Cl+2-smooth CR 1-concave submanifold of a complex manifold X defined
by M = {z ∈ W : ̺1(z) = 0, . . . , ̺k(z) = 0

}
, where W is a domain such

that W ⋐ X, and set Mε = {z ∈ W : ̺1(z) = ε1, . . . , ̺k(z) = εk}, ε =
(ε1, . . . , εk). Let ε0 >0 be such that the manifold Mε is 1-concave for all ε
with |ε| < ε0. We let W0 be the union

⋃
|ε|<ε0

Mε. Henkin proved that for
every sufficiently small strictly pseudoconvex θ in C

n with θ ⋐ W0, M ∩ θ
satisfies the condition (∗). A small modification of Henkin’s arguments yields
the following general result:

Theorem 8.29. Let z0 ∈ M and B a small ball centered at z0 with

B ⋐ W0 and such that Theorem 0.1 holds on M0 = M ∩B. Then for every

∂b-closed and compactly supported (0, 1)-current T of order l on M0, there

is a compactly supported current S of order l on M0 such that ∂bS = T .

P r o o f. We use the notations of Section 6. By Theorem 8 of [1] for
any ϕ ∈ Dl+1

n,n−k−1(M0) the Cl form ϕ − RM0

n,n−k−1∂bϕ, which is CR by

Theorem 0.1, can be approximated in the Cl topology by ∂-exact C∞
n,n−k−1

forms on B. Since ∂bT = 0, we have T (ϕ−RM0

n,n−k−1∂bϕ) = 0 and therefore

−∂bR̂
M0

n−k−1T (ϕ) = T (RM0

n,n−k−1∂bϕ) = T (ϕ).

Since Dl+1
n,n−k−1(M0) is dense in Dl

n,n−k−1(M0), we obtain

−∂bR̂
M0

n−k−1T = T.

Now denote by ωT the connected component of M0 \ suppT whose
boundary contains the boundary of M0. From Lemma 6.18 it follows that
on M0 \ suppT , R̂M0

n−k−1T is defined by a Cl CR function. If we choose
a ball B′

⋐ B centered at z0 and such that suppT ⋐ B′, then for each
ϕ ∈ Dl

n,n−k(M0 \ B′) the form RM0

n−k−1ϕ is CR on M0 ∩ B′ (cf. Theo-

rem 0.1(v)) and then can be approximated there in the Cl topology by
∂-exact C∞

n,n−k−1 forms on B′ (see Theorem 8 of [1]). But since ∂bT = 0

and suppT ⊂ B′, this implies that R̂M0

n−k−1T (ϕ) = T (RM0

n,n−k−1ϕ) = 0 for

all such ϕ. Hence R̂M0

n−k−1T =0 on M0\B′. By Proposition 3.12 and unique-

ness of holomorphic functions, it follows that R̂M0

n−k−1T = 0 on ωT . We set

S = −R̂M0

n−k−1T . Then S is of order l since T is of order l and for any
compact subset K of M0, there is a positive constant C such that for every
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(n, n − k − 1)-form ϕ with support in K,

|RM0

n,n−k−1ϕ|l ≤ C|ϕ|l,

where, |ϕ|l is the usual Cl-norm of ϕ on M0 (cf. [7]).
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[4] M. Y. Barkatou, Régularité höldérienne du ∂b sur les hypersurfaces 1-convexes-
concaves, Math. Z. 221 (1996), 549–572.

[5] —, thesis, Grenoble, 1994.

[6] —, Formules locales de type Martinelli–Bochner–Koppelman sur des variétés CR,
Math. Nachr., 1998.

[7] —, Optimal regularity for ∂b on CR manifolds, J. Geom. Anal., to appear.
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