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Classification of singular germs of mappings
and deformations of compact surfaces of class VIIj

by GEORGES DLOUSSKY (Marseille) and FRANZ KOHLER (Angers)

Abstract. We classify generic germs of contracting holomorphic mappings which
factorize through blowing-ups, under the relation of conjugation by invertible germs of
mappings. As for Hopf surfaces, this is the key to the study of compact complex surfaces
with by = 1 and b2 > 0 which contain a global spherical shell. We study automorphisms
and deformations and we show that these generic surfaces are endowed with a holomorphic
foliation which is unique and stable under any deformation.

Surface means a complex manifold of dimension 2. We denote by b;(5)
the ith Betti number of S.

0. Introduction. Classification of compact complex surfaces .S without
non-constant meromorphic functions with Betti numbers b;(S) = 1 and
b2(S) = 0 is now well known thanks to K. Kodaira [KO], M. Inoue [I],
Inoue-Kobayashi-Ochiai [IKO], F. Bogomolov [B], Li-Yau-Zheng [LYZ] and
A. Teleman [T]. Roughly speaking, there are two kinds of surfaces: those with
at least one curve, Hopf surfaces, and those without curves, Inoue surfaces

S, SJ(\;F;z)o,q,r;t and Sz(v_;;,q,r' All these surfaces admit global foliations.

The first step has been the study of Hopf surfaces, initiated by K. Ko-
daira [KO], based on the classification of invertible contracting mappings
from (C2,0) to (C2,0) and their normal forms. It is a preliminary result and
the proofs which are computational are relatively easy because the formal
classification is the same as the analytic classification. Primary Hopf surfaces
which are homeomorphic to the product S' x S3 of spheres are particular
cases of a wider class of non-kdhlerian compact complex surfaces, the class
of surfaces containing a global spherical shell (GSS), i.e. surfaces in which
there is an open embedding of a neighbourhood of S3 in C? which does not

disconnect the surface.
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In the same way there is a wider class of contracting mappings, that is
to say, mappings F' which can be factorized through a finite sequence of
blowing-ups, i.e. F = Ilo, where II = Ily...II, 1 is a sequence of n > 0
blowing-ups and o is a germ of isomorphism (when n = 0 we recover Hopf
surfaces); the corresponding surface S = S(F) satisfies by(S) = n. Since all
known surfaces with by > 0 contain GSS, the strategy is to repete the one
which has been successful for bo = 0. This study initiated in [D1] and [D2]
has to overcome two difficulties: for computations it is not possible to write
down a general form of the objects, because there are an enormous number
of possible cases; the second one comes from the fact that the formal classi-
fication is weaker than the analytic classification. Therefore, the method is
to work out simultaneously the classification of germs and the classification
of surfaces, good parameters of the germs (local objects) corresponding to
generators of the cohomology space H'(S,©0) and thus to versal deforma-
tions of the compact surfaces (global objects) S, where it is possible to apply
the general tools of analytic geometry.

In the case b2(S) > 0, it is an open question whether there exists a curve,
but by [N1], if there are curves, they are necessarily rational or non-singular
elliptic, as in the GSS case; moreover (see [N2]), when the surface contains
exactly bo(S) rational curves (I. Nakamura calls them special surfaces), then
the intersection matrix M (S) is equal to the intersection matrix M (S’) of a
surface S’ with GSS, and these surfaces are deformation equivalent. In the
latter case conjecture 2 (below) would imply that S contains a GSS. Complex
non-singular foliations cannot exist when by > 0 because of the Baum—Bott
formula (see [BR]). It is expected that singular foliations play an important
role; in surfaces with a GSS, rational curves are recovered from invariant
curves of the foliation at singular points (such invariant curves always exist
by the Camacho-Sad theorem).

This article is devoted to surfaces with GSS which satisfy tr(S) # 0,
i.e. Inoue surfaces or generic surfaces. We refer to Section 1.1 for basic
constructions and definitions.

The classification is carried out in §1 for generic germs and Inoue germs.
With each germ F' there is associated an invariant formal curve which is
divergent if and only if F’ is not an Inoue germ; a step of the proof consists in
the convergent classification of these divergent objects. As a consequence, we
prove the existence of a unique foliation which is, on that complement of the
rational curves, the affine bundle structure of [E1]; in particular the leaves in
that complement are isomorphic to C. A noticeable fact is that the attraction
basins of generic germs are Fatou-Bieberbach domains (Remark 1.25).

In §2 explicit semi-universal deformations are given. It appears that the
good parameters are the blown-up points and another one, the trace of the
tangent mapping at the fixed point DF(0). As a consequence, we recover
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the Enoki theorem [E2] for a surface S with tr(S) # 0. This section is
somewhat technical, and yields the stability of the unique foliation on S in
its versal deformation. In §3, we describe the group of automorphisms which
leave the irreducible curves globally invariant. We define a marked surface
to be a surface with a rational curve chosen. The aim of this notion is
to restrict the automorphism group. We obtain moduli of marked surfaces
and a universal logarithmic deformation for generic marked surfaces. We
postpone to another article the study of quotients of surfaces with non-trivial
automorphism group.

It has to be pointed out that our methods are based on normal forms of
germs of singular mappings F', therefore we have to suppose the existence
of a GSS; this is less general than the approach of I. Enoki [E1], [E2], or
I. Nakamura [N1], [N2], but is more precise. Moreover, it appeared recently
that there are relations between VIlj-class surfaces and dynamical systems
in dimension two through contracting germs: for example the first author
noticed that compact complex surfaces obtained in [H] by adding rational
curves to the quotient surface U, /Z, where U, is the open set of points
z of C? such that the iterated images H”(z) of z by an Hénon mapping
H(z,y) = (p(z) —ay, z) tend to oo, contain GSS. In fact it is a surface with
tr(S) = 0 endowed with a global foliation and in our notations Uy = S\ D is
the complement of the rational curves in the universal covering space of S.

We end by giving three conjectures in the general case.

CONJECTURE 1. Any germ F = Ilo is conjugate to a polynomial map-
ping.

CONJECTURE 2. Let § — B be a family of compact holomorphic surfaces
with B a connected manifold. If there is © € B such that S,, contains a GSS,
then all the surfaces contain a GSS.

CONJECTURE 3. If S contains a GSS then S admits a holomorphic sin-
gular foliation with leaves isomorphic to C or C*.

1. Normal forms of germs of mappings with non-vanishing trace

1.1. Basic constructions. In this subsection, notations and results come
from [D1], and we refer to that paper for proofs and details. Let F' = ITo =
Ily... I, 10 : (C?,0) — (C2%,0) be a germ of mapping where IT; is the
blowing-up of the point O;_; and O; € C; = Hi_l(Oi,l) for0<i<n-—1,
O_1 =0¢€ C? and o is a germ of isomorphism with o(0) = O,,_1.

With such a germ one associates a compact complex surface in the fol-
lowing way: o is defined on a neighbourhood of 0, say a neighbourhood of
the closed unit ball B C C2, so we have a sequence of blowing-ups over the
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ball B:

Hn—l 17

B, >B;_1 By s B,

B;

It will always be supposed that o(B) is relatively compact in B,,_;. If B is
a ball slightly smaller than B, and if we remove the closed ball o(B’), then
it is possible to identify isomorphic neighbourhoods of ¥ = IT!(dB) and
0(0B) by oIl in order to obtain a minimal compact complex surface with
a GSS, denoted by S = S(II,0), with Betti numbers satisfying b;(S) =1
and by(S)=mn. In S(II,0), the exceptional curve of the first kind has been
changed into a rational curve with self-intersection < —2 or a singular ra-
tional curve because the inverse image by o of the removed part of C,_1
contains 0, therefore is blown up at least once again. If the points O; are
moved outside the rational curves C;, then S is no more minimal. If F' and F’
are conjugate, that is to say, F’ = II'c’ = ¢~ ' Fy where ¢ is a germ of iso-
morphism, then ¢ induces an isomorphism between S(II,0) and S(II',0").
Conversely, given a surface S containing a GSS, M. Kato [KA] proved that
S may be obtained in this way. In fact if bo(S) = n, there are n classes of
germs and n homotopy classes of GSS.

The trace of a germ F = Ilo (resp. of a surface S(II,0)) is by definition
the trace tr(DF(O)) of the tangent mapping DF at the fixed point of F.
The trace is independent of the choice of GSS and depends only on the
isomorphism class of S, so it is denoted by tr(S). We have 0 < |tr(S)| < 1
and tr(S) # 0 if and only if one of the following equivalent conditions is
satisfied:

(i) for every 0 < ¢ < n —1, O; is not in the intersection of C; with a
strict transform of Cy, k < i, or of 0= 1(Cp_1);

(ii) S contains a cycle I" of rational curves such that I'? = 0.

Let FF = Ilo be a germ such that tr(S) # 0 and S = S(F') be the
associated minimal surface with b3(S) = n > 1. The germ F' = IIo (resp.
the minimal surface S) is called an Inoue germ (resp. an Inoue surface) if
one of the following equivalent conditions holds (see [D1] for the proof):

(a) there exists a germ of a curve (v,0) such that Fj, : (v,0) — (v,0) is
an isomorphism;

(b) F is conjugate to N(z) = (t"2125,t22);

(c) S admits a global vector field;

(d) S contains an elliptic curve.

A germ of mapping will be called generic if its trace is not vanishing

and it is not an Inoue germ (this definition is slightly different from that of
[KH1], [KH2] where generic means “with non-vanishing trace”).
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The universal covering space (§ ,w) of S is obtained by glueing a se-
quence (A;);cz of copies of the blown-up ball with a hole, the pseudocon-
cave boundary of A; being identified with the pseudoconvex boundary of
A;t1. The automorphism g : § — S sends A; onto A; 1. Now, in S there
is countable family of rational curves with a canonical order induced by the
blowing-ups, “the order of creation”. If tr(S) = 0 this order is not obviously
understandable from the graph of curves. Sometimes we shall denote by
C + 1 the curve obtained after C.

Now if we choose any curve C' in S we construct a new surface SC with
a canonical morphism p¢ : S — SC in the following way: If C' C |, <p A; we
fill in the hole of A, with a ball, thus obtaining a surface with an exceptional
curve of the first kind. If it is C' we have obtained §o; if not, we blow down
this exceptional curve, obtaining a new exceptional curve of the first kind,
and so on till C' becomes such a curve. Finally, Sc is obtained by blowing
down a “half-infinite” number of curves onto a point O¢ € C.

The following construction relates compact surfaces with contracting

germs: We notice that ¢ induces an 1somorphlsm ag+" SC — SC+n and

that there is a canonical mapping IS Can SC+n — §C which blows down n
curves, such that po = HC tnPC+n- Then Fo = Is CinC g+" is a contracting

mapping with fixed point 50. The following diagram is commutative:

1.

SC—>SC

S

1.2. Normal germs. A generic germ or an Inoue germ can always be
written in the form

n—1
F(z)=Moo(z) = (Ul(z)ag(z)n +3 qios(2)H, 02(2)>,
=0

where

II'=1IIy...II,, 1, II;i(u;,v;) = (uv; + -1, 0;)
and

0(z) = (01(2) + an—1,02(2)).

The point O; = («;,0) cannot be the infinite point of C; because of the non-
zero trace hypothesis. It will be proved that by a well chosen conjugation
the germ of isomorphism o satisfies o(z1,22) = (01(2),02(2)) = (21,t22)
where ¢ is the trace, 0 < |t| < 1. But, to start with, it will be shown that in
a given equivalence class this latter form is not unique.
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DEFINITION 1.1. A germ of the form
n—1

F(z)= (zlz’; "4 Z ot Tt t22>
i=0

is called a normal germ with non-vanishing trace. It will be called generic if
not all «; vanish.

Such germs are global automorphisms of C x C* and map affinely hori-
zontal lines to horizontal lines; therefore the associated surface S(F') has a
foliation.

REMARK. The family of surfaces S}, = S(F) coincides with the family
of surfaces S,/ o+ of [E1], where n is the number of rational curves for both
notations, t = o’ and («ag,...,an—2,an_1) = (t1,. .., th_1,t0)-

LEMMA 1.2. If F = Ilo is a normal generic germ with trace t # 0, then
there exists an isomorphism

f18c\ U C' — C?
CcrAC

such that the following diagram is commutative:

So\Uerzo €' = 5c \Ugrzc C'

fl” le

C2 i C2

Proof. By construction of §c from F', there exists an isomorphism
f :Us — U from a neighbourhood of O¢ onto a neighbourhood of 0 such
that the following diagram is commutative:

UCLUC

fl” le

U—L=U
We have to extend f: Let z be in the complement of all the compact
curves of Sc; there exists an integer p > 0 for which FZ(z) € Ug; since
f(z) does not belong to the singular set of I’ and F'is an automorphism of
C x C*, we define f(z) := F~Po fo FL(z). Since f = F~'o fo Fg, the
image of z does not depend on the choice of p. By the Riemann extension
theorem we obtain the desired extension

f:8c\ |J ¢ —c
C'#£C
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Since f is an isomorphism between S¢\|J €’ and Cx C*, det D f(z) could
vanish only on C; but in a neighbourhood of 6(;, f is an isomorphism, thus
det D f(z) never vanishes. Moreover, the image of f contains C x C* because
the attraction basin of 0, i.e. the points z such that the sequence (F™(z))
tends to 0, is C x C*. We conclude that f is an isomorphism. m

LEMMA 1.3. If F,F’":(C?,0) — (C?,0) are two normal germs with non-
vanishing trace, then any isomorphism germ ¢ : (C2,0) — (C2,0) which
satisfies p o F' = F' o ¢ is convergent in C2.

Proof. The germ allows us to recover a surface .S, its universal cov-
ering space S and the space obtained by the blowing-down of all curves
greater than C', denoted by S¢. The lemma is an immediate consequence of
Lemma 1.2 and the following commutative diagram:

F

(C2
f1 __f—l

SC \ UC”#C c” — SC \ Ucll;éc C’

PG P&
§/ \ U ok Fé §/ \ U ok
C/ Cl/#c/ C/ C//:/écl
= =
c? a C?

since p = f' oS o f 1. m

THEOREM 1.4. Let

n—1
F(z) = <z1z§t” + Z aiti+123+1,t22> and
i=0

n—1
F'(2) = (zlzgtm + Z ol Tt t'zz)
i=0

be normal germs.

(1) The germs F and F’ are conjugate, i.e. there exists ¢ such that
©F = F'o, if and only if t =t and there exists k € C* and nth root of
unity A such that

(s syl 1) = Ko, Aag,y .oy Mg, oo, N g, 1),
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In this case ¢ is mecessarily linear and ¢(z1,22) = (az1,\"1z2) with
a =k "t #0 and \* = 1. In particular, if F(z) = N(z) = (2120t",t2),
then F' = F; if n =1, then there are only two classes.

(2) A germ of isomorphism ¢ commutes with F if and only if it satisfies
the following conditions:

(a) If (agy..-yyy...,an—1) =(0,...,0), i.e. F'= N, then ¢(z1,22) =
(az1,\"122) where a #0 and \" = 1.

(b) If there exists exactly one index j such that a; # 0, then ¢(z1,22) =
(AU 2 A1 2y) where A" = 1.

(c) If there are at least two indices j and k such that o; # 0 and oy # 0,
let 1 <m < n—1 be the least integer such that m = k — j mod n. Then
0(2) = (A2, A 2y) with AseH ™l = 1. In particular, generically o =
1d.

Proof. (1) Let ¢(z) = (> aijzizg, > bijzizg) be a germ of isomorphism
which satisfies the equation oF = F'p. It yields

n—1 .
(2 L
(1.5) Z bij (zlz’;t" + Z aktk+lz§+1) tz) = t’(z bijzizg).

k=0
The identification of the linear parts of (1.5) and induction on the degree of
the homogeneous parts of @5 show that ¢t = ¢’ and ¢a(2) = Azs.

Now, we consider the equation analogous to (1.5) given by the first mem-
bers of the conjugation relation:

n—1 .
7, .
(1.6) Z a;j <z1z§t” + Z Ozktkﬂzg“) 2
k=0

n—1
= <Z aijzi%)/\"z’;t" + Z A TINTL HIHL
i=0
Then:
a) The comparison of coefficients of terms which contain z;z§ yields
AT =1.
b) The comparison of the terms of total degree n+p mod 25 P forp > 2,
allows one to prove by induction on p that

a;; =0 fori+j=p>2,1>1.

Therefore

oo

_ J
@1(21,22) = a1021 + E agj 2y -
=1
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By substitution we have from (1.6)

n—1 [e%e)

k1 i

a10<zlz§t”+ E o tF L ET ) + E ag;t’ 2
k—0 j=1

[e%e) n—1
= <a102’1 + Z aojtjzg)zgt" + Z o R \RFL A
j=1 k=0
and by cancellation
n—1 [e%e) [e%e) n—1
aio ( Z aktk+lz§+1) +Z aojtjzé = Z aojt]+n2%+n+z a;tk+1)\k+125+1.
k=0 =1 =1 k=0
An easy computation shows that
(1.7) - —ajpei—1 +ai_ A" fori=1,...,n,
’ ¢ ag,i—n for i > n.

We deduce from (1.7) that if one of the ag;, 1 < i < n, is not zero then
the radius of convergence of the series >0 ap;jz3 is 1. But by Lemma 1.3,
¢ should converge on C?, therefore ag; = 0 for all j > 1. Since ajg # 0, we
obtain the first assertion (1) with K = aj;pA™! and X replaced by A~!. So
©0(2) = (az1, A\ 12p) with a = kA™1 #£ 0 and \" = 1.

(2) is a straightforward consequence of the first assertion. m

We are now going to show that every germ with non-vanishing trace is
equivalent to a normal germ.

PROPOSITION 1.8. Let S be a surface with tr(S) # 0. Denote by C the
union of all rational curves of the universal covering space S of S. Then:

(i) there exist a holomorphic function @ on S and t € C* with |t| < 1
such that divisor(@) = C and @ o § = tw;
(ii) t = tr(S);
(iii) for any rational curve C' in 5, the germ Fo s equivalent to a germ
F = (Fy, Fy) with Fy(z) = tzs.

Proof. The universal covering space S is the union of annuli and a gen-
erator of the fundamental group is given by a path joining the two connected
components of the boundary of an annulus. Therefore the same arguments
as in Lemma 4.7 of [E2] give (i); however, to make the paper self-contained
we give a simplified proof:

By Theorem 3 of [KO], part I, by (S) = h'® + A%, thus we have the exact
sequence

0 — H°(S,dO) — H'(S,C) — H'(S,0) — 0.
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The maximal divisor D of S satisfies ¢;([D])? = D? = 0. Since b_ = by(9),
the complex Chern class ¢; ([D])¢ vanishes. Using the commutative diagram

H'(S,C) —= H'(S,C*) — H(S,Z) —= H(S,C)

| l |

HY(S,0) —>= HY(S,0*) — H?(S,Z)

|

0

we conclude that [D] is in the image of H'(S,C*) in H*(S,0*). This means
that we may choose a covering U = (U;) of S, defining functions f; € O(U;)
of D and complex numbers )\;; € C* such that f; = A;;f; for all 4, j. Let
F = (X\;j) be the corresponding flat line bundle. Since F' induces on S a
holomorphically trivial bundle F = &*F, the section (fi) of F induces a
global holomorphic function w on S which satisfies the desired conditions
with t € C*. If |[t| = 1, then w induces on S a psh function and this is
impossible. By the maximum principle [¢| < 1.

The assertion (ii) is an immediate consequence of (iii).

(iii) The function @ on S induces a holomorphic function on S¢: denoted

by w where C' = {z3 = 0} in a neighbourhood of 50. By the commutativity
of the diagram ~
9 o IS

p pc

Fo A
> Sc

Q
LB

we have wo Fo = tw. We define ¢(z) = (z1,w(z)). Since w vanishes of order
one on C', and does not vanish in the complement of C', ¢ is an isomorphism
and satisfies

pFop™!(2) = (wo Fo(p™'(2) = (ktw(p™ ' (2))) = (x,tz2). w

THEOREM 1.9. Let S be a minimal compact surface containing a GSS
with ba(S) > 0. If tr(S) # 0, then:

(i) S admits a unique singular holomorphic foliation such that the sin-
gular points of the foliation are exactly the intersection points of the rational
CUTves;

(ii) the complement of the singular points in a rational curve is a leaf
with hyperbolic holonomy;

(iii) all the other leaves are isomorphic to C and accumulate to the cycle
of rational curves of S; in particular, the closure of a leaf always contains
a singular point;
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(vi) the foliation is defined by a global meromorphic 1-form with a loga-
rithmic pole.

Proof. (i) By Proposition 1.8, F' maps {z3 = A} onto {22 = tA}, there-
fore S is endowed with a foliation which is unique by Theorem 2.4.1 of
[KH3] and the fact that in any neighbourhood of an Inoue surface in its
versal deformation there are all generic surfaces.

(ii) is evident.

(iii) Choose a leaf £ in S. It induces a leaf £ in the universal covering

space S = [J A;. The image of LN A; in the ball is contained in the piece of
line L; = {z2 = A}. There are two possibilities:

e L; does not meet F(B), i.e. it is a disc and £ N A;j is empty for j > 1
since {z2 = A} in 4; is glued to {z2 = ¢t 'A} in A; 1. For the same reason L;
for j < i are all dimension one annuli 7; < |z1| < 1 where the sequence (r;)
is bounded from above, therefore £ and £ are Riemann surfaces isomorphic
to C.

e L; meets F(B), but there exists j > ¢ such that L; does not meet
F(B), and therefore we obtain the same conclusion.

(iv) w = dzy/z5 has the expected property. m

In the following lemma we still denote by C' the image of C' C S under
the canonical mapping pc : S — Sc. The function @ is induced by w of
Proposition 1.8.

LEMMA 1.10. Given a curve C in S, set {co} = C'N Ucrcc €' Then
there exists € > 0 and an isomorphism

fiUcle) ={li(z)| <e}\ |J €' = Cx Afe)
cr<c

from a neighbourhood of C\ {oo} in Sc: onto C x A(g), which maps {® = &}
to C x {d}.

Proof. We choose a spherical shell of S such that S is obtained from
a blown-up neighbourhood of O¢ isomorphic to the unit ball B, in which
C = {z =0}, and S¢ = (J,.( Ai) U B, where A; are copies of the blown-
up ball B with image o(B) removed. If Uy = B, Up = J_,<;. 4 U B,
Uy = Up \ Ucr<c €' then (Up)p>o and (Uy,)p>o are increasing sequences of

open subsets of §C. Thanks to Proposition 1.8(iii), we may suppose that
w(z) = z9 and

n—1
Foip(z) = F(z) = Ilo(z) = (Jl(z)zgt" + Z Oéiti+125+1,t252>.
i=0
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Choose ¢ such that for A#0 with |\| < ¢, {z2 = A\}NB\ F(B) is a topological
annulus of dimension 1. The annulus {2, = A} in A; is glued to {zo =t 1\}
in A;11 which is an annulus or a disc. For every p > 0, U; is isomorphic to
B\{w = 0}; here U} = B\{w = 0} is identified with F?(B)\{0}. Replacing,
if necessary, F' by a conjugate of F' by a linear map ¢(z) = (21 + Aza, 22)
we may suppose that a; # 0, therefore in a neighbourhood of z = (0,0),

n—1 A '

o1(21,29)25t" + Z aitl+1z§+1 ~ aptzy.

i=0
Therefore if the pth iteration of F is FP = (FF, FY), then
(111) Flp(zl, 22) ~ OéothQ.

We define

z
fo=(gp,w) U, N {Jw] <1} - Cx A, (21,22) — <W;p,w(z)>-
The sequence ( f;,) is uniformly bounded on U}, identified with F'P~™(B)\{0}
in Up. In fact, for z € B, A > 1 and p — oo we have

[F ()]
ool - [¢]

|90 (2)| =

By Montel’s theorem and a diagonal argument, there exists a convergent
subsequence. Let f be the limit. On U,,, f = (g(21),w(22)) is bounded,
thus by Riemann’s extension theorem, f extends across C. The leaves of the
foliation are sent by f to lines {zo = A} in C x A. Because of (1.11), g is a
non-zero linear map. Therefore f is an isomorphism. m

< Ajt|~™.

We are now in a position to find a simpler element in the conjugacy class
of F

LEMMA 1.12. Let
n—1
Fc(Z) = F(Z) = HO'(Z) = <O'1 (Z)thn + Z aiti+125+1,t22>
=0

be a germ of mapping with non-zero trace. Then there exists a germ of
isomorphism f such that

n—1

(1.13) F'(2) = fFf'(2) = ((zla(zg) + b(22))25t" + Z a;tiﬂzéﬂ,tzg).
i=0

with a € O*(A).
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Proof. By Lemma 1.10, we have the following commutative diagram:

CxA-F-CxA

= i

UC (6

) = Uc(e)

~

Sc

in which
n—1 A A
F'(2)=1II'0'(2) = (O‘i (2)25t" + Z Oé;tl+125+1,t22>
i=0

and o] is convergent in C x A. Since Fj(-,22) is an automorphism of C,
01(z) = z1a(z2) + b(z2) with a non-vanishing coefficient a. m

This lemma establishes that in fact the foliation is the extension of a
structure of affine bundle on the complement of the rational curves. Since
tr(S) # 0 if and only if there is a divisor D on S such that D? = 0 we obtain
the main theorem of [E2] for surfaces containing a GSS:

PROPOSITION 1.14. Let S be a surface with t = tr(S) # 0 and D be
the union of the rational curves of S. Let E := C*/{tP | p € Z} be the
elliptic curve induced by the contraction zg — tzo and w : S\ D — E the
map induced by w. Then (S\ D,w, E) is an affine bundle which is a linear
bundle if and only if S is an Inoue surface.

LEMMA 1.15. Any germ F with trace t # 0 is conjugate to a germ of the
form

n—1
F'(z) = ((zl Y (22)) 25t + > gt tzz)
i=0
with b'(0) = 0.
Proof. By Lemma 1.12, we may suppose that

n—1
F(2) = ((m10(22) + b(22))258" + D st T4, 125).
=0

By changing «,,_; if necessary, we may suppose that b(0) = 0. Moreover,
conjugation by an isomorphism ¢(z1,22) = (z1,822) yields a(0) = 1. We
look for a germ of an isomorphism ¢(z1,22) = (¢(22)z1,822) which leaves
invariant the fibres of the affine bundle. We have ¢(0) # 0. The equation
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F'o = ¢F gives, by (1.13),
(1.16) (tzg) (22) = c(22)B",

(1.17) c(tz2)< 2) 020 + Zaltﬂrl z+1)

n—1
=V (B2a)t" 25 8" + Y aft AT
1=0

Write a(z3) = 14a’(z3). Then (1.16) is solved by 5™ = 1 and the convergent

infinite product
o0

c(z9) = H(l +a/ (t'29)).
i=0
The condition (1.17) is then easy to satisfy. m
We want to show that the «; are the good parameters and that we can
choose the blown-up points, determined by the coefficients «;, 0 <7 < n—1,
in such a way that b’ can be cancelled by a conjugation. For that purpose we
describe the sequence (O;), i > 0, of infinitely near points or equivalently the
invariant formal curve of F' which exists by [D1], I1.1.14. It is easy to check
that formal curves are all formally isomorphic, but the isomorphism is in
general not convergent. Moreover, if F' and F’ are conjugate, then necessarily
the formal curves are isomorphic. The idea of the following lemma is to
classify these formal objects in a convergent way.

LEMMA 1.18. Let F be the germ
F(z) = ((z1 + b(z0)) 0t + Z ait 1zt ¢ )

with b(0) = 0. Then there exist of,, 0 < i <n —1, such that F is conjugate
to

F( ): <Z122tn+zatl+l +1,t22>.

Proof. Let I' be the formal curve defined by the ideal (21 —> oo, A;2%).
Put b(z2) = > ;o biz5. Then I' is an invariant curve if and only if

(ZAZQ—H)ZQ) Zatz—i-l i+l _ iAitiZ;
i=1

This is equivalent to

Ai=a;q fori=1,...,n,
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and fori=1,...,n and k > 0,

k

1 y o
Ait (k1) = T D) it k) {ai,l + E bi+jntjz+n(1+...+(1 1))}'
J=0

Then I' is always divergent if not all the coefficients of the formal series
vanish. Put

oo
=+ Z bi+jntji+n(1+“'+(jfl)) fori=1,...,n
§=0

where the series is convergent, and

!
Q1

/ .
1t (k) = DR D) for1<i<nandk>0.

/

Therefore the sequence (aj) is exactly such that the sequence of points

(05)j>0=((c;,0));>0 is the sequence of infinitely near points of the blowing-
ups for F’. If

’ .
51‘2052'71—041‘71, 1217"'7”7
/ .

ﬂi+(k+1)n =1y (k+1)n Ai+(k+1)na 1=1,...,n, k>0,

and
p(z) = (2’1 + Zﬂﬂ%,zz),
=1

then ¢ is an isomorphism of C? which sends the sequence (O;) = ((4;,0))
to (O}). Since F sends (O;) to itself, F’ = ©F¢~! has the expected property
and this completes the proof. m

Proposition 1.8(iii) and Lemmas 1.12, 1.15 and 1.18 give readily

THEOREM 1.19. Any germ

n—1
F(2) = Too() = (1(2)02(2)" + 3 aioa(2) ", 02(2))
=0

with t = tr(DF(0)) # 0 is conjugate to a normal germ
n—1
F’(Z) = <212§tn + Z Oé;tl+125+1,t22> .
i=0
The complement of the rational curves in S is a Stein manifold, more
precisely:
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COROLLARY 1.20. If tr(S) # 0, and C is any rational curve of the
universal covering space S of S then there exists an isomorphism

fi8c\ U C' — C?
cr4C

such that the diagram

Sc\ Ucrzc ¢ > 8c\ Ucrzc ¢

fl’v le

C2 i C2

1s commutative. In particular S \ C is isomorphic to C x C*.

Both Theorems 1.4 and 1.19 justify the following definition of the in-
variant v(F') of germs of mappings F. Moreover, it is easy to notice that if
we consider the sequence (O;);>o of infinitely near points with O; = (a;,0)
then «;y, = 0 if and only if o; = 0. Therefore, given a surface S, if we
consider other germs F’ associated with S (for example Fo and F4q in the
notations of [D1]), then v(F”) is obtained from v(F') by a cyclic permutation.

DEFINITION 1.21. Let F' = II'0’ be a non-zero trace germ and F a
normal germ conjugate to F’. The wvanishing invariant v(F') = v(F) =
(€0y---yEn—1) is defined by &; = 0 if o; = 0 and ¢; = 1 otherwise. The
vanishing invariant of a surface S with tr(S) # 0 is v(S) = (€0,..-,6n-1)
modulo a cyclic permutation of {0,1,...,n — 1}.

Till now we have only considered the conjugacy relation of germs F":
If F/ = = 1Fy then S(F) and S(F’) are isomorphic. In this relation the
spherical shell remains fixed. But we may choose another spherical shell and
obtain another germ F’ not conjugate to the previous one but such that
S(F") is nevertheless isomorphic to S(F'). We now investigate this situation
in order to construct moduli spaces.

LEMMA 1.22. Let n > 1, U,, be the group of nth roots of unity, t be such
that 0 < |t| < 1, X and p be such that A and p/|u| are primitive roots in U,
and p™ =t. Let G be the group of automorphisms of P"~! generated by

AP PSP ag .t apo] e s N s N T ],

M:P" PP Jag .. a1 par o ptag s " o s ).

If L (resp. T) is the group of order n generated by A (resp. M), then G is
a finite commutative group isomorphic to L x T'.

Proof. Left to the reader. m
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THEOREM 1.23. Let

n—1
F(z) = (zlz’;t” + Z ait”lzéﬂ, tzz> and
i=0

n—1
e
F'(2) = (zlz’; " Z it zéﬂ,t'zz)

i=0

be normal germs. Then the associated surfaces S = S(F) and S" = S(F")
are isomorphic if and only if t = t' and o = (af,...,al,_1) € C" may
be obtained from o = (ag,...,an—1) € C™ by a sequence of the following
operations:

(i) a — ka where k € C*;

(i) (ag,.-- an_1) — (o, A, ..., \" ta,, 1) where \™ = 1;

(iii) (agy ..y n_1) — (uag, ..., p" Lo, _1,a0) where u™ = t.

Proof. By [D1], p. 44, tr(S) = tr(DFC(ac)) for every curve C, i.e. the
trace does not depend on the choice of a conjugacy class associated with S.
Let C' be a curve in the universal covering space S of S such that F' = F¢.
Then the surfaces S and S’ are isomorphic if and only if there is an integer
p,0<p<n-—1,such that F' and Fr,, are conjugate (see [D1], §1.3.11).
Therefore by Theorem 1.4, it remains to express Foy1 from Fo and see how
the coefficients are altered.

For this purpose let Fy = Fg, and Oy = (a,0). Then we have the
following commutative diagram, where II; is the blowing-up of the curve
C;_1 at the point O;_1 = (a;_1,0):

F
B, ——B,

B———>B

From the relation IlygFy = FIly, we deduce
n—1

F(ug,vg) = <ugv8t"_1 + Z aitivé, tv0>.
i=0
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By a change of coordinates Uy = ug — g, Vo = vp and by conjugation with
©(ug,v0) = (ug, pvg) where pu™ = t, it is easy to check that (ag,...,a,—1)
is transformed into (pag, ... ,,u”_lozn,l,ao). n

COROLLARY 1.24. For every n > 1, there exists an analytic space Mz
(resp. Mg) of all Inoue surfaces (resp. generic surfaces) S for which
bo(S) =n. More precisely, Mz (resp. Mg) is isomorphic to A* (resp.
P1/G x A%).

Proof. Straightforward by Lemma 1.22 and Theorem 1.23. m

The obstruction to constructing a universal family of generic surfaces
comes from the existence of non-trivial automorphism groups, therefore we
postpone this problem to §3.

REMARK 1.25. If F' is a generic or an Inoue germ which can be defined
on C?, then the attraction basin of 0 is an open set U = {z € C? | In such
that F"(z) € B} isomorphic to C? by Corollary 1.20 and “generically” a
Fatou-Bieberbach domain, i.e. a domain of C? isomorphic to C? but with
complement having non-empty interior.

2. Deformations of surfaces containing a GSS. As shown in Sec-
tion 1 a normal germ of non-zero trace is defined by at most n+1 parameters,
namely n parameters for the choice of the blown-up points O;, 1 < i < n, on
the rational curves, and one parameter for the trace. Moreover if we allow
the points O; to move outside the rational curves by n other parameters, we
obtain blown-up Hopf surfaces or blown-up surfaces with non-zero trace. In
[KH1], F. Kohler proved that these 2n+1 parameters give the semi-universal
deformation of Inoue surfaces. With similar arguments we shall describe the
semi-universal deformation of any surface with non-zero trace.

2.1. Cocycle generators. Let S=S(II, o) be a surface containing a GSS,
H:H()...Hn,1 ZBn,1 —>Bn,2—>... —>Bl —>B0—>B
where II; is the blowing-up of B;_1 at O;_1 € C;_; and C; = H;l(Oi_l),
with B_y = B, O_; = 0, and suppose ¢ : B — B,,_1 is an isomorphism
onto its image which extends onto a neighbourhood of the closure B of B.
For i =0,...,n — 1, denote by A; the open set
A; = Hi_l(Aifl) \ A; C B;

where A, CC A; are balls in B; centred at O;,7=0,...,n—1,and A_; = B.
The last annulus A,,_1 is glued to the first one Ay thanks to olly. If we still

denote by A; the canonical image of A; C B; in S, the surface S is covered
by the family Up = {A4;}i=0,... n—1-

DEFINITION 2.1. The covering Ug is called the Enoki covering of S.
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The annulus A; is covered by the two domains U; and U/ with coordinate
systems respectively (u;,v;) and (u},v.) where C; = {v; = 0} = {v] = 0},

and A;11 and A; are glued along A; \Z; by
Il 1 (Wig1,vig1) = (Wig1Vig1 + a4, vig1 + Bi),
Hi+1(ué+17vg+1) = (U£+1 + aiv“2+1’”§+1 + Bi),
with O; = (o, 8i), O; € U; or O; € U/. The last gluing between Ay and
A, _1 is given by the mapping
aIly(uo, vo) = (01(uovo, vo) + an—1,02(ugvo, v0) + Bn—1)
or
UHO(“E)? U(/J) = (01 (Uév UEJU[/]) + ap_1, 0'2(1)/17 ullvll) + Bﬂfl)‘

We are now going to define elements of H'(U,©) where O is the sheaf
of holomorphic tangent fields on S. It is well known (see for example [D1])
that if S is not an Inoue surface, then h'(S,0) = dimc H'(S, O) = 2b,(S),
and h'(S,0) = 2b3(S) + 1 otherwise. We define cocycles % and 7* which
express respectively the movement of the point O; along the curve C; and
outside C; in the following way:

Fori=0,...,n — 1, let Z* be a vector field on the ball B such that:

e 7' vanishes identically on o~1(C,,_1) to order i + 1,

e for every 0 < j <4, (Ily...II;)*Z* vanishes identically to order i — j
on C; and (1/v;7j)(ﬂo ... M1;)*Z" does not vanish at O; € C},

o (IIy...I1;)*Z" is tangent to C;.
For example, Z = 251'9/02 if 67 1(C,,) = {22 = 0}. Since A; N A; # 0 if
and only if i — 7 = £1 mod n, and A; N A;11 = 4; \Z;, we define

i _ 02’:,1'—&-1 = (IIo. --Hi)*Z‘iAiM_l for (7,k) = (i,i + 1),
AN 0k =0 for (j,k) # (i,i+1).
By construction, 6, extends to A; and to the previous annuli Ay U

...UA; and it vanishes at infinity (i.e. at C; N C;_1). For example, if F' is
a normal germ, then 0~ !(C,_1) = {22 = 0} and

9;1-_,'_1 = % if OZ c UZ‘,

yna, =0 =0 if {5k} # {i,i + 1},
satisfies the conditions by Lemma 2.4 (see below).
For 1%, no global conditions are supposed:

Ma,na, = Mir1  for (G, k) = (i,i+1)
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is any vector field transverse to C; such that 7]} +(0;) # 0. For example

. 0 .
(A
4 o
Thl',i—&-l = 0! if 0; € U},
(A

Mana, =M =0 if Lk} # {60+ 1)
Finally, let T be a vector field on B such that:

e T is tangent to o~ 1(C,_1) with an isolated zero at 0, and

o forevery 0 <i<n-—1, (Ily...11;)*(T) is tangent to C; with isolated
zeros at O; and C; N Ci_1.

Then

S (... H,—1)*(T) if (j,k) =(0,n —1),

o 0 if {]7 k} 7& {07n - 1}
For example, if F' is a normal germ, we notice that the following “trace”
cocycle describes the variation of the trace of the surface:

o vn,la/avn,l on Un,1 N O'Ho(Ag),

Tik = 0l _,8/0v.,_, onU._, Nally(Ay),
=0 i (K} # {00 — 1.

It can be easily checked that on U,,_1NU,,_;, v,—10/0v,,—1 = v,_10/0v],_4

and that this vector field extends to the previous annuli (see Lemma 2.4).
All these conditions are invariant under conjugation.

if (j,k) = (0,n — 1),

LEMMA 2.2. Let S be a minimal surface with a GSS and n = by(S). If
n—1 . .
Z Xil0'] + pi[n'] +e[r] =0
i=0
is a linear relation in H'(U,O), then u; = 0 for all i = 0,...,n —1; in
particular [n'] # 0.

Proof. Suppose that there exists such a linear relation in H(i,©). It
means that there exists X = (X;) € C°(U, O) which satisfies

n—1
X = Z N0t + pint + et
i=0

in Z1(U,O). This equation is equivalent to the system
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(011) Xo — Xp—1 = Ap16" "+ prp_1n" "

0
+ eV 17— on Ag ﬁAnfl,
8’Un—l

(23) Hn—l*Xn—l - Xn—2 = An—Qen_Q + ﬂn—an_Q on An—l N An—27

I, X1 — Xo = Xo6° + pon” on Ay N Ap.

The vector field X; extends to the whole blowing-up of the ball A; ; and
thus is tangent to the curve C;. In particular I7;, X;(0;_1) = 0 for i =
1,...,n—1and (011y),Xo(O,_1) = 0, which gives the result immediately. =

The following elementary lemma shows that for generic blowing-ups, it
is possible to extend the cocycles to the previous annuli (which is not the
case in general).

LEMMA 2.4. For generic blowing-ups, the following holds:

o _ i 0

Hi*vfa—m =wv; m’
Hi*uia—ui = (ui—1 — ai—1)8u?1,
Hi*vfa—vi = (w1 — @i )v 831 +o 8@?1
For every 0 <+t <n—1,
(HO"'Hi)*<aii> :Zéﬂa%’
(ITy ... M, 1) <””1avfl> = ml(‘)izl — nz:l(n j)ajlzéai + 22(%2

Proof. Left to the reader. m

LEMMA 2.5. Let II : X — B be the blowing-up of the ball at the origin
and Z be a vector field vanishing on the curve C = {zo = 0} to order
k > 0. Suppose that the induced foliation F admits C as invariant curve
and the origin is not a singular point of F. Then the induced vector field
IT*Z vanishes to order k —1 on C + 1 = I17%(0).

Proof. By assumption

Z(z) = 2% (A(Z)aiz1 + @B(z)%), A(0) # 0.

If (up, vg) is a coordinate system in which (21, z9) = IT(ug, v9) = (ugvo, vo),
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it can be easily checked that

H*Z(UO,'Z)())
k—1 0 2 0
=vy | (Aluovo, vo) — uovoB(uovg,vo))a—u0 + UOB(uovo,vo)a—vo "

LEMMA 2.6. Let S be a minimal surface with a GSS, n = bs(S) > 1 and
tr(S) #0. If

Z \i[0°] 4+ [r] = 0

is a linear relation in H*(U,O), then e = 0. In particular [1] # 0.
Proof. We have the following system of equations:
(O'Hg)*Xg — Xn—l = )\n_lﬁn_l +eT on AO N An—la

Hn—l*Xn—l - Xn—2 = )\n—29n72 on An—l N An—27
(2.7)

Hl*Xl - XU = )\090 on A1 N Ao.

By Theorem 1.19, there exists a conjugation of F' = Il ... Il,,_;0 thanks to
which we may suppose that

n—1
F(z1,20) = (zlt"zg + Z ait”lzéﬂ,t@) and
i=0

n—1
Fo(up,vo) = Fe, (uo,v0) = (uotnflvg + Z Oéiti’U(i),t’U(]).
=0

Under this conjugation 6 and 7g ,_1 are changed into cocycles of the same
type. If we write all the equations of (2.7) on Ag, we obtain

(28) FO*X()(FO(UO7UO)) _XO(FO(U(J?UO))
= )\OHO(FO(UO,U())) + ...+ )\Z(Hl . Hi)*ei(Fg(’LLg,Uo)) + ...

+ )\n—l(Hl cee Hn—l)*en_l(FO(u07 UU))

+ €(H1 PN Hn_l)*T(Fg(’LLU,’UU)).

This means that Fy, X extends to Ag and thus is tangent to Cy. Moreover by
the first equation of (2.7), o, Iy, X is tangent to C),_1, thus X is tangent
to IT; ' (071 (C,,_1)), in particular it vanishes at infinity. We set Y = ITo, Xo;
on the ball we have
n—1 n—1
(29) (BY=Y)=Y XN(y...1;).0"+e(Ily ... )7 =Y NiZi+eT.
i=0 i=0
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IfY(2) = A(2)0/0z1 + 22B(2)0/0z2, we have

FY(F(2)) - Y(F(z)) = <S :) (51?(1)) - Qﬁéf;?@»)
5,

9z
0 5 0
= 0 mod <8—217 (21, 22) 8—2;2) .
By assumption Zy = 29(X(2)0/02z1 +22Y (2)0/0z2); putting this in (2.9) we
obtain

= t2o(B(z) — B(F(2)))

n—1
0 0
el =T + Z )\’LZ’L = 0 mod (a—Zl, (21722)28—22>
1=0

ande=0. m

2.2. Main example. It is well known that Hopf surfaces S with Hq(S,Z)=
7 are obtained by invertible contractions of the type

/7('217 ZQ) = (CZZl + )\372%7 bZQ)
where m € N and a, b, A € C satisfy the conditions
0<l]a]<|b)<1 and (O™ —a)X=0.

When A = 0, S is called a diagonal Hopf surface. The following easy de-
scription of global vector fields or elliptic curves of S can be found in [NA]
and [DA].

LEMMA 2.10. Let S be a Hopf surface with Hi(S,Z) = Z.

(a) If a # b™, m > 1, then there are exactly two elliptic curves E; =
{21 =0} and Ey = {25 = 0}, h°(S,0) = 2 and global vector fields are given
by 0(z) = az10/021 + 3220/02s.

(b) If a = b™, m > 2 and X = 0, then S is an elliptic surface,
h°(S,©) = 3 and global vector fields are given by 0(2) = (az1 +7v25*)0/021 +
/3Z28/8Z2.

(c) If a="band X =0, then h°(S,0) = 4, S is an elliptic surface and
0(z) = (az1 + B22)0/0z1 + (y21 + 022)0/0zs.

(d) If X # 0, then there is only one elliptic curve E = {z9 = 0},
h°(S,0) =2 and 0(z) = (az1 + v25")0/021 + $220/02 with o = m}.

Proof. Left to the reader. m

LEMMA 2.11. Let S = S(F) be a surface containing a GSS, and F, :
B — B, z +— F,(2), be a deformation of F(z) = Fy(z) over U such that
F.(0) = 0 for every u € U. Denote by Il : S — U the deformation of
S = Sy defined by (F,)ucv- Then for every u € U, the conjugacy class of
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the germ of F, at 0 € C? defines the minimal surface S., obtained by the
blowing-down of the exceptional divisor of S, = IT~*(u).

Proof. Without restricting the generality it may be supposed that the
mappings F, are “centred” [D1, p. 7] and the proof follows the same lines
as the proof of [D1], Lemma 2.7, p. 19. =

In the following example which generalizes the explicit versal deformation
of Inoue surfaces from [KH1], we compute an explicit versal deformation of
all surfaces with non-zero trace, given by the particular cocycles n* = 9/0v;,
0 = 0/0u; and T = v,,_10/0v,,_1. The example corresponds exactly to the
movement along or outside the curves C; given by

(*) ]L-:(ui,vi):(uivi—i—ai,l,vi—kﬂi,l) fori=1,...,n—1
and

() olly = (01 (ugvo,vo) + an_1, 02(uovo, vo) + Bn-1)
= (uovo + ap_1,tvo + Bn_1),
a’s, B’s and t being parameters of the semi-universal deformation S — U.

In these explicit examples, u = («, 3,t) and F;, is obtained by composition
of (%) and (*x). More precisely:
THEOREM 2.12. Let S = S(F) be a surface with non-zero trace associated
with a mormal non-zero trace germ
n—1
F(z) = (zlz’;t" + Z it T t22).
i=0
Then:

‘ (1) If S is an Inoue surface, i.e. if a; =0 for every i, then the cocycles
n', 0" for 0 <i <n-—1 and 7 define the semi-universal deformation S — U
of S. In this deformation the submanifold

M = {(a07/807’ .. 7an7175n717t) ’ /80 = ... = ﬂn72 - /anl - O}
of codimension n corresponds to minimal surfaces and
IT={ag=...=a, 1 =0} ={zcU|h(S,,0,)=2n+1}

corresponds to blown-up Hopf surfaces or Inoue surfaces at a point on the
elliptic curve given by the equation {z; = 0}. More precisely, there is a flat
divisor £ C S over I such that E, is an elliptic curve of self-intersection
—n for every u. Blown-up Hopf surfaces are all diagonal or elliptic (of type
(a) or (b) of Lemma 2.10) and h°(S,,O0.) =1 for every u € T.

(2) If S is a generic surface, the cocycles n®, 0 <i<n—1,7 andn —1
among the cocycles 0% define the semi-universal deformation S — U of S,
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if the missing index j is chosen among those for which o # 0. In this
deformation the submanifold

M = {(a07/807"'7aj75j7’”7an717/8n71) ’50 = .. :/anl :O}

of codimension n corresponds to minimal surfaces and if uw & M, then Sy is
a blown-up generic surface or a blown-up Hopf surface.

(3) In both cases there exists a flat divisor C over U such that C, is
an elliptic curve if S, is a blown-up Hopf surface, and a cycle of rational
curves in all other cases. In all cases C2 = 0.

Proof. (a) We recall that h'(S, ©)=2bs(S)+h"(S,0). By the Kodaira—
Spencer theorem, it is sufficient to show that these cocycles are linearly
independent. According to the above Lemma 2.2, we only have to prove the
linear independence of the cocycles §° and 7 in the first case, and of n — 1
among the #’s and 7 in the second. Suppose there exists a linear relation;
hence there exists X = (X;) € C°(U, O) such that

n—1
0X = Z Aif(a;) + eT.
i=0

By Lemma 2.6, ¢ = 0 and we have the system

(0I1p) Xo — Xpn—1 = An—1 0 on Ao N Ap_1,
871%71
0
anl*anl - an2 = )\an on Anfl N An727
8“77,—2
0
Hl*Xl—XOZ)\()— on AlﬂAo.
811,0

These equations are in fact valid on the whole annulus since 9/0u;, u;0/0u;
and v,,_10/0v,_1 extend to the annulus A;_:

0

(0IIp)« Xo — Xpn—1 = A1 B on A,_1,
0
anl*anl - an2 = )\an on An727
(2.13) Oup—2
0
Hl*Xl —X() :)\0— on Ao.
811,0

By induction and according to Lemma 2.4 we send all the equations of (2.13)
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down to Ag. We prove by induction on k& > 0 that for some constants .,

0

(ank---ﬂnflo'HO)*XO:Xn k— 1+()‘n 1vn k—1T-- +)‘n k— 1)87
Up—k—1

For kK = n — 1 this yields

(2.14) F Xo(F(ug,v0)) — Xo(F(ug,vg)) = (Z /\;U(?)) i

where

F(UO, 1)0) =1 ... anlUﬂg(uO, 'Uo) = (UO’l)gtnil + Z aitiv[i]y tUO) .
i=0
The associated jacobian matrix is
pngn—1 n—1lin—1 i
DF(ug, v0) = ot nugvyt" T+ > L aitiv '
0 t
Since X is tangent to Cy we write
0
Xo(uo,v0) = A(Uovvo)a
U
Putting this in (2.14) we obtain immediately
B(uo,v0) — B(F(uo,v0)) = 0.

The latter equation means that B defines a global holomorphic function on
S which is compact. Thus B is a constant and (2.14) is equivalent to

+ UOB(UOWO)%O

vt A(ug, vo) + (nugvo "t Z azzt’%) B — A(F(ugp,vo)) Z it vg.

Comparing the terms containing uv™, we obtain B = 0 and (2.14) becomes

(2.15) vit"t A(ug, vo) — A(F (ug,v0)) Z it'vh.
Differentiation of (2.15) with respect to u yields

0A 0A

%(UO,UO) = %(F(Umvo))-

As before, this shows that (0A/0u)(ug,vg) is constant, i.e. A(ug,vo)=auo+
V(vg) where V satisfies the condition
n—1
(2.16) vtV (vg) — V(tvg) = > (ac + Ag)t'vj.
i=0
We claim that
(2.17) ac; + N\ =0, i=0,...,n—1,
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and V = 0. To see this, set V(vg) = > o0y bivg. By (2.16),

bi =—(aa; +X;) fori=0,...,n—1,

bn+j — bj/t]+1

For j € N, euclidean division gives j = kn + 14 with ¢ € {0,...,n — 1}. By
induction on k > 0,
= pn(h—Dk/24k(+1)
Suppose that there exists an index ¢ such that ac; +\; # 0. The correspond-
ing subseries > byy4+it?" 1" is divergent. In fact

bj

bqn+n+itqn+n+i " 1

bqn_H,tqn—i-i = tng+i+1 = tn(q—1)+i+1 :

Hence V is divergent outside the ball of radius |¢|. Nevertheless X is defined
on Ay, in particular it is convergent on {(ug,vo) | |uovo|® + |vo|? < 1}. On
{ug = 0}, the vector field X(0,v) = V(v9)d/dug should converge on the
unit ball, which is impossible as has just been seen.

Finally, X¢ = auod/0ug. By induction we obtain X; = au;0/0u; and
there is a linear relation

Moy A1) = —alag, ... ,an—1) foraeC.

This is the trivial linear relation if and only if a; = 0 for all ¢ and in this
case the equations show that there is a global vector field, i.e. S is an Inoue
surface.

Moreover, if o; = 0, then \; = 0 necessarily.

If a; # 0 and A\; = 0, then a = 0 and all A; vanish. Therefore the missing
index has to be chosen among those for which «; # 0, because in this case
Aj # 0 and 6; can be expressed through the other 0;.

(b) The fact that M corresponds to minimal surfaces is clear. The van-
ishing of «; gives rise to the mapping

n—1

F(z1,22) = (2’1 [ (tz2+ Booa 4+ 4 Bi)stza + Buca + - +50)
or =
n—1
(2.18)  F(z1,22) = <Zl H(t22+ﬁn—1+. A Bi) ta B+ -+ﬁo+ﬁ—1)

i=0
with Z;:jl B; = 0 if we want the condition F(0) = 0. The blown-up points
are on the strict transform of the line E = {z; = 0} which gives an elliptic
curve Cpg; in the surface Spg;. Moreover Spg; is a blown-up Hopf surface if
all B,_1+ ...+ 8; # 0, and a blown-up Inoue surface if there is at least one
index i for which ,_1+...48; = 0. Clearly z;0/0z; induces a global vector
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field on Spp:. The equation {zz = 0} is defined for the family of germs F,
for every u € U; if Sy, is a blown-up Hopf surface, the contraction z; +— azy
with small a # 0, computed from «; and [;, gives an elliptic curve; if S, is
obtained by a blowing-up of a non-zero trace surface with b > 0 it gives
exactly the cycle of by rational curves by Lemma 2.11. This completes the
proof. =

2.3. General case

THEOREM 2.19. Let S = S(F) = S(II,0) be a minimal surface contain-
ing a GSS such that n = by(S) > 1 and tr(S) # 0. Then the cocycles 0, 0°
fori=0,...,n—1 and T are generators of H'(S,0). More precisely, let
v(F) = (eo,...,En—1) be the vanishing invariant of F.

(i) If h'(S,0) = 2n+1 then the cocycles nt, 0° fori=0,...,n—1 and
T are a base of H'(S,0O).

(ii) If h'(S,0) = 2n and j is an index such that £; = 1 then the cocycles
nt fori=0,...,n—1, 0" fori#j, and T are a base of H'(S,O).

Proof. By Theorem 1.19 it may be supposed that F' is a normal germ.
By Lemmas 2.2 and 2.6 it is sufficient to prove that [0?] are linearly inde-
pendent in case (i), and in case (ii) that [#] are linearly independent for
i # j such that ¢; = 1. Let S — B be the versal deformation given in
Theorem 2.12.

(i) By Theorem 1.4, if S>> \;0? # 0, then the associated deformation
T — U, which exists since H?(S,0) = 0, is not locally trivial, moreover
the coordinates of the blown-up points are obtained by integration of the
cocycles, therefore the base change mapping H : (U,0) — (B, 0) is invertible
and > \;[07] # 0.

(ii) By Theorem 1.4, if >~ \;0° # 0, there is a relation Y ;[0?] = 0 only
if integration of the vector fields 6% moves the points O; = (a;,0) in such
a way that a;(u) = k(u)ay for every i. But this is impossible if we have
removed 67 such that o; # 0. m

COROLLARY 2.20. Let S = S(F) be a surface with tr(S) # 0. Then every
deformation S — Y of S where S ~ Sy is locally given by a deformation of
any F' such that F ~ F’'. More precisely, for any choice of a representative
F’ in the conjugacy class of F and any choice of charts, there exists a
neighbourhood Y' C'Y of 0 and holomorphic functions ag(y),. .., an—1(y),
Bo(y)s -y Pn-1(y) and t(y) on Y’ such that if

Fl(zyy)=My...II,_,0'(2,y)
with
I (ug, vi, y) = (wiv; + ai—1(y),vi + Bi—1(y))
or
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IT; (uj, v, y) = (v + o1 (), wjv; + Bi—1(y))
fori=1,....,n—1,

ITj(uo, vo) = (uovo,v0) or Iy(ug,vy) = (vg, ugvp)
and

0(27 y) = (Zl + an—l(y)7 t(y)22 + ﬂnfl)a
then Sy ~ S(F'(-,y)) provided the point O; belongs to the two domains of
charts.

Proof. Comes from the definition of a versal deformation. m

COROLLARY 2.21. Let S have tr(S) # 0. Then the unique holomorphic
foliation extends to any deformation of S.

Proof. Any deformation is given by a deformation F,, = (x,t(u)zy +

Bo(u) + ...+ Bn-1(u)). =

3. Automorphisms. Let Aut(S) be the group of automorphisms of S;
Aut(S) is a complex Lie group by the theorem of Bochner-Montgomery. Let
D;, 0 <i<n-—1, be the n rational curves of S. Following [D3] we denote by
Autg(S) the normal closed subgroup of automorphisms g with g(D;) = D;
for every 0<i<mn—1. By Lemma 3.4 of [D3], this group is isomorphic to the
group Isom(F¢) of invertible germs ¢ such that pFo = Fog. In the same
way, if p is a divisor of n, then Aut,(S) is the set of automorphisms g : S — S
which have no fixed points and satisfy g(D;) = D;y,. By Theorems 1.4
and 1.19 we have immediately

THEOREM 3.1. Let S be a minimal surface with n = by(S) and tr(S) # 0.
S

(1) If S is an Inoue surface, i.e. v(F) = (0,...,0), then Auty(S) ~
C* X Z/nZ and C* corresponds to the one-parameter group generated by a
non-zero global vector field.

(2) If v(S) contains exactly one non-zero coefficient, then Autg(S) ~
Z/nZ.

(3) If v(S) has at least two non-zero coefficients then Autg(S) =~
7/ ged{m,n}Z, where 1 < m < n — 1 is the least integer such that m =
k —jmodn, with €; =1 and €, = 1. In particular, generically Auty(S)

= {1d}.

It is easy to see that any Inoue surface with by(S) = n is an n-fold cov-
ering of an Inoue surface with bo(S) = 1; nevertheless generically a surface
with a GSS and b2(S) > 1 is not a covering of another surface, as we are
going to see in the sequel.

2
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PROPOSITION 3.2. Let S be a generic surface with n = by(S) > 1.

(1) Let S — U be the versal logarithmic deformation of S ~ Sy, where
dimU =n. Let p,q € N* be such that n = pq, and X, C U be the subset of
points u such that S, is a q-fold covering of another generic surface. Then
Xy is a submanifold of U of dimension p.

(2) If Aut,(S) # 0, then there exists o € Aut,(S) such that of = 1d.
In this case and for p > 0 minimal with this property, denote by G ~ Z/qZ
the cyclic group generated by . Then Aut(S) is a finite commutative group
isomorphic to the product Autg(S) x G of cyclic groups.

Proof. (1) Let Fo be the germ associated with the curve C at the point
Oc = (ap,0). We have Fo(u,v) = (uv™t"~ 1 4+ > 0 a;v't tv) and with
the notations of [D1], Foy, satisfies the commutative diagram

Foip
Scip—%Scup

c c
chl l”cw

N F N
Se——Sc

where I1E, (u,v) = (uv? + S o v) A straightforward computation

gives Foyp(u,v) = (uwo™t"P=1 4517 0 altivt ty) with

(3.3)  (ahy- 0y g, Qe O )

= (Qpy ey an_1, a0/t a1 /12, oy J1P).

Now any « € Aut,(S) induces, for every curve C, an isomorphism a¢ such
that

is commutative. By Theorem 1.4(1), there exist x and p such that
(3.4) ac(u,v) = (k(u — ap) + oy, pv),
therefore t¥ = u™ and

3.5 7= 2mm/Pt for 0 <m < p-—1,
( p
(3.6) o =ka;  for0<j<n-—1.

Conversely, for any m, such an ¢ defines an automorphism of Aut,(5).
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The linear system given by (3.3) and (3.6) splits into p linear systems

= ko
Qp4j 7 = kg,

Pt — 4
QoptjH 7 = KQptj,

(3.75) :
92 i
a(qfl)pﬂ‘,“(q P+ = KQ(q—2)p+js
tjil paTIH = Ko npa s

for j =0,...,p—1. (3.7;) shows that for every 0 < j <p—1, all agpy; =0
or ez mi/pyraa=1)/2 — ¢44 Finally, we have p parameters o, ... 01
which determine linearly the other o, and define a (disconnected) manifold
X; of dimension p. Since these conditions are necessary we have X, C
X, CU. The next step is to show that if Aut,(S) # 0 then there exists an
automorphism a € Aut,(S) such that a? = Id. To see this, suppose that
m = 0. Then by (3.5) and (3.7;),

(3.8) pl =t and pPIIY/2 = .

From (3.7;) we deduce
/{lOéj .
alpﬂ:m for0<j<p—land0<I<qg—-1
Define G¢ by
p—1
GC (U, ’U) = HngpaC (U, U) = ("Wﬂp?fp + Z ai/ﬁvl? IU'U) .
i=0

By [D3], Lemma 3.6, it is sufficient to prove that G = F¢. By induction
on k > 0 it is easy to check that

p—1
GE (u,v) = <Hkuvkplup(l+...+k) 1kt Zaiui+(2+.,,+k)pvi+(k;—1)p 4o
i=0
p_l p—l
+ Kl Zaiﬂ(kfl)z+((kfl+1)+---+k)p,Uz+lp +o+ Zai,umvl,,ukv).
i=0 i=0

For k = q we have the result and X, = X by [D3], 3.8, p. 681.

(2) As has already been seen, if p is the least integer such that Aut,(S)
# () then there exists a such that a? = Id. Moreover if 3 € Aut,(S)
then there exist ¢’ and ¢ € Autg(S) which satisfy p’ = ¢'p and 5 = ad .
Therefore in order to prove the commutativity of Aut(S) it is sufficient to
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check that for a given curve C the diagram

commutes. If all a; = 0, the result is clear, thus we may suppose that
ap # 0; but then o, # 0, thus by Theorem 1.4(2) we have A& = 1 and
v (u,v) = (u, Av). Moreover, by (3.4) and (3.7y), ac(u,v) = (ku, puv). To
complete the proof we have to compute Pc4, from the commutativity of

o Potp &
Sy 22 Sy
C C
HC+pl lHC-H)
N o -~
Sc Sc

with Hgﬂ)(u, v) = (uvp+2f;01 a;v*,v). Note that by Theorem 1.4, ged{m.n}
=1, thus ) a;v" =) a;A"0", 50 Potp(u,v) = (u/AP, Av) = (u, Av) and the

result is obvious. =

LEMMA 3.9. Let § — U be a family of generic surfaces with n = by(Sy,)
> 0, where U 1is connected and n = pq. If there is an open subset V C U
such that for everyu € V| Sy, is a g-fold covering of a surface S.,, then every
surface is a q-fold covering surface. Moreover if U is simply connected, then
there exists a family 8" — U of generic surfaces with p = by(S!) and a
commutative diagram

S # Sl
U
such that for every u € U, (Sy, Py, S.,) is a g-fold covering.

Proof. By Proposition 3.2(1), the set of points u such that S, is a
g-fold covering is an analytic subset; since it contains V', it contains U. By
Corollary 2.21 the trace depends holomorphically on u and conditions (3.8)
become

p(w)? = t(w) and ("2 = g(u)e.

By choosing a determination of 2'/9, x(u) and p(u) may be defined on U,
therefore an automorphism ¢ is globally defined on S. For every u € U,
gu € Aut,(S,) satisfies g2 = Idg,. If G denotes the group generated by g,
then &’ = §/G and @ is the canonical mapping ®:S — S'. =
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DEFINITION 3.10. Let D be a rational curve of a surface S with a GSS.
Then (S, D) will be called a marked surface. A deformation of a marked
surface (S, D) is a 6-uple (S,0,U, D, f,uy) which satisfies the following con-
ditions:

(i) f:S — S, is an isomorphism;
(ii) @ : S — U is a deformation of S,,;
(iii) D is a divisor of S flat over U such that f,(D) = D,,.

Similarly, the 4-uple (S, 6,U, D) will be called a family of marked surfaces.

We recall that if D is an effective divisor on .S, then the locally free sheaf
2% (log D) defined by

Q25(log D)(U) := {w € 25(Dyea)(U) | dw € £25(Drea)(U)}

is called the sheaf of meromorphic forms with logarithmic poles in D. If z€ D
is a regular point and D= {z; =0}, then 2} (log D) is generated by dz;/z
and dzo; if z € D is a singular point and D = {2122 = 0} then 2L(log D) is
generated by dz;/z1 and dza/zs. A logarithmic deformation [KW] is defined
by cocycles in the dual sheaf Og(—log D) := Ho, (25 (log D), Og), there-
fore configuration of curves is maintained. Given a structure on manifolds
we shall say that there is a logarithmic fine moduli space if the set X' of
isomorphism classes can be endowed with a structure of analytic space and
there is a family 6 : Y — X which is the universal logarithmic deformation
at every point. With the notations of Lemma 1.22, we have

THEOREM 3.11. There is a logarithmic fine moduli space of all marked
generic surfaces S with by(S) = n > 1 and it is isomorphic to P! /L x A*.

Proof. The group L acts on P*"~! and has n fixed points [0:...:0: «; :
0 :...:0] which give in the quotient n normal isolated singularities. Let U be
the complement of these singular points. The set U’ of points u € U such that
Aut(S,) = {Id} is Zariski dense by Theorem 3.1 and Proposition 3.2(1). For
every u € U we choose a representative of the versal logarithmic deformation
S, — V,, over a small neighbourhood V,, of u such that over V,, any two
surfaces are not isomorphic; that is possible because L is finite and we have
removed the fixed points. Over V,, N V., the deformations are isomorphic
and the isomorphism is unique since the automorphism groups are trivial
on a dense open set. Therefore the glueing is unique and the compatibility
relation is trivially satisfied. By [W], this family is universal at every point
because H°(S,,O0,) = 0 for every u.

Now let (0,...,0,;,0,...,0) be a fixed point. We may suppose that
«; = 1 and we choose a versal deformation over a polydisc A™. The group
L is generated by A : P?~1 — P"~1 defined by
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A(a07 s Q1 17 Qi 1y 7an71)

—1 -1 —1—1
:()\ 1040,...,)\ ai,l,l,)\aiJrl,...,)\" Zan,l).

By the universality the glueing is unique and completes the family over the
singularities. m

[B]
[BR]
[DA]
[D1]
[D2]
[D3]

[E1]

[E2]

[IKO]

[KA]

[(KW]
[KO]
[KH1]

[KH2J

[KH3)]
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