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Abstract. von Neumann’s reliance on the von Mises frequentist interpretation is discussed

and compared with the Dutchbook approach proposed by de Finetti.

1. Introduction. In a meeting devoted to Quantum Probability it seems reasonable

to glance occasionally backwards and to review some of the circumstances that presided

over the birth of our science. In particular, the beginning of the 20th century saw very

diverse approaches towards the foundations of classical probability theory. The problem

had been squarely posed by Hilbert [Hi1]: “ 6. Mathematical Treatment of the Axioms of

Physics. The investigations on the foundations of geometry suggest the problem: To treat

in the same manner , by means of axioms , those physical sciences in which mathematics

plays an important role; in the first rank are the theory of probabilities and mechanics.

As to the axioms of the theory of probabilities , it seems to me desirable that their logical

investigation should be accompanied by a rigorous and satisfactory development of the

method of mean values in mathematical physics , and in particular in the kinetic theory

of gases”.

Note that Hilbert made two distinct demands: (1) the call formathematical definitions

(an axiomatics that makes precise the syntax), quite likely in a spirit similar to his [Hi2];

(2) the need for an interpretation (semantic) of the mathematical structures, even in then

controversial (e.g. [Blz]) applications to physical world situations: “ ...for mathematics is

the foundation of all exact knowledge of natural phenomena.”

Thus, it may appear somewhat strange today that, while Hilbert quoted for mechanics

some of the perennial classics (Mach, 1901; Hertz, 1894; Boltzmann, 1897; Volkmann,

1900), his only reference pertaining to probability proper was to a text by Bohlmann,

1900, on the “Mathematics of Insurance”.
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An authoritative response to Hilbert’s first demand came in the form of the concise

essay by Kolmogorov [Ko2] who, for generations to come, established the language of

probability to be measure theory, with expectation values defined as

< f > =
\
f(x) dµ(x). (1.1)

This is the form that Born [Brn] carried over to quantum mechanics as

< f > =
\
X

f(x) |Ψ(x)|2dx (1.2)

where the “probability amplitude” |Ψ(x)|2 at x is obtained from the square–integrable

“wave function” Ψ. Since |Ψ|2 is L1 , the integral is defined for all L∞−functions f. The

space X of the variable x was thought of, originally, as the configuration space of the

position, but it was learned quickly that this applies as well to the spectrum (discrete or

continuous) of a complete set of compatible observables (Dirac’s CSCO), i.e. a maximal

abelian subalgebra of the algebra of observables. Until the existence of superselection

rules was recognized, and the theory of representations was better established, it was

natural to identify the observables with the self-adjoint operators affiliated to B(H). One

of the achievements of von Neumann’s pioneering book [vN1] was to recognize that the

natural extension of (1.1) is thus to identify a state as a countably additive, posivitive

linear functional, normalized to 1, hence giving the expectation values

< A >= Tr ρA (1.3)

where the “density matrix” ρ , replacing the classical probability measure, is a positive

self-adjoint operator belonging to the trace class T (H) , the predual of the von Neumann

algebra B(H) in the same way as L1 is the predual of the von Neumann algebra L∞.

We emphasize that up to this point, we are still at the syntactic level. Already for

classical probabilities, Carnap had complained about – but, in spite of [Car], unfortu-

nately not cured – the condition that the theory suffers not from lacking a semantic but

from having too many.

Hilbert’s view that probabilty theory should account for its use in physics, especially

as it relates to predictions made with only partial control of the initial conditions, was

also expressed by several of the greatest among his contemporaries [Had, HP2, Bo1]; for

a later extension of these concerns to the instability of small quantum systems under

minute perturbations, see [Zeh]. Semantic concerns, moreover, had unescapably intruded

the scene with the consideration of the quantum mechanical measuring process, see e.g.

[Wig]. This is where von Neumann, von Mises, and later de Finetti, come into the play.

2. von Neumann’s probabilistic interpretation of QM states. In [vN1], von

Neumann immediately makes clear his position on how to interpret probabilities, namely

as limiting frequencies, and why: “Classical mechanics is a causal discipline ... there also

exists a statistical method of treatment of classical mechanics. But this is , as it were, a

luxury ... The statistical statements which we found in quantum mechanics have a different

character ... [We observe] statistical ensembles which consist of many systems S1, ...,SN

(i.e. N models of S, N large.) Such ensembles , called collectives , are in general necessary

for establishing probability theory as the theory of frequencies. They were introduced by R.
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v. Mises , who discovered their meaning for probability theory, and who built up a complete

theory on this foundation.”

Remark in particular that von Neumann’s presentation strongly presupposes a fre-

quentist interpretation of classical probability theory (an interpretation to which Kol-

mogorov was to pay barely more than lip service in [Ko2].) Thus two comments must be

made here regarding (a) the manufacture and (b) the testing of these “collectives”.

(a) One likes to say today that the systems are identically prepared, as it were by

some state factory; these systems are not necessarily in the same pure state, yet they all

carry some information characteristic of the ensemble. In the classical realm we can think

of such a preparation as letting a gas reach its thermal equilibrium: we do not focus on

the instantaneous velocity of the individual molecules, but the temperature of the gas is

reflected in their mean speed. A similar situation prevails when discussing the beam of

particles produced for the Stern-Gerlach experiment, for instance. We do not need to say

that the state depends on the observer, but we need to specify the information we have

(and that we don’t have), in order to be able to make reliable predictions.

(b) How do we test all that, in both the quantum and the classical realms ? In spite

of the classical character of von Mises’ theory [vM2], von Neumann could import into

quantum theory the essential, but as yet vague, concept of subsequence selection: “...with

an ensemble of N elements it suffices to carry out the statistical inspections , relative to

the distribution of values of the quantity R not on all elements S1, ...,SN but only on any

subset of M < N elements ... provided that M and N are both large, and that M is very

small compared to N ... This follows from the so-called law of large numbers , the theorem

of Bernoulli.”

Von Neumann is less precise than one should want to be today, and perhaps than

he could have been. To start with, one should distinguish (see e.g. [Fel]) two “laws of

large numbers”: the weak law ((which is Bernoulli’s, and is the only one in [Bo2]) and

the strong law [Bo3, Can] (which is what we actually need); moreover there is the law of

iterated logarithms [Ko1, Khi] lurking in the background; all were known by 1932.

Let ξ1, ξ2, ... be an infinite sequence of independent Bernoulli trials, each with

< ξn >= p. The weak law asserts simply that

lim
n→∞

Prob

{
∣

∣

∣

∣

(

1

n

n
∑

k=1

ξk

)

− p

∣

∣

∣

∣

≥ ǫ

}

= 0. (1.4)

The strong law is much stronger (and its proof requires countable additivity):

Prob

{

lim
n→∞

(

1

n

n
∑

k=1

ξk

)

= p

}

= 1. (1.5)

This strong law did generate quite some controversy; referred to for a while as “Borel

paradox” [Ste, Hau], it goes against the grain: to require that a sequence converges is a

severe demand; yet the strong law asserts that almost all of them do. The situation was

made worse by the law of iterated logarithms, supporting the naively opposite sentiment

that in the long run improbable things do happen: it even quantifies how fast they do.

Furthermore, sets of measure zero presented their own semantic problems. Two atti-

tudes were indeed still fighting for the command of the classical field in the years just
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preceding von Neumann’s explorations into quantum probability. Bernstein had proposed

an axiom [Ber] amounting to say that in the natural sciences, one can safely “exclude any

set of measure zero.” Yet, Weyl was skeptical (in spite of, or perhaps because of [Wey]):

one should not evaluate highly the value of theorems in which an unspecified set of excep-

tions of measure zero appears. This ambiguity must have been one of the motivations of

von Mises [vM1,2], whose profound positivist persuasion is on record [vM3]. The same

philosophical standpoint may also have contributed to von Neumann’s choice in focusing

on von Mises’ “collectives” , which we review in the next section.

3. von Mises revisited. von Mises’ foundations of probability are grounded in the

necessity to have an interpretation of the theory in terms of frequencies; he introduced

the concept of “collective” specifically for that purpose. These are ensembles of sequences

ξ : n ∈ N 7→ ξn ∈ Ω that satisfy two axioms. For the time–being, let Ω be unspecified.

The first axiom requires that, for all sequences in a given collective K , the limiting

relative frequencies exist and converge, giving the “limiting frequencies” characteristic of

the collective. Specifically, for every part A ⊆ Ω , and every N ∈ N , let NA = #{n | 1 ≤

n ≤ N , ξn ∈ A} :

WA = lim
N→∞

NA

N
exists. (3.1)

The second axiom amounts to a rule that selects those subsequences ξ′ of ξ ∈ K that

form a new collective K ′ with the same limiting frequencies:

W ′
A = WA for all A ⊆ Ω. (3.2)

For half–a–century, several objections to this axiomatization were raised against each

and both of these axioms (for a review, see [ML2]). The first line of attack is that Ω must

be specified, lest one runs into difficulties with the requirement that limiting frequencies

exist “for all” parts A ⊆ Ω especially if one wants to avoid restrictions to measurable

subsets in any of the usual senses (e.g. Peano–Jordan sets would have to be included,

even in some favorable circumstances [Cop]). A second line of criticism is linked to the

apparent unavoidability of some form of the law of iterated logarithms: large deviations

are hard to proscribe [Vil]. The third line questions the selection of admissible subse-

quences. It is along this line [Wal] that a liberating path was opened [Chu] in the maze

of objections that had all but discredited von Mises’ approach with many probabilists.

Note Wald’s affiliation with the Vienna colloquium of Gödel, Menger and Tarski’s fame;

logics (specifically recursive function theory) had entered the foundations of probability

theory, an entry that was to be confirmed much later, and from a different point of view,

by Kolmogorov’s conversion [Ko3] from infinite sequences to finite strings.

Much of the confusion seems to have stemmed from the difficulty inherent in capturing

mathematically what constitutes a random sequence. Intuitively, a random sequence is

one that can not be predicted, a sequence such that the observation of its first entries can

not be used to devise a winning stategy for betting on the subsequent entries, or, still in

another formulation, a sequence that presents no regularity.

While the pioneering role of von Neumann in the elaboration of quantum probability

was based on von Mises’ frequentist approach, it is interesting to note that when faced
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with actually producing the kind of (classical) randomness necessary for Monte–Carlo

computations, von Neumann took an attitude that is quite in contrast with the smooth

confidence of his 1932 urtext: “Anyone who considers arithmetical methods of producing

random digits is , of course, in a state of sin ... there is no such thing as a random number

– there are only methods to produce random numbers ... and a strict arithmetic procedure

... is not such a method” [vN2].

This might have suggested a mathematical definition of randomness along the prag-

matic line that a sequence is to be reputed random if it fails to satisfy regularity (or

arithmetic) tests. But a Popperian falsification approach [Pop] to a mathematical def-

inition was apparently not in the cards at the time. Yet, such an approach, albeit not

with this philosophical parti–pris, was to be successfully followed by Martin–Löf [ML1]

who adapted the notion of Kolmogov complexity [Ko3], making essential use of recur-

sive theory (see e.g. [Hod]). As the physics community does not seem to have grasped

Martin-Löf’s argument, it is sketched here; for further discussion, see [LiV]. To explain

what goes on, it is sufficient to consider binary strings {x1, x2, . . . , xn} and sequences

{ξ1, ξ2, . . . , ξn, . . .} : xk and ξk belong to {0, 1}. We denote by X the (countable) set of

all binary strings.

Definition 3.1. A test is a subset

V =
⋃

m∈N

Vm ⊂ N ×X with x ∈ Vm iff (m,x) ∈ V

such that

(1) V is recursively enumerable ;

(2) Vm ⊇ Vm+1 ;

(3) #{An ∩ Vm} ≤ 2n−m.

The index of a string x of length l(x) is mV (x) = max{m ∈ N | x ∈ Vm}.

Note that (3) gives the key to the interpretation of Def. 3.1: there are 2n strings in

An and at most a fraction 2−m of those have the regularity necessary to pass the filter

Vm ; this gives a meaning to the fact that the successive filters test for more and more

regularity. mV (x) is thus the maximal level of regularity exhibited by the string, in the

test V ; and one has mV (x) ≤ l(x). Evidently, how regular a string is reputed to be will

in general depend of the test V ; this situation would improve if one could prove that

there is at least one test U that satisfies the following condition.

Definition 3.2. A test U is universal if for every test V there is a c ∈ N such that

Vm+c ⊆ Um ∀ m ∈ N .

That such a test exists is where recursive theory enters: Since every test V is recur-

sively enumerable, the set of all these tests is also recursively enumerable, i.e. there exists

a subset T ⊂ N ×N ×X such that to every test V corresponds precisely one e ∈ N with

(m,x) ∈ V iff (e,m, x) ∈ T. (3.3)

One then verifies that the test U defined, for fixed n ∈ N , by

(m,x) ∈ U iff (n,m+ n, x) ∈ T (3.4)
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is universal. Moreover, for every test V , there exists then an element c ∈ N such that

mV (x) ≤ mU (x) + c ∀ x ∈ X. (3.5)

Next, for any string x of length l(x) , Martin–Löf introduces a conditional complexity

K(x|l(x)) that measures the minimal length of an algorithmic description of x given its

length l(x) ; and he proves that there is a k ∈ N such that, given K and U

mU (x)− k ≤ l(x)−K(x|l(x)) ≤ mU (x) + k ∀ x ∈ X. (3.6)

This provides a link between Kolmogorov complexity and the lack of regularity in a

universal test. The gist of Martin–Löf’s contribution is that his notion of test, and its

main properties, can be extended from strings to sequences by the following adjustments.

Definition 3.3. A sequential test is a subset

V =
⋃

m∈N

Vm ⊂ N ×X with x ∈ Vm iff (m,x) ∈ V

such that

(1) V is recursively enumerable ;

(2) {x ∈ Vm , n ≤ m, y ≥ x} ⇒ y ∈ Vn ;

(3) #{An ∩ Vm} ≤ 2n−m

where y ≥ x means l(y) ≥ l(x) and yk = xk ∀ 1 ≤ k ≤ l(x).

Note that a sequential test is indeed a test in the sense of Def. 3.1, and that one

can again define the index of a string, now with respect to a sequential test. Universal

sequential tests exist, again by an appeal to recursive theory. The interest of Def. 3.3

is that it allows to consider any sequence ξ through its initial strings ξ(n) of length n :

ξ
(n)
k

= ξk ∀ 1 ≤ k ≤ n. Since, for any sequence ξ and any universal sequential test U ,

the index mU (ξ
(n)) is a non–decreasing function of n , the following limit exists (finite or

infinite):

mU (ξ) = limn→∞ mU (ξ
(n)). (3.7)

Definition 3.4. A binary sequence ξ is said to be random in the sense of Martin–Löf

iff mU (ξ) < ∞.

Because of (3.5), the condition that a sequence be random is independent of the

universal test used in Def. 3.4. Moreover, we have as a consequence of (3.6):

mU (ξ)− k ≤ n−K(ξ(n)|n) ≤ mU (x) + k ∀ x ∈ X and n ∈ N (3.8)

which forces the complexity of the initial segment ξ(n) of any random sequence ξ to

increase sufficiently fast with n to remain within a certain finite range of n. Some converse

of this also holds [ML3], in the sense that any sequence ξ with

#{n ∈ N | n−K(ξ(n)|n) ≤ c} = ∞ for some c ∈ N (3.9)

must be random in the sense of Martin–Löf.

The term “random sequence” has therefore been consistently described at the theo-

retical level, even if one must admit [Knu] that “From the standpoint of practical random

number generation ... this is ... the worst definition of randomness that can be imag-

ined.” Suffice it to say here that Martin-Löf also succeeded in [ML1], by a modification
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of condition (3) of Definition 3.3, to characterize Bernoulli sequences and that “these are

precisely the sequences for which von Mises introduces the term Kollektiv.” It is somewhat

doubtful that von Neumann would have accepted lightly such a long detour to justify in

elementary terms what he meant by an ensemble of identically prepared systems. Hence

the urge to turn to some more simple–minded semantic, one that would put the emphasis

on the information one has on the manner the system has been prepared.

4. Objective underpinnings in de Finetti’s subjective scheme. Several con-

tributions to classical probability are due to de Finetti (e.g. infinite divisibility, and his

representation theorem for exchangeable distributions [Fel]; note in passing that the sim-

plicial structure at the heart of the latter has been extended most remarkably to quantum

many–body systems of identical bosons [Hud]). We want to concentrate here on the foun-

dational setting in [deF].

From a (maximal) abelian subalgebra of the observables algebra, we retain a Boolean

lattice of events:

P = {E} with ∪ , ∩ , ⊆ , ¬ and ∅ , I.

The interpretation formalizes, as usual, the idea that events either “occur” or “do not

occur”; e.g. ¬E occurs exactly when E does not occur ; E ∪ F occurs exactly when at

least one of E or F occurs ; E ∩ F occurs exactly when both E and F occur; E ⊆ F

means E ∩F = E , or E entails F ; E and F are mutually exclusive whenever E ∩F = ∅ ,

i.e. E ⊆ ¬F ; {Ei | i = 1, 2, ...n} is exhaustive whenever
⋃n

i=1 Ei = I ; etc ...

There are two actors: the Bookie and the Bettor; the setting is given by a finite,

exhaustive collection {Ei | i = 1, 2, ...n} of mutually exclusive events Ei ∈ P ; the action

is governed only by the requirements that for each Ei , the Bookie be free to choose the

“odds” pi , but is obligated to accept bets of any sum (or “stake”) Si offered by the

Bettor, subject to the agreement that when the event Ei is tested, the Bettor’s net gain

will be:

Gi =

{

(1− pi)Si if Ei occurs

−piSi if Ei does not occur

Definition 4.1. A Bookie’s assignment {pi} is said to be coherent, whenever the

Bettor cannot put his stakes {Si} in such a manner that his net gain

G =

n
∑

i=1

Gi

be always positive, independently of the outcomes of the test of the events {Ei}.

The beauty of this model resides in its semantic simplicity; in effect, the above defini-

tion does state that a Bookie makes coherent assignments if and only if his assignments

conform to the measure–theoretical syntax of [Ko2], i.e. satisfy the following three con-

ditions:

(1) 0 ≤ pi ≤ 1

(2) pi = 0 (resp. 1) if Ei = ∅ (resp. I)

(3)
∑n

i=1 pi = 1.
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Indeed, note the equivalence of (3) above with

(1− p1) −p2 · · · −pn
−p1 (1− p2) · · · −pn
· · · · · · · · · · · ·

−p1 −p2 · · · (1− pn)

= 0; (4.1)

note also that when Ek occurs, the net gain is

G(k) = Sk −
n
∑

i=1

piSi. (4.2)

The standard probabilistic interpretation in terms of the expectation value < G >

=
∑n

k=1 pkG
k is that the condition of coherence is < G > = 0. No such interpretation

however is necessary to make sense of Definition 4.1. The latter is only a statement to the

effect that the Bookie has checked his informations and that they are consistent. It makes

no statement on which specific values the Bookie should attribute to the particular “odds”

he offers for each event. Any such attribution, beyond coherence, requires a specification

of the information content of the game. This is what Shannon’s entropy allows to do when

the method of Lagrange multipliers is used to optimize this information content, subject

to some supplementary knowledge. Using this method, the classical physicist computes

such things as canonical equilibrium states. So does his quantum colleague; even when

doing quantum statistical mechanics, the optimalization is usually subject only to the

knowledge one has on some set of compatible observables. The propriety of the specific

assignments is then to be judged by the predictions that are drawn from them.

5. Conclusions. According to de Finetti’s foundational position [deF], neither these

assignements, nor the concomitant predictions, necessarily need to be formulated in a

statistical language of the kind that von Mises proposed, although habitually they have

been so interpreted. The view of the state of a system, as it emerges from de Finetti’s

emphasis on the relation between preparations and predictions, does not presuppose any

commitment to some philosophical view that the state of a quantum system depends on

the observer, only that the observer makes predictions on the basis of the information

he has on the preparation of the system; for a pursuit of this Bayesian line in physics,

see [Jay]. Even more urgently, a view such as de Finetti’s seems to be necessary if one

is to speak of the behavior of an “isolated” system, a task which is now demanded by

actual laboratory situations where individual quantum systems (rather than ensembles)

are claimed to be prepared and sustained.
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Deuxième Congrès International des Mathématiciens, Paris, 1900 , Gauthier-Villars,

Paris, 1902, 58–114; see also: Mathematical Developments arising from Hilbert prob-

lems, F.E. Browder (ed.), Proc. Symp. Pure Math. XXVIII, 1976.

[Hi2] D. Hilbert, Grundlagen der Geometrie, Teubner, Leipzig, 1899 (1st ed.), 1922 (5th

ed.); Foundations of Geometry (L.Unger transl. from the 10th ed.), Open Court,

LaSalle IL, 1971.

[Hod] R.E. Hodel, An Introduction to Mathematical Logic, PWS Publ., Boston, 1995.

[Hud] R.L. Hudson, Analogs of de Finetti’s Theorem and the Interpretative Problems of

Quantum Mechanics, Found. Phys. 11 (1981), 805–808; see also: R.L. Hudson and G.R.

Moody, Locally Normal Symmetric States and an Analogue of de Finetti’s Theorem,

Z. Wahrscheinlichkeitstheorie verw. Gebiete 33 (1976), 343-351.

[Jay] E.T. Jaynes, Papers on Probability , Statistics, and Statistical Physics, 2nd ed.,

Kluwer, 1989.

[Khi] A. Khintchine, Ueber einem Satz der Wahrscheinlichkeitsrechnung , Fundam. Math.

6 (1924), 9–20.

[Knu] D. E. Knuth, The Art of Computer Programming , vol. 2 , 2nd ed., Addison-Wesley,

Reading, Mass., 1981.

[Ko1] A.N. Kolmogorov, Das Gesetz des iterierten Logarithmus, Math. Annalen 101 (1929),

126–135.



166 G. G. EMCH

[Ko2] A.N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung , Springer, Berlin,

1933; Foundations of the Theory of Probability (N. Morrison, transl.), Chelsea, 1956.

[Ko3] A. Kolmogorov, On Tables of Random Numbers, Sankhya, The Indian Journal of

Statistics, Ser. A 25 (1963), 369–376; Logical Basis for Information Theory and Prob-

ability Theory , IEEE Trans. Inform. Theory 14 (1968), 662–664.

[LiV] M. Li and P. Vitanyi An Introduction to Kolmogorov Complexity and its Applications,

2nd ed., Springer, New York, 1997.
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