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Abstract. A brief introduction to Z2-graded quantum stochastic calculus is given. By

inducing a superalgebraic structure on the space of iterated integrals and using the heuristic

classical relation df(Λ) = f(Λ+dΛ)−f(Λ) we provide an explicit formula for chaotic expansions

of polynomials of the integrator processes of Z2-graded quantum stochastic calculus.

1. Introduction. A theory of Z2-graded quantum stochastic calculus was was in-

troduced in [EH] as a generalisation of the one-dimensional Boson-Fermion unification

result of quantum stochastic calculus given in [HP2]. Of particular interest in Z2-graded

quantum stochastic calculus is the result that the integrators of the theory provide a

time-indexed family of representations of a broad class of Lie superalgebras. The notion

of a Lie superalgebra was introduced in [K] and has received considerable attention since.

It is essentially a Z2-graded analogue of the notion of a Lie algebra with a bracket that

is, in a certain sense, partly a commutator and partly an anticommutator. Another work

on Lie superalgebras is [S] and general superalgebras are treated in [C,S].

The Lie algebra representation properties of ungraded quantum stochastic calculus

enabled an explicit formula for the chaotic expansion of elements of an associated uni-

versal enveloping algebra to be developed in [HPu]. The Lie superalgebra representation

properties of Z2-graded quantum stochastic calculus enabled an analogous theory for the

graded case to be developed in [E1]. The work of [E1] is presented in this expository pa-

per in a simplified, shortened and less technical form. The work is treated with maximal

detail in [E2].

Section 2 of this paper gives a brief description of the integrators of Z2-graded quan-

tum stochastic calculus. Section 3 describes the Ito superalgebra of Z2-graded quantum

stochastic differentials. Section 4 describes the Ito tensor superalgebra and how this en-
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ables the space of iterated quantum stochastic integrals to be treated algebraically in a

fully rigorous manner. Section 5 establishes the existence of a chaos map, an explicit

formula for which is provided in section 6.

2. The integrators of Z2-graded quantum stochastic calculus. In this section

we see how the integrators of N -dimensional Z2-graded quantum stochastic calculus are

indexed by elements of the superalgebra M0(N, r) of complex (N +1)× (N+1) matrices.

Here r denotes a fixed integer with 0 ≤ r < N . An element A of M0(N, r) may be

decomposed uniquely into two matrices as follows:

A =

(
A0 0
0 A′

0

)

+

(
0 A1

A′
1 0

)

.

Here A0 denotes an (r+1)× (r+1) matrix, A′
0 denotes an (N − r)× (N − r) matrix, A1

denotes an (r + 1) × (N − r) matrix and A′
1 denotes an (N − r) × (r + 1) matrix. If A

is such that A1, A
′
1 = 0 then A is said to be even. The subspace M0(N, r)0 ⊂ M0(N, r)

consists of all such matrices. Similarly, if A is such that A0, A
′
0 = 0 then A is said to be

odd. The subspace M0(N, r)1 ⊂ M0(N, r) consists of all such matrices and it is clear that

M0(N, r) = M0(N, r)0 +M0(N, r)1. The elements of M0(N, r)0 ∪M0(N, r)1 are said to

be the homogeneous elements of M0(N, r).

Define Eα
β to be the (N + 1)× (N + 1) matrix that is zero everywhere except for the

value 1 in the αth column at the βth row. We can see that for all 0 ≤ α, β ≤ N , Eα
β will

be homogeneous. We define the value σα
β for 0 ≤ α, β ≤ N by

σα
β =

{
0 if Eα

β even;
1 if Eα

β odd.

For an arbitrary homogeneous element A of M0(N, r) we define σ(A) = γ where A ∈

M0(N, r)γ .

Define ∆ ∈ M0(N, r) by ∆ :=
∑N

α=1 E
α
α . The multiplication . in M0(N, r) is defined

for arbitrary A,B ∈ M0(N, r) by

A.B = A∆B.

We now define the quantum stochastic process G on boson Fock space, Γ(L2(R+;C
N)).

The totality of the exponential vectors means that it suffices to define G at an arbitrary

time t on an arbitrary exponential vector e(f) as follows:

G(t)e((f1, . . . , fN )) = e(χ[0,t](f
1, . . . , f r,−f r+1, . . . ,−fN) + χ(s,∞)f).

Note that G(t) is a self-adjoint unitary and therefore is defined on the whole of the Fock

space. The process G is known as the grading process.

The quantum stochastic process Ξα
β is defined as follows:

Ξα
β =

{T.
0
dΛα

β(s) if σα
β = 0;T.

0
G(s) dΛα

β (s) if σα
β = 1.

An arbitrary element A of M0(N, r) may be expressed (using Einstein summation) as

λβ
αE

α
β with each λβ

α ∈ C. The corresponding quantum stochastic integrator process ΞA

is defined to be λβ
αΞ

α
β . If A is even then ΞA = ΛA.
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3. The Ito superalgebra. The integrator processes ΞA yield the quantum stochastic

differentials dΞA. Ito multiplication of these differentials yields the equality

(1) dΞAdΞB = dΞA.B .

In the one-dimensional case where N = 1 and r = 0, (1) yields the Fermionic Ito table

[HP2]. The results of [HP2] show that Ξ0
1 is the Fermionic creation process and Ξ1

0 is

the Fermionic annihilation process. Indeed, Z2-graded quantum stochastic calculus is a

generalisation of this result.

The Ito multiplication is associative and so the vector space {dΞA : A ∈ M0(N, r)}

forms an associative algebra which we denote I. It is clear that I may be Z2-graded

by means of the decomposition I = I0 + I1 where I0 := {dΞA : A ∈ M0(N, r)0} and

I1 := {dΞA : A ∈ M0(N, r)1}. Given arbitrary α, β ∈ {0, 1} it is easy to show that

IαIβ ⊂ Iα+2β where +2 denotes addition modulo 2. It follows that I is an associative

superalgebra and hence the Lie superalgebra ISLie may be formed [K,S] with superbracket

{. , .} defined by linear extension of the following rule for arbitrary homogeneous A,B ∈

M0(N, r):

{dΞA, dΞB} = dΞAdΞB − (−1)σ(A)σ(B)dΞBdΞA = dΞA.B − (−1)σ(A)σ(B)dΞB.A.

A superbracket {. , .} may be defined on M0(N, r) in a similar way by linear extension of

the following rule for arbitrary homogeneous A,B ∈ M0(N, r):

{A,B} = A.B − (−1)σ(A)σ(B)B.A.

Equipped with this bracket, M0(N, r) becomes a Lie superalgebra which we denote

gl0(N, r).

More surprisingly, the processes ΞA themselves form a time-indexed family of repre-

sentations of gl0(N, r). We have the relation

{ΞA,ΞB} = Ξ{A,B}

where {ΞA,ΞB} must be interpreted in terms of adjoints and the inner product. If

e(f), e(g) are arbitrary exponential vectors and A,B are arbitrary homogeneous elements

of gl0(N, r) we have that for all t ≥ 0

〈e(f), {ΞA,ΞB}(t)e(g)〉 =

〈ΞA(t)
†e(f),ΞB(t)e(g)〉 − (−1)σ(A)σ(B)〈ΞB(t)

†e(f),ΞA(t)e(g)〉.

Full details and a proof of this result may be found in [EH,E2].

4. The Ito tensor superalgebra. To any Lie superalgebra there corresponds a

universal enveloping superalgebra with properties analogous to those of the universal en-

veloping algebra of a Lie algebra. In this instance we choose to take the universal envelop-

ing superalgebra of the matrix superalgebra gl0(N, r) and denote it by U . We have that,

for any associative superalgebra A, a Lie superalgebra morphism φ : gl0(N, r) → ASLie

will extend uniquely to a superalgebra morphism φ̃ : U → A. In this section we construct

the associative superalgebra (P ,⊙) of iterated quantum stochastic integrals which will

form the target superalgebra for the universal extension yielding chaotic expansions that

is to take place in section 5.
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Consider first the weak tensor superalgebra T (I) consisting of all finite sums of tensors

in I:

T (I) = C+ I + I ⊗ I + I ⊗ I ⊗ I + · · · .

Now define the integrator map I on T (I) by linear extension of the following rule for an

n-fold product tensor:

I : dΞA1
⊗ · · · ⊗ dΞAn

7→
\

0<t1<···<tn<·

dΞA1
(t1) . . . dΞAn

(tn).

Naturally, for z∈C we define I(z)=zId, where Id is the identity process. Thus, for ex-

ample, I(z+dΞA1
⊗dΞA2

+dΞB1
⊗dΞB2

⊗dΞB3
)=zId+

TT
dΞA1

dΞA2
+
TTT

dΞB1
dΞB2

dΞB3
.

In [E1,E2] may be found the definition of the ⋆ product in T (I), the technical details

of which are omitted here. This product has the property that, given an arbitrary time

t ≥ 0, arbitrary exponential vectors e(f), e(g) and arbitrary elements a, b of T (I) we have

〈I(a)(t)†e(f), I(b)(t)e(g)〉 = 〈e(f), I(a ⋆ b)e(g)〉.

It follows that ⋆ provides a good notion of multiplying iterated Z2-graded quantum

stochastic integrals even though they are, in general, unbounded.

We are now in a position to define the superalgebra P . The underlying vector space of

P is the space {I(a) : a ∈ T (I)} of all linear combinations of iterated quantum stochastic

integrals. The product ⊙ in P is defined for I(a), I(b) ∈ P by

I(a)⊙ I(b) := I(a ⋆ b).

As T (I) is closed under ⋆ we have that P is closed under ⊙. Furthermore, it is tedious

rather than difficult to show from the definition of ⋆ that (P ,⊙) has a natural super-

algebra structure ultimately deriving from that of M0(N, r). It is also true that ⊙ is

associative. Full details of these results may be found in [E1,E2]. Thus (P ,⊙) is an asso-

ciative superalgebra and as such we may form PSLie with bracket {. , .} defined by linear

extension of the following rule for homogeneous I(a), I(b) in P :

(2) {I(a), I(b)} = I(a)⊙ I(b)− (−1)σ(I(a))σ(I(b))I(b)⊙ I(a).

In (2), we denote by σ(I(c)) the grade of I(c). This may be determined via M0(N, r), I,

T (I) and I or by the fact that GI(c)G = (−1)σ(I(c))I(c).

5. Existence of a chaos map. Let j be the map defined as follows:

j : gl0(N, r) → PSLie

j : A 7→ ΞA.

Proposition 1. The map j is a Lie superalgebra morphism.

P r o o f. It suffices to show that the result holds for arbitrary homogeneous A,B in

gl0(N, r). Thus we have

{j(A), j(B)} = {ΞA,ΞB}

= I(dΞA)⊙ I(dΞB)− (−1)σ(A)σ(B)I(dΞB)⊙ I(dΞA)(3)
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Using the definition of ⋆ given in [E1] we calculate that (3) is equal to

I((0, dΞA.B − (−1)σ(A)σ(B)dΞB.A, (dΞA ⊗ dΞB + (−1)σ(A)σ(B)dΞB ⊗ dΞA)

− (−1)σ(A)σ(B)(dΞB ⊗ dΞA + (−1)σ(B)σ(A)dΞA ⊗ dΞB), 0, . . .))

= I((0, dΞ{A,B}, 0, . . .)) = Ξ{A,B}.

Thus j is a Lie superalgebra morphism.

It follows from universality and Proposition 1 that j may be extended uniquely to

a map J from U to P . This map J is effectively the chaotic decomposition of a formal

polynomial in the integrator processes of Z2-graded quantum stochastic calculus. It will

become clear why we use the elements of gl0(N, r) rather than P for these polynomials

in the course of the main proof of this paper contained in section 6.

6. An explicit formula for the chaotic decomposition map J . In this section

we state and prove an explicit formula for the chaotic decomposition map whose existence

was established in the previous section.

We begin by considering a classical heuristic formula concerning the differential of a

polynomial f of processes Λ:

(4) df(Λ) = f(Λ + dΛ)− f(Λ).

For example, we have formally by (4) and the one dimensional quantum Ito formula:

dΛ3 = (Λ + dΛ)3 − Λ3 = Λ3 + 3Λ2dΛ + 3Λ(dΛ)2 + (dΛ)3 − Λ3

= 3Λ2dΛ + 3ΛdΛ+ dΛ.(5)

By applying (4) to the first term of (5) we obtain

dΛ3 = 6
\
ΛdΛdΛ+ 6ΛdΛ + dΛ

which is the same as the chaotic decomposition of Λ3 as obtained by the second funda-

mental formula [HP1,P].

Drawing on this relation we now introduce a collection of co-(super)algebraic maps

which will enable (4) to be applied rigorously to the elements of U .

The co-unit η : U → C is the unique extension of the zero map

0 : gl0(N, r) → CSLie 0 : A 7→ 0

to U . The kernel of this map is UM0(N, r)U and we denote this kernel by K. Roughly

speaking, K consists of all those elements of U that have a zero ‘constant’ term.

The co-product map γ : U → U ⊗ U is the unique extension of the map

g : gl0(N, r) → (U ⊗ U)SLie g : A 7→ A⊗ 1 + 1⊗A

to U where 1 denotes the unit element of U . By means of γ we define the family (κi)i≥0

of difference maps by

κ1 : U → U ⊗K κ1 : U 7→ γ(U)− U ⊗ 1

κi := (κ1 ⊗ id⊗ · · · ⊗ id) ◦ κi−1 for i ≥ 2.

Note that κ1 maps U into U ⊗ K. It can also be shown [E1,E2] that, if κ1(U) =
∑

i Vi ⊗ Ki then the ‘degree’ of each of the ‘polynomials’ Vi is strictly less than the
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degree of U . This notion of degree is treated with full rigour in [E1,E2] via the ‘super’

analogue of the Poincaré-Birkhoff-Witt theorem [S]. The finite degree of each element of

U ensures that for each U ∈ U there exists an n ∈ N such that κn(U) = 0.

We define the map ξ : U → I to be the unique extension to U of the Lie superalgebra

morphism

d : gl0(N, r) → ISLie d : A 7→ dΞA.

We may now give an explicit formula for the chaotic expansion of an element of U .

Theorem 2. For an arbitrary element U of U we have that J(U) = I(χ(U)) where

χ(U) = η(U) + η ⊗ ξ ◦ κ1(U) + η ⊗ ξ ⊗ ξ ◦ κ2(U) + · · ·

+ η ⊗ ξ ⊗ · · · ⊗ ξ
︸ ︷︷ ︸

n times

◦κn(U) + · · · .

P r o o f. By the uniqueness of the universal extension of j it suffices to show that the

map I ◦ χ satisfies the following relations:

(i) ∀A ∈ M0(N, r), I(χ(A)) = ΞA;

(ii) ∀U, V ∈ U , I(χ(U))⊙ I(χ(V )) = I(χ(UV )).

To show (i) is straightforward. As A ∈ M0(N, r) ⊂ K we have η(A) = 0. Furthermore, the

degree-reducing property of the maps κi ensures that for all i ≥ 2 we have κi(A) = 0. For

i = 1 we have I ◦ (η⊗ ξ)◦κ1(A) = I ◦ (η⊗ ξ)(A⊗1+1⊗A−A⊗1) = I ◦ (η⊗ ξ)(1⊗A) =

I(dΞA) = ΞA. Thus relation (i) holds.

We now establish (ii) through a rigorous analogue of the classical relation (4). Using

the notation just established, the integral form of (4) may be expressed as

(6) J(U) = η(U)Id+
\
J ⊗ ξ ◦ κ1(U).

Establishing that (6) holds with J replaced by I ◦ χ, that is to say, establishing the

equality

(7) I ◦ χ(U) = η(U)Id+
\
(I ◦ χ)⊗ ξ ◦ κ1(U)

enables (ii) to be established by means of the quantum Ito formula and induction. This

is preferable to the combinatorial approach used for the ungraded case in [HPu].

It follows from the independence of quantum stochastic integrators [L] that the map

I : T (I) → P is injective [E1,E2]. Therefore, in order to establish (7), it suffices to show

that the equality

(8) χ(U) = η(U) + χ⊗ ξ ◦ κ1(U)

holds. The zeroth order component of each side of (8) is η(U). For n ≥ 1, the nth order

component of χ(U) is

(9) (η ⊗ ξ ⊗ · · · ⊗ ξ
︸ ︷︷ ︸

n−1 times

◦κn−1)⊗ ξ ◦ κ1(U).

The rightmost ξ in this expression operates on the second entry of the tensor κ1(U)

whereas the map η ⊗ ξ ⊗ · · · ⊗ ξ ◦ κn−1 operates on the first entry of this tensor. Thus
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we may delay the operation of ξ by one composition and include it in the leftmost map.

This re-writes (9) as

(10) (η ⊗ ξ ⊗ · · · ⊗ ξ) ◦ κn−1 ⊗ id ◦ κ1(U).

It is straightforward to show that for all n ≥ 1 we have κn⊗ id◦κ1 = κn+1. This identity

enables (10) to be re-written as

(η ⊗ ξ ⊗ · · · ⊗ ξ) ◦ κn(U),

this being the nth order component of χ(U) on the left hand side of (8). Having established

(8) we conclude that (7) indeed holds.

We now proceed to prove (ii) by means of induction on the degree of UV = degU +

deg V . If at least one of U, V is of degree zero then the result is immediate. If degU =

deg V = 1 then U = λ1+L, V = µ1+M with λ, µ ∈ C and L,M ∈ M0(N, r). By linearity

we may assume that L and M are of definite parity. By (6) we have I(χ(U)) = λId+ΞL,

I(χ(V )) = µId+ ΞM so we may write

I(χ(U)) ⊙ I(χ(V )) = λµId+ λΞM + µΞL + ΞL ⊙ ΞM

= I(λµ+ λdΞM + µdΞL + d(ΞL ⊗ ΞM ))

= I(λµ+ λdΞM + µdΞL + dΞLdΞM + dΞL ⊗ dΞM

+ (−1)σ(L)σ(M)dΞM ⊗ dΞL)

= I(η(UV ) + η ⊗ ξ ◦ κ1(UV ) + η ⊗ ξ ⊗ ξ ◦ κ2(UV ))

= I(χ(UV )).

Therefore (ii) holds for all U, V ∈ U with degU + degV ≤ 2.

Now assume, by way of induction, that (ii) holds for all U, V with degU +deg V < k

for some positive integer k. Suppose we have U, V ∈ U such that degU + degV = k.

We must show that I(χ(U)) ⊙ I(χ(V )) = I(χ(UV )). We take a differential approach to

this and so begin by showing that the equality holds at time t = 0. From (7) we have

I(χ(U))(0) = η(U)Id and I(χ(V ))(0) = η(V )Id. Therefore (I(χ(U)) ⊙ I(χ(V )))(0) =

(η(U)Id⊙η(V )Id)(0) = η(U)η(V )Id = η(UV )Id by the definition of ⊙ and the morphism

property of η. We also have that I(χ(UV ))(0) = η(UV )Id so that the equality holds at

time zero. It now suffices to show that

(11) d(I(χ(U)) ⊙ I(χ(V ))) = dI(χ(UV )).

Application of the quantum Ito formula to the left hand side of (11) yields

(12) I (χ (U)) d (I (χ (V ))) + d (I (χ (U))) I (χ (V )) + d (I (χ (U))) d (I (χ (V ))) .

The differential form of (7) gives d(I(χ(W ))) = (I ◦χ)⊗ ξ ◦ κ1(W ) for arbitrary W ∈ U .

Thus (12) may be re-written as

(13)
I (χ (U)) ((I ◦ χ)⊗ ξ ◦ κ1 (V )) + ((I ◦ χ)⊗ ξ ◦ κ1 (U)) I (χ (V ))

+ (I ◦ χ)⊗ ξ ◦ κ1 (U) (I ◦ χ)⊗ ξ ◦ κ1 (V ) .

The degree-reducing property of κ1 allows us to invoke the inductive hypothesis and

re-write (13) as
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(I ◦ χ)⊗ ξ (U ⊗ 1κ1 (V ) + κ1 (U)V ⊗ 1 + κ1 (U)κ1 (V ))

= (I ◦ χ)⊗ ξ
(
U ⊗ 1 (γ(V )− V ⊗ 1) + (γ(U)− U ⊗ 1)V ⊗ 1

+ (γ(U)− U ⊗ 1) (γ(V )− V ⊗ 1)
)

=(I ◦ χ)⊗ ξ (γ(UV )− UV ⊗ 1)

= (I ◦ χ)⊗ ξ ◦ κ1(UV ).(14)

We have from (7) that (14) is equal to d(I(χ(UV ))) as required. Thus (ii) holds by

induction and the theorem is established.
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