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Abstract. The Stinespring theorem is reformulated in terms of conditional expectations in

a von Neumann algebra. A generalisation for map-valued measures is obtained.

1. Introduction. Traditionally, each dilation theorem is obtained by a construction

of a ‘huge’ (Hilbert) spaceH containing a given spaceH in the following manner. A system

ψ(·) of operators in H or transformations of an algebra acting in H can be represented

in the form

ψ(·) = PHΦ(·)PH|H (1.1)

where Φ(·) is more regular than ψ(·). Throughout, PH denotes the orthogonal projection

of H onto H .

The most impressive results in this theory are effects of sophisticated indexing of

linear bases of H and a ‘magic touch’ of scalar product. Theorems of B. Sz.-Nagy [9] and

K.R. Parthasarathy [5] are excellent examples of such approach.

Dealing with operator algebras it seems to be most natural and physically meaning-

ful to use the conditional expectation E [7, p.116] instead of PH(·)PH (cf L. Accardi,

M. Ohya [1]).

In the paper we follow both ideas. Roughly speaking we represent a completely positive

map-valued measure via the following dilation. Namely, any completely positive map

turns into multiplication by a projection in such a way that the map-valued measure is

‘dilated’ to a spectral measure (Section 2).
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The outstanding theorem of Stinespring [6] gives the dilation of a completely positive

map ψ in a C∗-algebra to its ∗-representation Φ via formula (1.1). Passing to aW ∗-algebra

M Stinespring’s theorem can be formulated using a normal conditional expectation E

from a ‘huge’ algebra N onto M instead of PH(·)PH . Such a new version of Stinespring’s

result will be proved in Section 3 together with a dilation theorem for positive map-valued

measures.

Section 4 is devoted to a short comparison of the results just mentioned with the

previous ones concerning commutative W ∗-algebras.

2. Dilation of completely positive map-valuded measure. Let M be a von

Neumann algebra of operators acting in a Hilbert space H . By CP (M) we shall denote

the set of completely positive linear maps in M. Let (X,Σ) be a measurable space and

Q : Σ → CP (M) be a σ-additive operator-valued measure (i.e. Σ ∋ ∆ 7→ Q(∆)x is

σ-additive in the ultra weak topology in M for each x ∈ M) with Q(X)1 = 1.

Theorem 2.1. There exist a Hilbert space H, a natural linear injection V : H → H,

a ∗-representation Φ of the algebra M in H, a σ-additive vector measure e : Σ → ProjH,

such that

Q(∆)x = V ∗e(∆)Φ(x)V, x ∈ M, ∆ ∈ Σ. (2.1)

Moreover , e(∆) is a central projection in (Φ(M) ∪ e(Σ))′′.

P r o o f. Let us consider the algebraic tensor product of vector spaces

H0 = M⊗H ⊗ SF (X,Σ)

where SF (X,Σ) denotes the vector space of simple functions on (X,Σ).

Let us extend the measure Q from Σ to a linear mapping on SF (X,Σ) putting

Q(f) =

k∑

κ=1

cκQ(∆κ) for f =

k∑

κ=1

cκ1∆κ

where ∆κ ∈ Σ, κ = 1, . . . , k.

In the sequel we shall briefly write ∆ instead of 1∆, ∆ ∈ Σ. Notice that H0 is formed

by elements of the form

ξ =

n∑

i=1

xi ⊗ hi ⊗∆i (2.2)

where xi ∈ M, hi ∈ H , ∆i ∈ Σ, i = 1, . . . , n, n = 1, 2, . . ..

In the space H0 we can define a sesquilinear form 〈·, ·〉 by

〈ξ, η〉 =
n∑

i=1

m∑

j=1

(Q(∆i ∩ Γj)(y
∗
jxi)hi, gj)

for

ξ =

n∑

i=1

xi ⊗ hi ⊗∆i and η =

m∑

j=1

yj ⊗ gj ⊗ Γj .

The symbol (·, ·) denotes here the inner product in H . We shall show that 〈·, ·〉 is positive.

Indeed, for ξ of form (2.2) we consider the partition {σ1, . . . , σk} of
⋃n

i=1 ∆i given by
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∆i, . . . ,∆n. Putting ε
i
s = 1 when σs ⊂ ∆i and ε

i
s = 0 when σs ∩∆i = ∅ we can write

〈ξ, ξ〉 =
n∑

i,j=1

(Q(∆i ∩∆j)(x
∗
jxi)hi, hj) =

n∑

i,j=1

(( k∑

s=1

εisε
j
sQ(σs)

)
(x∗jxi)hi, hj

)

=

k∑

s=1

n∑

i,j=1

(Q(σs)(x
∗
jxi)h

s
i , h

s
j)

where hsi = εishi, i = 1, . . . , n.

The complete positivity of Q(σs) gives the inequality
n∑

i,j=1

(Q(σs)(x
∗
jxi)h

s
i , h

s
j) ≥ 0, s = 1, . . . , k,

thus 〈ξ, ξ〉 ≥ 0. Let us denote ‖ξ‖0 =
√
〈ξ, ξ〉 and put H1 = H0 /N where N = {ξ ∈ H0 :

‖ξ‖0 = 0}. Finally, let us set H = H1
〈·,·〉

.

We define V : H → H by putting V h = [1⊗ h⊗X ] for h ∈ H . Then

〈V h, V h〉 = ((Q(X)1)h, h) = (h, h)

so V is an isometry.

Now let us construct a ∗-representation Φ of the algebra M in H. Namely, for x ∈ M

let us set

Φ(x) : [y ⊗ h⊗∆] 7→ [xy ⊗ h⊗∆]

where y ∈ M, h ∈ H , ∆ ∈ Σ. Φ(x) is well defined. Indeed, we prove the following

inequality
∥∥∥

n∑

i=1

xyi ⊗ hi ⊗∆i

∥∥∥
0
≤ ‖x‖ ·

∥∥∥
n∑

i=1

yi ⊗ hi ⊗∆i

∥∥∥
0

(2.3)

for yi ∈ M, hi ∈ H , ∆i ∈ Σ, i = 1, . . . , n, n = 1, 2, . . .. As above, we can write

∥∥∥
n∑

i=1

yi ⊗ hi ⊗∆i

∥∥∥
2

0
=

k∑

s=1

n∑

i,j=1

(Q(σs)(y
∗
j yi)h

s
i , h

s
j),

∥∥∥
n∑

i=1

xyi ⊗ hi ⊗∆i

∥∥∥
2

0
=

k∑

s=1

n∑

i,j=1

(Q(σs)(y
∗
j x

∗xyi)h
s
i , h

s
j). (2.4)

For a linear map α : M → M let us denote by α(n) the map α(n) : Matn (M) →

Matn (M) given by the formula

α(n)([zi,j ]) = [α(zi,j)]

where [zi,j]i,j≤n ∈ Matn (M). Matn (M) denotes here the C∗-algebra of all n×nmatrices

[zi,j ]i,j≤n with entries zi,j in M.

Now, we follow Takesaki [10, p. 196]. The Schwarz inequality for operators, by the

complete positivity of Q(σs), gives

Q(σs)
(n)(ỹ∗x̃∗x̃ỹ) ≤ ‖x̃‖2Q(σs)

(n)(ỹ∗ỹ) (2.5)
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for each x̃, ỹ ∈ Matn(M). Setting x̃ = [δi,jx], ỹ = [δ1,iyi] we get ỹ∗x̃∗x̃ỹ = [y∗i x
∗xyj ],

ỹ∗ỹ = [y∗i yj ]. Thus, by (2.5) and ‖x̃‖ = ‖x‖, we have

[Q(σs)(y
∗
i x

∗xyj)] ≤ ‖x‖2[Q(σs)(y
∗
i yj)].

Hence
n∑

i,j=1

(Q(σs)(y
∗
i x

∗xyj)h
s
j , h

s
i ) ≤ ‖x‖2

n∑

i,j=1

(Q(σs)(y
∗
i yj)h

s
j , h

s
i ).

Finally, by (2.4), we get (2.3). Then ‖
∑n

i=1 yi ⊗ hi ⊗∆i‖0 = 0 implies ‖
∑n

i=1 xyi ⊗ hi ⊗

∆i‖0 = 0 and Φ(x) is well defined. Obviously by (2.3), Φ(x) : H → H is a linear bounded

operator in B(H). It is easy to check that Φ : M → B(H) is a ∗-representation M in H.

Now for ∆ ∈ Σ we define e(∆) : H → H putting

e(∆) : [y ⊗ h⊗∆′] 7→ [y ⊗ h⊗ (∆ ∩∆′)]

where y ∈ M, h ∈ H , ∆′ ∈ Σ. The operator e(∆) is well defined because ‖
∑n

i=1 yi⊗hi⊗

∆i‖0 = 0 implies ‖
∑n

i=1 yi⊗ hi ⊗ (∆∩∆i)‖0 = 0. Indeed, let {σ1, . . . , σk} be a partition

of
⋃n

i=1 ∆i given by ∆,∆1, . . . ,∆k. Let us put εis = 1 when σs ⊂ ∆i and εis = 0 when

σs ∩∆i = ∅. Similarly, let εs = 1 when σs ⊂ ∆ and εs = 0 when σs ∩∆ = ∅. Then

∥∥∥
n∑

i=1

(yi ⊗ hi ⊗ (∆ ∩∆i)
∥∥∥
2

0
=

k∑

s=1

εs

n∑

i,j=1

εisε
j
sQ(σs)(y

∗
j yi)hi, hj)

≤
k∑

s=1

n∑

i,j=1

εisε
j
s(Q(σs)(y

∗
j yi)hi, hj) =

∥∥∥
n∑

i=1

yi ⊗ hi ⊗∆i

∥∥∥
2

0

because, by the complete positivity of Q(σs), we have
n∑

i,j=1

εisε
j
s(Q(σs)(y

∗
j yi)hi, hj) ≥ 0.

Obviously, e(∆) is an orthogonal projection in H. Moreover, for x ∈ M and ∆ ∈ Σ we

have

Φ(x)e(∆)[y ⊗ h⊗∆′] = e(∆)Φ(x)[y ⊗ h⊗∆′]

where y ∈ M, h ∈ H , ∆′ ∈ Σ, so e(∆) is a central projection in the algebra (Φ(M∪e(Σ))′′.

Finally, for all h, g ∈ H , x ∈ M and ∆ ∈ Σ

(V ∗e(∆)Φ(x)V h, g) = 〈e(∆)Φ(x)V h, V g〉 = 〈x⊗ h⊗∆, 1⊗ g ⊗X〉 = ((Q(∆)x)h, g),

so formula (2.1) holds.

3. Dilations via conditional expectations. At the very beginning dilation theory

was motivated by physical applications. In particular, the classical Naimark theorem gives

a construction of a good self-adjoint quantum observable expressed by its spectral measure

beyond the Hilbert space H in which acts a ‘candidate’ for physical observable being only

an unbounded symmetric operator (see [9] for precise explanation). On the other hand,

passing from a given operator algebra to a bigger one, physically means passing from

a given system to a bigger one. That is why general ideas of dilation theory can be

interpreted as follows. Enlarging a Hilbert space we usually pass to a new (better) model



DILATION THEOREMS 235

of the same physical system whereas the construction of a dilation in a bigger algebra

means passing to a bigger system enjoying more regular evolution ([3], [2]).

In particular, the physical meaning of Stinespring’s theorem can be enriched if we

express the dilation in terms of the conditional expectation in the enlarged algebra. Such

a construction, with consequences for map-valued measures, will be done in this section.

It turns out that some natural properties of an equivalence relation in the lattice of

projections are crucial.

A basic tool is the comparison theorem for projections ([8], Thm. 4.6).

Theorem 3.1. For any p, q ∈ ProjN , there exists a projection e ∈ N ∩N ′ such that

p e < q e and p(1− e) 4 q(1− e).

Clearly, p 4 q means uu∗ = p, u∗u ≤ q for some partial isometry u ∈ N .

The following consequence of the above theorem will be used.

Proposition 3.2. Let N be a von Neumann algebra and let p be a projection in N

with the central support z(p) = 1. There exists a system of mutually orthogonal projections

(pi; i < k0) in ProjN , k0 being an ordinal number , such that pi 4 p,
∑

i<k0
pi = 1, and

p1 = p.

P r o o f. We use the transfinite induction, treating 1, 2, . . . as ordinals. Denote e1 = 0,

p1 = p. Assume that, for some ordinals k and for any i < k, projections ei, pi ∈ ProjN

satisfying the conditions

ei ∈ N ′,

(ei; i < k) are mutually orthogonal,

(pi; i < k) are mutually orthogonal, (3.1)
∑

j≤i

pj ≥
∑

j≤i

ej ,

pi 4 p

have already been defined. If
∑

i<k pi = 1, the construction is complete with k0 = k.

If not, we consider separately the following two cases.

Case 10. Assume that
(∑

j<k

ej

)⊥

p 4
(∑

j<k

ej

)⊥(∑

j<k

pj

)⊥

. (∗)

Then it is enough to put ek = 0, pk an arbitrary projection in N satisfying

pk ∼
(∑

j<k

ej

)⊥

p, pk ≤
(∑

j<k

ej

)⊥(∑

j<k

pj

)⊥

(clearly, p ∼ q means p = u∗u, q = uu∗, for some u ∈ N ).

Case 20. Assume that (∗) does not hold. Then we consider the algebra

M =
(∑

j<k

ej

)⊥

N
(∑

j<k

ej

)⊥

= N
(∑

j<k

ej

)⊥

. (3.2)

Restricting operators to a subspace (
∑

j<k ej)
⊥(H), one can treat M as a von Neumann

algebra with the projections p̃ = p(
∑

j<k ej)
⊥, p̃i = pi(

∑
j<k ej)

⊥. By the comparison
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theorem there exists a central projection in M, say ek, satisfying the conditions

p̃ek <
(∑

j<k

p̃j

)⊥

ek and p̃(1M − ek) 4
(∑

j<k

p̃j

)⊥

(1M − ek).

Since the reduction of N to M is done by the central projection (
∑

j<k ej)
⊥, ek can

be obviously treated as a central projection in N as well.

Let p̃k be an arbitrary projection in M satisfying

p̃k ≤
(∑

j<k

pj

)⊥

(1M − ek), p̃k ∼ p(1M − ek).

We put

pk = p̃k +
(∑

j<k

pj

)⊥

ek.

Obviously, we can treat pk as a projection in N . All conditions (3.1) are now satisfied for

k + 1 (instead for k).

Clearly,
∑

i<k pi = 1 necessarily for some ordinal k (since dimH is a fixed cardinal).

We shall need the following consequences of Proposition 3.2.

Lemma 3.3. Let M and N be von Neumann algebras acting in Hilbert spaces H and

H, respectively, with H ⊂ H. Denote by PH the orthogonal projection from H onto H.

Assume that

P ∗
H MPH ⊂ N , the central support z(PH) = 1.

Then there exists an isometric injection v : H → H ⊗K, for some Hilbert space K such

that

vNv∗ ⊂ M⊗B(K), (3.3)

vζ = ζ ⊗ η1, ζ ∈ H, for some η1 ∈ K. (3.4)

P r o o f. Keeping the notation of Proposition 3.2, with p = PH ⊂ N , let us fix a

Hilbert space K with an orthogonal basis (ηj , j < k0). As pi 4 p, we can use projections

ri ≤ p satisfying pi = w∗
iwi, ri = wiw

∗
i for some partial isometries wi ∈ N , i < k0.

Obviously, we can assume that w1 = p.

Let us take viζ = wiζ ⊗ ηi, i < k0, for ζ ∈ H . Then we get an isometry

v =
∑

i<k0

vi, v : H → H ⊗K.

Formula (3.4) is obvious. It remains to show (3.3) or, equivalently, N ⊂ v∗M⊗ B(K)v.

This can be checked by the commutant technique as follows.

We have

piNpi ∪ {w∗
i , wi} ⊂ v∗M⊗B(K)v, i < k0. (3.5)

Indeed,

piNpi = v∗(riMri ⊗ 〈·, ηi〉ηi)v,

wi = v∗(ri ⊗ 〈·, ηi〉η1)v,

w∗
i = v∗(ri ⊗ 〈·, η1〉ηi)v.
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For example we check the first equality. Obviously piNpi = w∗
iNwi = w∗

iMwi, and for

any x ∈ M, ζ ∈ H, denoting ζj = pjζ, j < k0, we have

vζ =
∑

j<k0

wjζj ⊗ ηj

and

v∗(ri x ri ⊗ 〈·, ηi〉ηi)vζ = v∗(ri xwiζi ⊗ ηi) = (wi · ⊗η)i)
∗(ri xwiζi ⊗ ηi)

= w∗
i xwiζi = w∗

i xwiζ.

On the other hand, we have
( ⋃

i<k0

piNpi ∪ {wi, w
∗
i }
)′

= N ′. (3.6)

The inclusion ”⊃” is obvious. Conversely, let y commute with all piNpi, wi, w
∗
i . An

arbitrary z ∈ N can be represented as z =
∑

i,j<k0
pizpj. Take x ∈ N of the form

x = pi z pj . We have, since wizw
∗
j ∈ p1Np1,

yx = yw∗
iwizw

∗
jwj = w∗

i y(wizw
∗
j )wj = w∗

i (wizw
∗
j )ywj = xy.

Taking commutants on both sides of (3.6) and taking into account (3.5), we get (3.3).

Proposition 3.4. For any completely positive map α in a von Neumann algebra

M acting in a Hilbert space H there exists a Hilbert space K and a ∗-representation

Φ : M → M⊗B(K) satisfying

αx = Π∗Φ(x)Π

where, for ξ ∈ H , Πξ = ξ ⊗ η1 for a fixed vector η1 ∈ K, ‖η1‖ = 1.

P r o o f. Take any Stinespring triple: (H, PH ,Ψ) where H ⊃ H , PH is an orthogonal

projection of H onto H , and Ψ : M → B(H) is a ∗-representation satisfying

αx = PHΨ(x)PH |H .

Denote N = (M∪ Ψ(M))′′ (obviously, we identify M ∋ x ≡ xPH ∈ B(H)). According

to the Stinespring’s construction [6], [10, p. 195] the projection PH has in N the central

support z(PH) = 1N . By Lemma 3.3, there exists a Hilbert space K, an isometry v :

H → H ⊗K and a vector η1 ∈ K satisfying (3.3) and (3.4). We set

Φ(x) = vΨ(x)v∗, x ∈ M.

Then Φ is a ∗-representation of M into M⊗B(K). Moreover, as Πξ = ξ⊗ η1 for ξ ∈ H ,

we have, for any x ∈ M,

(Π∗Φ(x)Π)ξ = (Π∗vΨ(x)v∗)(ξ ⊗ η1) = Π∗vΨ(x)ξ

= Π∗vΨ(x)PHξ = PHΨ(x)PHξ = α(x)ξ

(since 〈v∗(ξ⊗η1), ζ〉 = 〈ξ, ζ〉, 〈Π∗vρ, ζ〉 = 〈v(PHρ+P
⊥
Hρ), ζ⊗η1〉 = 〈(PHρ)⊗η1, ζ⊗η1〉 =

〈PHρ, ζ〉 for ζ ∈ H , ρ ∈ H, the orthogonality vP⊥
H ρ ⊥ ζ ⊗ η1 is a consequence of (3.4)).

Now we are in a position to prove dilation theorems in the language of conditional

expectations in W ∗-algebras (see [7], Chapter 2 for basic facts).

Theorem 3.5. For anyW ∗-algebra M and any completely positive map α in M there

exist a W ∗-algebra N , N ⊃ M (i.e. M is a W ∗-subalgebra of N ) and a ∗-representation
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Φ : M → N such that

αx = E
MΦ(x), x ∈M, (3.7)

where E
M is a normal conditional expectation of N onto M.

P r o o f. We keep the notation of Proposition 3.4. We identify M with M⊗ 1K by a

natural isomorphism x ≡ x⊗1K . We define a conditional expectation E
M⊗1K by putting,

for y ∈ N = M⊗B(K)

E
M⊗1K (y) = (Π∗yΠ)⊗ 1K ,

where Πξ = ξ ⊗ η1, ξ ∈ H . It is easy to check that E
M⊗1K is a projection of norm

one, so conditional expectation [7, p. 116]. Taking Φ as in Proposition 3.4, we have

αx = Π∗Φ(x)Π, so

αx ⊗ 1K = (Π∗Φ(x)Π) ⊗ 1K = E
M⊗1KΦ(x),

which is equivalent to (3.7).

Now, keeping notation as in Section 2, our Theorem 2.1 can be rewritten in the

following way:

Theorem 3.6. For a W ∗-algebra M and for a measure Q : Σ → C P (M), there

exists a W ∗-algebra N , N ⊃ M (i.e. M is a W ∗-subalgebra of N ) and a spectral measure

e : Σ → ProjN such that

Q(∆)x = E
M(e(∆)Φ(x))

for some ∗-representation Φ of M in N and a conditional expectation E
M of N onto M.

4. Dilations in conditional expectations scheme. In this section we compare

our results of Sections 2 and 3 with theorems concerning measures with values being

positive operators in L1. It turns out that these results can be reformulated to the case

of the algebra L∞ and then treated as theorems on commutative W ∗-algebras.

In this context, constructiong a dilation, we shall try to use most natural trans-

formations (projections) appearing in the L1-space theory, like conditional expectation,

indicator multiplication operator etc.

Moreover, we use a conditional expectation EA
P for some probability measure P (and

σ-field A) instead of a projection PH : H → H (from beyond the Hilbert space H).

Using here the space L1 instead of L∞ seems to be a better idea.

Let (X,Σ) be a topological Borel measurable space. Let (M,M, µ) be a probability

space. A map Q : Σ → B(L1(M,M, µ)) is said to be a regular positive operator measure

(shortly PO-measure) if the following conditions are satisfied:

1. Q(∆)f ≥ 0 for 0 ≤ f ∈ L1;

2. Q
(⋃∞

s=1 ∆s

)
f =

∑∞
s=1Q(∆s)f , for f ∈ L1, and pairwise disjoint ∆i’s, the series

being convergent in L1(M,M, µ);

3. Q is regular in the sense that for each ε > 0 and each ∆ ∈ Σ there exist in X a

compact set Z and an open set V such that\
M

Q(V − Z)1M dµ < ε, Z ⊂ ∆ ⊂ V ;
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4. Q(X)1M ≤ 1M ;

5.
T
M
Q(X)f dµ ≤

T
M
f dµ, 0 ≤ f ∈ L1.

We have the following

Theorem 4.1 [4]. Let Q be a regular positive operator measure. Then there exist a

‘huge’ measure space (Ω,F , P ), a σ-field A ⊂ F , a σ-lattice homomorphism e : Σ → F

and two measurable maps i : Ω
onto
−→M , j : Ω

onto
−→M such that

(Q(∆)f) ◦ j = E
A
P 1e(∆)(f ◦ i), ∆ ∈ Σ, f ∈ L1(M).

Theorem 4.2 [4]. There exist a measurable space (Ω,F), a measurable map i : Ω →

M (onto), σ-fields A,B ⊂ F , a σ-lattice homomorphism e : Σ → F , a set Ω0 ∈ F such

that , for every PO-measure Q : Σ → B(L1(M,M, µ)), there exists a probability measure

P on (Ω,F), for which the following formula holds :

(Q(∆)f) ◦ i = 4EA
P 1e(∆)E

B
P 1Ω0

(f ◦ i), ∆ ∈ Σ, f ∈ L1(M).

For other similar results we refer to [4].
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