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Abstract. Starting from the scheme given by Hudson and Parthasarathy [7, 11] we extend

the conservation integral to the case where the underlying operator does not commute with the

time observable. It turns out that there exist two extensions, a left and a right conservation

integral. Moreover, Itô’s formula demands for a third integral with two integrators. Only the

left integral shows similar continuity properties to that derived in [11] used for extending the

integral to more than simple integrands.

In another approach we extend the previous notions for the integrals to much larger domains

of definition and to much more processes, including anticipating ones. Similar to [5, 10], we use

the Skorohod integral and the Malliavin derivative acting on a symmetric Fock space [3, 4]. It

appears that this formulation unifies all three integrals in the double integrator one.

1. Introduction. In [7, 11] there was developed the well known quantum stochastic

calculus. The basic integrators in this theory are the annihilation process Am, the creation

process A∗
m and the conservation process ΛH , where m is a martingale w.r.t. the time

observable ξ and H commutes with ξ. These properties assure that the basic integrator

processes have so called independent increments, at least on a certain exponential domain.

In [8] it turned out that sometimes it should be useful to have conservation integrals

even in the case, where H does not commute with ξ. The basic observation in that

paper was that it is only necessary that the integrand appears at any time to the left

of the integrator. Now we want to make a thorough discussion of these integrals. In

a first approach we try to make use of the special structure of the integrators related

to exponential vectors. Besides the easy going left integral there should also be a right

integral adjoint to the former. As we lost the property of independent increments both
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integrals are different. It appears that the technique used by [7, 11] and also basic for

[2] is not enough to give good estimates for the norm of a simple integral and we cannot

extend the integral to others than simple processes. The Itô formula for the left integral

demands for a third integral of the kind\−→
ΛR′(dt)Xt

←−
ΛR(dt),

i.e. we have an integral which has (formally) two integrators and one integrand between

them. Such a form of quantum stochastic integrals was already proposed in [9].

Unfortunately, the double integrator integral shows the same problems as the right

integral for the extension to more general processes. Therefore we use another technique

to extend the last two integrals to more integrands. This second way is based on the use

of the Malliavin derivative (gradient) and Skorohod integral analogous to [5, 10], but we

prefer a description almost independent from an underlying L2 structure. This way all

three integrals appear to be versions of the double integrator integral. Also the Skorohod

type number integral of [10] is a special case of such double integrator conservation

integrals.

We think this short note may provide some example on the way to a general theory

of quantum stochastic integration including also dependent increment processes.

Acknowledgements. Part of the work was done during a visit of the author at

the Centro Vito Volterra in Roma. The author wants to thank Luigi Accardi for his

kind hospitality and nice discussion on a related subject as well as Michael Skeide for

stimulating discussion.

2. Basic definitions and notations. For the natural, real, positive real and com-

plex numbers respectively we use the symbols N, R, R+ = [0,∞) and C respectively.

The indicator function of a set B is denoted 1B, the complement of this set by BC.

3. Conservation integrals on the exponential domain. Let us be given a sep-

arable Hilbert space H with a so called time observable ξ, which is a projection valued

measure (in the σ–strong topology) on R+ without atoms. In contrast to the usual as-

sumption we do not suppose that ξ(R+) = ξR+ = 1I (1I is the identity operator). To

simplify notations, we will return to ξ[0,∞) = 1I by setting ξ{0} = 1I− ξR+ , i.e. {0 } may

be an atom of ξ.

Consider the Fock space Γ(H) = ⊕∞
n=0

1√
n!
H⊗n
sym . Here H

⊗n
sym denotes the n fold sym-

metric tensor product ofH . The exponential vectors eeu = ⊕∞
n=0u

⊗n, u ∈ H , are of special

importance. It is easy to see that 〈eeu, eev〉 = e〈u,v〉. Observe

Γ(H) ∼= Γ(HB)⊗ Γ(HBC)

for any Borel set B ⊆ R+, where HB = ξBH , coming from eeu ∼= eeξBu⊗ eeξ
BC

u. For u ∈ H
we will use the notations ut] = ξ[0,t]u, u(s = ξ(s,∞)u and u(s,t] = ξ(s,t]u.

In the first section we will define our integrals on an exponential domain

Ex(E) = span {eeu : u ∈ E ⊆ H } ,
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where the linear space E is ξ invariant: ξ(s,t]u ∈ E ∀ s, t ∈ R+, u ∈ E. Moreover, E

should be chosen in such a way that Ex(E) is dense in Γ(H) (e.g. E = H).

Definition 1. Let (Xt)t∈R+
be a quantum stochastic process on Ex(E), i.e. Xt is

a linear operator on Ex(E) for all t ∈ R+. We say that (Xt)t∈R+
is adapted , if for all

t ∈ R+

Xteeu = Xteeut]
⊗ eeu(t

.

The process is called simple if there is an increasing sequence (tn)n∈N
of real numbers

with t0 = 0 and limn→∞ tn =∞ such that

Xt =
∑

n∈N

1(tn,tn+1](t)Xtn , (t ∈ R+). (1)

For a contraction C on H we introduce the operator of second quantization Γ(C) by

Γ(C)eeu = eeCu, (u ∈ H).

From [11, section 20] we know that (Γ(Ct))t∈R+ is a strongly continuous semigroup if

(Ct)t∈R+
is. Denote its generator by λ(S) (the conservation operator corresponding to

S) if S is the generator of (Ct)t∈R+
. As S 7→ λ(S) is linear, we may define λ(S) even

if S is not sectorial (despite some problem with the domain of definition). The operator

N = λ(1I) is called the number operator. We have eev ∈ dom(λ(S)) for v ∈ dom(S) and

〈eeu, λ(S)eev〉 = 〈u, Sv〉 〈eeu, eev〉 , (u ∈ H).

The annihilation operators a(f), f ∈ H , where

a(f)eeu = 〈f, u〉 eeu, (u ∈ H),

also operate on the exponential domain, as well as their adjoints, the creation operators

a∗(f). For more details cf. [11, Section 20].

We define the left conservation process
←−
ΛR for R ∈ L(H) by

←−
ΛR((s, t]) = λ

(
ξ(s,t]R

)
, (s, t ∈ R+).

Lemma 1. For all u ∈ E
←−
ΛR((s, t])eeu = eeus]

⊗ ψ′ ⊗ eeu(t
(2)

where Γ(H(s,t]) ∋ ψ′ = a∗(ξ(s,t]Ru)eeu(s,t]
depends on the whole u and R.

P r o o f. By the properties of exponential vectors we derive
〈
eev, λ(ξ(s,t]R)eeu

〉
=

〈
v, ξ(s,t]Ru

〉
〈eev, eeu〉

=
〈
eevs] , eeus]

〉 〈
v(s,t], ξ(s,t]Ru

〉 〈
eev(s,t] , eeu(s,t]

〉 〈
eev(t , eeu(t

〉

This proves the assertion and determines the structure of ψ′.

Thus
←−
ΛR((s, t]) respects the filtration, but only on the left hand side (after it has

acted).
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Definition 2. Let (Xt)t∈R+
be a simple adapted process given by (1). We define the

left conservation integral
Tt
0
Xs
←−
ΛR(ds) as the following operator on Ex(E)

t\
0

Xs
←−
ΛR(ds) =

∑

n∈N

Xtn
←−
ΛR((tn, tn+1 ∧ t]).

Although ξ may not commute with R, we can apply now the same procedure as in

[11] to define general integrals. We have only to take care of the fact that X appears in

any case to the left of λ(ξ(s,t]R) and the integral has to be taken over (0, t].

Lemma 2. The process (
Tt
0
Xs
←−
ΛR(ds))t∈R+ is a continuous process on Ex(E).

P r o o f. This follows from the continuity of t 7→ λ
(
ξ(s,t]R

)
eeu and (2).

From the definition it is not clear whether the integral forms itself an adapted process.

We see from (2)

Lemma 3. The process (
Tt
0
Xs
←−
ΛR(ds))t∈R+ is adapted for all simple adapted processes

(Xt)t∈R+
if and only if

ξt]Rξ(t = 0, (t ∈ R+). (3)

R ema r k 1. There are two simple conditions to fulfil (3). The first one is that R

commutes with ξ (clearly, ξt]ξ(t = 0). This is the condition from the original calculus as

laid out in [7, 11]. There is yet another simple condition, basic in [8], namely R = Rξ{0}.
It appears that selfadjoint operators R allow only for the first possibility.

Lemma 4. If R = R∗ ∈ L(H) fulfils (3) then R commutes with ξ.

P r o o f. By taking the adjoint of (3) we find ξ(tRξt] = 0. Together with (3) this implies

ξt]R = ξt]RξR = ξt]Rξt] = ξRRξt] = Rξt]

for all t ∈ R+. This is just the assertion.

In the following we will assume (3) as far as we consider the left conservation integral.

If g, h ∈ H are two vectors,

〈〈g, h〉〉(B) =
〈
g, ξB\{0}h

〉

for all Borel sets B defines an atomless complex valued measure on R+. For simple

processes we get the so called first and second fundamental lemmata [11].

Lemma 5. Let (Xt)t∈R+
be a simple adapted process. Then

〈
eeu,

t\
0

Xs
←−
ΛR(ds)eev

〉
=

t\
0

〈〈u,Rv〉〉(ds) 〈eeu, Xseev〉 , (u ∈ H, v ∈ E).

P r o o f. From Lemma 1 we see
〈
eeu, Xλ(ξ(s,t]R)))eev

〉
=

〈
u(s,t], ξ(s,t]Rv

〉
·
(〈
eeus]

, Xeevs]
〉 〈

eeu(s,t]
, eev(s,t]

〉 〈
eeu(t

, eev(t
〉)

if X is adapted to Γ(Hs]). Summation completes the proof.
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Lemma 6. We set IXt =
Tt
0
Xs
←−
ΛR(ds), I

Y
t =

Tt
0
Ys
←−
ΛR(ds) for simple adapted processes

(Xt)t∈R+
, (Yt)t∈R+

. Then for all u, v ∈ E
〈 t\

0

Xs
←−
ΛR(ds)eeu,

t\
0

Ys
←−
ΛR(ds)eev

〉
=

t\
0

〈〈u,Rv〉〉(ds)
〈
Xseeu, I

Y
s eev

〉

+

t\
0

〈〈Ru, v〉〉(ds)
〈
IXs eeu, Yseev

〉
+

t\
0

〈〈Ru,Rv〉〉(ds) 〈Xseeu, Yseev〉 .

P r o o f. We evaluate
〈
X1λ(ξ(s1,t1]R)))eeu, X2λ(ξ(s2,t2]R)))eev

〉
if Xi is adapted to

Γ(Hsi]) for i = 1, 2. The off-diagonal terms are easily found to coincide with the pro-

posed terms in analogy with the first fundamental lemma. If s1 = s2 = s, t1 = t2 = t we

have

Xiλ(ξ(s,t]R)))eeu = Xieeus]
⊗ Γ(ξ(s,t])λ(ξ(s,t]R)eeu ⊗ eeu(t

.

This gives
〈
X1λ(ξ(s,t]R)))eeu, X2λ(ξ(s,t]R)))eev

〉
=

〈X1eeu, X2eev〉
(〈
ξ(s,t]Ru, v

〉 〈
u, ξ(s,t]Rv

〉
+
〈
ξ(s,t]Ru, ξ(s,t]Rv

〉)
.

A continuity argument like in [11, Proposition 25.2] completes the proof.

Analogously to [11] we call an adapted process stochastically integrable if there is a

sequence of simple adapted processes (Xn
t )t∈R+

on Ex(E) such that

lim
n→∞

t\
0

‖(Xn
s −Xs)eeu‖2 〈〈v, v〉〉(ds) = 0, (t ∈ R+, u ∈ E, v ∈ H).

The second fundamental lemma guarantees the existence of the integral for stochasti-

cally integrable processes, cf. [11]. Again, we obtain for this
←−
ΛR integral versions of the

Lemmata 5 and 6.

R ema r k 2. There are two reasons why the technique of [11] for the definition of

the
←−
Λ integral works:

• The integrand appears to the left of the integrator. Thus we can use the (more or

less known) action of the conservation operator on exponential vectors.

• ←−ΛR((s, t]) affects only the (s part of the exponential vector eeu (see Lemma 1). So

we can do the calculations directly with
←−
ΛR((s, t]) even if an s] adapted operator

acts after the integrator term.

Neither of these two conditions is satisfied for the adjoint integrator
−→
Λ (differing from←−

Λ) considered below. Thus the integrator process
←−
Λ defined in such a way is not a semi-

martingale in the sense of [1] or an integrator of scalar type in the sense of [2]. It is

only a semimartingale from the left. The adjoint integrator process
−→
Λ will pose severe

problems. First, we need an additional condition to define even the simple integral and

second, there is no simple second fundamental lemma.
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Rema r k 3. From the definition it is simple to see that the above defined integral

coincides with the conservation integral from [11] in the case where R commutes with ξ.

The second fundamental lemma provides some form of a weak Itô formula. We want

to search now for the integrals appearing in a strong Itô formula. First we need an adjoint

integral to
←−
ΛR. Define the right conservation process

−→
ΛR by

−→
ΛR((s, t]) = λ

(
Rξ(s,t]

)
, (s, t ∈ R+).

For the
←−
ΛR integral the integrand has to appear to the left of the integrator, which

comes out to be after adjunction on the right of
−→
ΛR(ds). So we would like to define a

right conservation integral of a simple process X by
t\
0

−→
ΛR(ds)Xs =

∑−→
ΛR((tn, tn+1 ∧ t])Xtn .

Here the problem appears whether Xseev ∈ dom(λ(Rξ(s,t])). First we shall use the closure

of the conservation operator. But even then adaptedness is not enough to have this domain

relation automatically. We know that dom(λ(Rξ(s,t])) ⊇ dom(N) = dom(λ(1I)). So it

seems that we have to assume Xseev ∈ dom(N) for all s ∈ R+. Fortunately, adaptedness

helps now to derive something slightly better.

Lemma 7. Suppose ψ ∈ dom(λ(ξs])
1/2)∩Γ(Hs]). Then ψ⊗eev(s ∈ dom(λ(Rξ(s,t])) and

λ(Rξ(s,t])ψ ⊗ eev(s = a∗(Rξ(s,t]v)ψ ⊗ eev(s (4)

= ψ ⊗ λ(ξ(s,t]Rξ(s,t])eev(s + a∗((1I− ξ(s,t])Rv(s)ψ ⊗ eev(s . (5)

P r o o f. By looking at matrix elements with exponential vectors we see λ(R′)eev =

a∗(R′v)eev. Furthermore, dom(a∗(f)) ⊃ dom(λ(P )1/2) if P is a projector with Pf = f .

This implies that both terms on the right hand side of (5) are well defined and the

equation follows from

λ(Rξ(s,t]) = λ(ξ(s,t]Rξ(s,t]) + λ((1I− ξ(s,t])Rξ(s,t])
on Ex(E) and the fact that Ex(E) is a core of a∗((1I− ξ(s,t])Rv(s).
Definition 3. For a simple adapted process (Xt)t∈R+

on Ex(E) fulfilling

(N) Xtψ ∈ dom(
√
N) for all t ∈ R+ and ψ ∈ Ex(E)

we define the right conservation integral
Tt
0

−→
ΛR(ds)Xs by

t\
0

−→
ΛR(ds)Xs =

∑

n∈N

λ(Rξ(tn,tn+1∧t])Xtn .

The first fundamental lemma for this integral follows by taking adjoints in Lemma 5.

Lemma 8. Let (Xt)t∈R+
be a simple adapted process for which (N) is valid. Then

〈
eeu,

t\
0

−→
ΛR(ds)Xseev

〉
=

t\
0

〈〈R∗u, v〉〉(ds) 〈eeu, Xseev〉 , (u ∈ H, v ∈ E).
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We want to mention that there is no suitable second fundamental lemma providing us

a tool for extending the integral to at least continuous processes. So we have to restrict to

simple processes only as far as we want to use the properties of the exponential domain.

We will find a more conceptual solution to this problem in Section 4.

Lemma 9. The process (
Tt
0

−→
ΛR(ds)Xs)t∈R+ is adapted for all simple adapted processes

(Xt)t∈R+
if and only if

ξ(tRξt] = 0 (t ∈ R+). (6)

In the following we will assume (6) to be true as far as right conservation integrals

are considered. Again, we get by integration a continuous process.

Lemma 10. The process t 7→
Tt
0

−→
ΛR(ds)Xs is a continuous process on Ex(E).

P r o o f. This follows from continuity of the conservation and creation processes as

well as from (5).

For simple processes it is immediate that
−→
ΛR∗ is in the usual sense adjoint to

←−
ΛR:

Lemma 11. Let (Xt)t∈R+
be a simple adapted process which has an adjoint (X∗

t )t∈R+

with (N) on Ex(E):

〈ψ1, Xtψ2〉 = 〈X∗
t ψ1, ψ2〉 , (ψ1, ψ2 ∈ Ex(E)).

Then

〈
ψ1,

t\
0

Xs
←−
ΛR(ds)ψ2

〉
=

〈 t\
0

−→
ΛR∗(ds)X∗

sψ1, ψ2

〉
, (ψ1, ψ2 ∈ Ex(E)).

So we can look at the second fundamental lemma for the
←−
ΛR process as a weak Itô for-

mula connecting the
−→
ΛR∗ integral and the

←−
ΛR integral. Thus the first fundamental lemma

for a
−→
ΛR∗(ds)

←−
ΛR(ds) integral should be given by the measure 〈〈Ru,Rv〉〉, see Lemma 6.

But should the integrator appear left or right? It has to appear (split) on both sides, the−→
Λ part before, the

←−
Λ part after the integrand. For simple processes this looks like

t\
0

−→
ΛR′(ds)Xs

←−
ΛR(ds) = lim

n→∞

∑

k∈N

(
−→
ΛR′((tnk , t

n
k+1 ∧ t])Xtn

k

←−
ΛR((t

n
k , t

n
k+1 ∧ t])).

Thereby we take the limit over a sequence of finer and finer partitions.

Lemma 12. Suppose R,R′ ∈ L(H) are such that R and R′∗ fulfil (3). Further , let

(Xt)t∈R+
be an adapted simple process on Ex(E) fulfilling (N). Then

w-lim
n→∞

∑

k∈N

λ(R′ξ(tn
k
,tn

k+1
∧t])Xtn

k
λ(ξ(tn

k
,tn

k+1
∧t]R)eev

exists for all t > 0, v ∈ E (as vector in Γ(H)).

P r o o f. Clearly, it is enough to prove this for constant processes. From Lemma 1 we

know Xs
←−
ΛR(s, t)eev = a∗(ξ(s,t]Rv)Xseev for s < t. Thus we derive

−→
ΛR′(s, t)Xs

←−
ΛR(s, t)eev = λ(R′ξ(s,t])a

∗(ξ(s,t]Rv)Xseev, (v ∈ E, s < t ∈ R+).
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On a suitable domain the formula λ(S)a∗(f) = a∗(Sf) + a∗(f)λ(S) is valid (cf. [11,

Proposition 20.13]). This implies

λ(R′ξ(s,t])a
∗(ξ(s,t]Rv) = a∗(R′ξ(s,t]Rv) + a∗(ξ(s,t]Rv)λ(R

′ξ(s,t])

or applied to Xseev
−→
ΛR′(s, t)Xs

←−
ΛR(s, t)eev = a∗(R′ξ(s,t]Rv)Xseev + a∗(ξ(s,t]Rv)λ(R

′ξ(s,t])Xseev.

The first summand poses no problems, as the sum over any partition of (0, t) yields

a∗(R′ξ(0,t]Rv)X0eev (the process (Xt)t∈R+
was assumed to be constant). With (5) it

follows for the second summand

a∗(ξ(s,t]Rv)λ(R
′ξ(s,t])Xseev = a∗(ξ(s,t]Rv)a

∗(R′ξ(s,t]v)Xseev.

We know

‖a∗(ξ(s,t]Rv)a∗(R′ξ(s,t]v)Xseev‖ ≤ ‖ξ(s,t]Rv‖‖R′ξ(s,t]v‖‖
√
1I +N

√
1I + ξ(sXseev‖.

As the adapted processX fulfils (N) we have
∥∥√1I +N

√
1I + λ(ξ(s)Xseev

∥∥ <∞. Therefore
∥∥∥
∑

k∈N

a∗(ξ(tn
k
,tn

k+1
∧t]Rv)a

∗(R′ξ(tn
k
,tn

k+1
∧t]v)Xtn

k
eev

∥∥∥

≤ ‖
√
1I +N

√
1I + ξ(0X0eev‖

∑

k∈N

‖ξ(tn
k
,tn

k+1
∧t]Rv‖‖R′ξ(tn

k
,tn

k+1
∧t]v‖

≤ 1

2
‖
√
1I +N

√
1I + ξ(0X0eev‖

∑

k∈N

(‖ξ(tn
k
,tn

k+1
∧t]Rv‖2 + ‖R′ξ(tn

k
,tn

k+1
∧t]v‖2)

≤ 1

2
‖
√
1I +N

√
1I + ξ(0X0eev‖(‖ξ(0,t]Rv‖2 + ‖R′‖2

∥∥ξ(0,t]v
∥∥2

) <∞.

We see that the sums are norm bounded and continuous in the norm ψ 7→ ‖
√
1I +Nψ‖

w.r.t. X0eev. Thus we need only to consider

lim
n→∞

〈
eeu,

∑

k∈N

a∗(ξ(tn
k
,tn

k+1
∧t]Rv)a

∗(R′ξ(tn
k
,tn

k+1
∧t]v)X0eev

〉
.

It is easy to derive〈
eeu,

∑

k∈N

a∗(ξ(tn
k
,tn

k+1
∧t]Rv)a

∗(R′ξ(tn
k
,tn

k+1
∧t]v)X0eev

〉

=
∑

k∈N

〈u, ξ(tn
k
,tn

k+1
∧t]Rv〉〈(R′)∗u, ξ(tn

k
,tn

k+1
∧t]v〉 〈eeu, X0eev〉

and by the argument used in [11, proof of Proposition 25.2] the right hand side tends to

zero. We obtain

w-lim
n→∞

∑

k∈N

λ(R′ξ(tn
k
,tn

k+1
∧t])Xtn

k
λ(ξ(tn

k
,tn

k+1
∧t]R)eev = a∗(R′ξ(0,t]Rv)X0eev (7)

completing the proof.
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We may use formula (7) to give

Definition 4. For a simple process (Xt)t∈R+
with (N) we define the double integrator

conservation integral
Tt
0

−→
ΛR′(ds)Xs

←−
ΛR(ds) on Ex(E) by

t\
0

−→
ΛR′(ds)Xs

←−
ΛR(ds)eev =

∑

k∈N

a∗(R′ξ(tk,tk+1∧t]Rv)Xtkeev, (v ∈ E). (8)

Lemma 13. (
Tt
0

−→
ΛR′(ds)Xs

←−
ΛR(ds))t∈R+ is a continuous process on Ex(E).

Lemma 14. Let (Xt)t∈R+
be a simple adapted process and R′, R ∈ L(H). Then

〈
eeu,

t\
0

−→
ΛR′(ds)Xs

←−
ΛR(ds)eev

〉
=

t\
0

〈eeu, Xseev〉
〈〈
(R′)

∗
u,Rv

〉〉
(ds), (u ∈ H, v ∈ E).

Rema r k 4. We observe by comparing the three first fundamental lemmata that all

three conservation integrals come from the double integrator one:
Tt
0

−→
Λ1I(ds)Xs

←−
ΛR(ds) =Tt

0
Xs
←−
ΛR(ds) and

Tt
0

−→
ΛR′(ds)Xt

←−
Λ1I(ds) =

Tt
0

−→
ΛR′(ds)Xs. The only drawback is that up to

now we have the double integrator integral only for simple processes whereas the left

integral exists for all stochastically integrable processes. Section 4 will bridge this gap.

The second fundamental lemma is similarly complicated as that of the
−→
ΛR′ integral

and we will avoid its statement for shortness.

R ema r k 5. So we face the problem that for two of the main ingredients of a strong

Itô formula we can only define matrix elements with exponential vectors and cannot

establish the existence as operator. Nevertheless, we can define the integrals using their

first fundamental lemmata if this defines reasonable operators. Then under the notations

IXt =
Tt
0

−→
ΛR′(ds)Xs, I

Y
t =

Tt
0
Ys
←−
ΛR(ds) we derive

IXt I
Y
t =

t\
0

−→
ΛR′(ds)XsI

Y
s +

t\
0

IXs Ys
←−
ΛR(ds) +

t\
0

−→
ΛR′(ds)XsYs

←−
ΛR(ds)

as soon as all parts of the formula make sense on an exponential domain.

4. Malliavin calculus and conservation integrals. We remind the unbounded

operators S : H ⊗ Γ(H) 7−→ Γ(H) (Skorohod integral) and D : Γ(H) 7−→ H ⊗ Γ(H)

(Malliavin derivative). D is defined on dom(D) = dom(
√
N) and extends

Deeh = h⊗ eeh.

D defined in this manner is a closed operator, (cf. [3, 4] for a more explicit definition of

D on the whole domain of definition and also [6]). S is defined as adjoint of D (there is

also an explicit form of S). It is easy to derive that H ⊗ dom(
√
N) ⊂ dom(S) and

Sg ⊗ eeh = a∗(g)eeh.

One obtains SD = N and λ(S) = SS ⊗ 1ID on dom(N) for any bounded operator S.

Now we want to find a more explicit form of our integrals. Applying the Hahn-Hellinger

theorem [11, Section 7] to ξ we may assume H = H{0}⊕L2(R+⊗N, ν) where ν is some
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σ-finite measure. From a process (Xt)t∈R+
we may form the operator X on

L2(R+ ⊗N, ν,Γ(H)) ≡ L2(R+ ⊗N, ν)⊗ Γ(H) ⊆ H ⊗ Γ(H)

by

(Xψ)(s, k) = Xsψ(s, k) (9)

on the largest domain where this formula makes sense. It is easy to see that X is densely

defined on
⋃

s∈R+
Hs]⊗Ex(E) for stochastically integrable processes (Xt)t∈R+

. We define

for s, t ∈ R+ the operator X(s,t] = ξ(s,t] ⊗ 1IX and abbreviate X(0,t] to Xt].

Proposition 15. (i) Let R ∈ L(H) fulfil (3) and (Xt)t∈R+
be a stochastically inte-

grable process on Ex(E). Then on Ex(E)

t\
0

Xs
←−
ΛR(ds) = SXt] (R⊗ 1I)D.

(ii) Suppose R ∈ L(H) fulfils (6) and (Xt)t∈R+
is a simple adapted process on Ex(E)

with (N). Then
t\
0

−→
ΛR(ds)Xs = S (R⊗ 1I)Xt]D.

(iii) Assume R,R′ ∈ L(H) fulfil (6) and (3) respectively and the simple adapted

process (Xt)t∈R+
on Ex(E) obeys (N). Then

t\
0

−→
ΛR′(ds)Xs

←−
ΛR(ds) = S (R′ ⊗ 1I)Xt] (R⊗ 1I)D.

P r o o f. Suppose (Xt)t∈R+
is a simple process. Then all three left hand sides are well

defined by the previous remarks and condition (N) for (ii) and (iii). So we may look only

at matrix elements with exponential vectors. Let’s have a look at (i).

〈eeu,SX (R⊗ 1I)Deev〉 = 〈Deeu,X (R⊗ 1I)Deev〉 = 〈u⊗ eeu,X (R⊗ 1I) v ⊗ eev〉
= 〈u⊗ eeu,XRv ⊗ eev〉

From X =
∑

n∈N
ξ((tn, tn+1])⊗Xtn we derive

〈eeu,SXt] (R⊗ 1I)Deev〉 =
∑

n∈N

〈u, ξ((tn, tn+1 ∧ t])Rv〉 〈eeu, Xtneev〉

=

t\
0

〈〈u,Rv〉〉(ds) 〈eeu, Xseev〉

which is just the proposed value by Lemma 5. Similarly, we prove (ii) and (iii). If (Xt)t∈R+

is a stochastically integrable process let (Xn
t )t∈R+

be simple adapted processes converging

toward (Xt)t∈R+
and denote the respective operators by Xn. We know that

Xt]
n (R ⊗ 1I)Deeu −−−−−−−→

n→∞
Xt] (R⊗ 1I)Deeu

and also

SXt]
n (R⊗ 1I)Deeu −−−−−−−→

n→∞

\
Xs
←−
ΛR(ds)eeu.

From the closedness of S we derive the assertion in the general case.
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Definition 5. Assume (Xt)t∈R+
is a measurable process on dom(X) ⊂ Γ(H) and

R,R′ ∈ L(H). Consider the space dom(
T−→
ΛR′(dt)Xt

←−
ΛR(dt)) of all ψ̂ ∈ Γ(H) fulfilling

(I1) ψ̂ ∈ dom(
√
N).

(I2) It holds (R⊗ 1I)Dψ̂ ∈ dom(X).

(I3) (R′ ⊗ 1I)X (R⊗ 1I)Dψ̂ is in dom(S).
We define the double integrator conservation integral

T−→
ΛR′(dt)Xt

←−
ΛR(dt) by\

Xt
←−
ΛR(dt)ψ̂ = S (R′ ⊗ 1I)X (R⊗ 1I)Dψ̂, (ψ̂ ∈ dom(

T−→
ΛR′(dt)Xt

←−
ΛR(dt))).

Also, we use the notations\−→
ΛR(dt)Xt =

\−→
ΛR(dt)Xt

←−
Λ1I(dt) and

\
Xt
←−
ΛR(dt) =

\−→
Λ1I(dt)Xt

←−
ΛR(dt).

Rema r k 6. In the same fashion we could define for a measurable field X : G ∋ x 7→
Xx integrals like

T
Xx
←−
ΛR(dx) if ξ is a non-atomic projection valued measure on some

(Polish) space G and even multiple integrals in the manner of [10].

R ema r k 7. Observe that for the definition of the integrals we need neither the

assumption of adaptedness of the process (Xt)t∈R+
nor the conditions (3) and (6). So we

think of the integrals as quantum Skorohod integrals. The choice R = R′ = 1I recovers

the (nonadapted) number integral of [10].

Proposition 16. Let (Xt)t∈R+
be a measurable process on dom(X) with adjoint

(X∗
t )t∈R+

. Then for R,R′ ∈ L(H)\−→
ΛR∗(dt)X∗

t
←−
ΛR′∗(dt) ⊆

(\−→
ΛR′(dt)Xt

←−
ΛR(dt)

)∗
.

P r o o f. This follows from the adjointness of S and D as well as the fact that X∗

corresponds to the process (X∗
t )t∈R+ .
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