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Wita Stwosza 57, 80-952 Gdańsk, Poland
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Abstract.We introduce the notion of a completely quantum C∗-system (A,G, α), i.e. a C∗-
algebra A with an action α of a compact quantum group G. Spectral properties of completely
quantum systems are investigated. In particular, it is shown that G-finite elements form the
dense ∗-subalgebra A of A. Furthermore, properties of ergodic systems are studied. We prove
that there exists a unique α-invariant state ω on A. Its properties are described by a family of
modular operators {σz}z∈C acting on A. It turns out that ω is a KMS state provided that ω is
faithful.

1. Introduction. By a classical space we mean a locally compact topological space

X. Symmetries of a classical space are described by groups of homeomorphisms of X.

More precisely, a system with a symmetry is a triple (X,G, τ) where X is a classical space,

and τ = {τg}g∈G is a representation of locally compact topological groupG in the group of

homeomorphisms of X. Every system with a symmetry has the dual picture (C(X), G, α)

where C(X) is the C∗-algebra of complex continuous functions on X vanishing at infinity,

and α = {αg}g∈G is the action of G on the algebra C(X) defined by [αg(f)](x) =

f(τg−1(x)), f ∈ C(X), x ∈ X. By the well-known Gelfand-Naimark theorem every triple

(A,G, α) where A is an abelian C∗-algebra, and α is an action of a locally compact group

G on A (cf. [9]), can be reconstructed from some classical system with a symmetry in the

described above way. A natural generalization of a system with symmetry is that with A

being an arbitrary (i.e. noncommutative in general) C∗-algebra.

The aim of this paper is to investigate basic questions of a description of symmetries of

noncommutative systems. There are some reasons to believe that the class of topological

(classical) groups is not sufficient to describe the relevant full symmetries. For a deeper

discussions of this problem with the framework of algebraic quantum field theory we refer
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the reader to [4] and references given there (see also [3, 6], as well as [7]).

In our paper we will use the theory of compact quantum groups developed by Woro-

nowicz in [13, 14]. In Section 2 we recall some basic definitions and results of this theory.

Next, in Section 3 we formulate the notion of completely quantum system (A,G, α),

where A is a unital C∗-algebra, G is a compact quantum group, and α is an action of G

on A. Motivated by [1, 2, 10] we treat completely quantum C∗-systems as a noncommu-

tative system with a generalized (quantum) symmetry. We analyse spectral properties

of complete quantum systems. In particular, we investigate the structure of the set A of

G-finite elements of (A,G, α). Section 4 is devoted to ergodic systems. We prove that if α

is an ergodic action, then there exists a unique α-invariant state ω on A. It is possible to

describe the modular properties of ω by means of the family {σz}z∈C of linear operators

on A. It appears that if ω is faithful then it is a KMS state with respect to the group

{σt}t∈IR. It generalizes the results from [5] that if α is an ergodic action of a compact

topological group then, the unique α-invariant state is a trace on A.

This paper is part of author’s Ph.D. Thesis ([8]) which was submitted at the Gdańsk

University. The author wishes to thank Professor S.L. Woronowicz for his interest and

hospitality during the author’s stay at the Warsaw University. Special thanks are due to

Professor W.A. Majewski, the supervisor of the thesis, for his encouragement and many

helpful discussions.

2. Compact quantum groups. In this section we briefly recall basic definitions

and properties of compact quantum groups defined by Woronowicz. We follow [13, 14].

If A is a C∗-algebra, and X,Y ⊂ A are subsets of A, then we define XY = span {xy :

x ∈ X, y ∈ Y }.
Definition 2.1 ([14]). A compact quantum group is a pair G = (C,∆), where C is

a separable unital C∗-algebra, and ∆ : C −→ C ⊗ C is a unital ∗-homomorphism such

that (∆⊗ idC)∆(b) = (idC ⊗∆)∆(b) for every b ∈ C and the subspaces (C ⊗ 1lC)∆(C),

(1lC ⊗ C)∆(C) are dense in C ⊗ C.

Let us remind that if K is a finite dimensional linear space, then by a representation

of G acting on K we mean a linear map v : K −→ K ⊗ C such that

(v ⊗ idC)v = (idK ⊗∆)v. (2.1)

If e1, e2, . . . , ed is a basis of K, then there are uniquely determined elements vij ∈ C,

i, j = 1, 2, . . . , d, such that v(ej) =
∑d
i=1 ei ⊗ vij for j = 1, 2, . . . , d. The condition (2.1)

implies ∆(vij) =
∑d
k=1 vik ⊗ vkj for every i, j = 1, 2, . . . , d. The matrix [vij ]i,j=1,2,...,d ∈

Md(C)⊗ C is called the matrix of the representation v in the basis e1, e2, . . . , ed.

Let v, w be representations of G acting on spaces K,L respectively. Then an operator

S : K −→ L is called an intertwiner between v and w if (S ⊗ idC)v = wS. The set of

all intertwiners between v and w is denoted by Mor(v, w). Representations v and w are

called equivalent if Mor(v, w) contains an isomorphism of the linear spaces K and L.

A representation v acting on K is irreducible if Mor(v, v) = {λ1lB(K) : λ ∈ C}, where

1lB(K) denotes the identity operator on K.

If K is a finite dimensional Hilbert space, then a representation v acting on K is
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called unitary if for some orthonormal basis e1, e2, . . . , ed of K the matrix [vij ] of v in the

basis is a unitary element of the algebra Md(C)⊗C. This is equivalent to
∑d
k=1 vikv

∗
jk =

δij1lC =
∑d
k=1 v

∗
kivkj for any i, j = 1, 2, . . . , d.

A state h on the C∗-algebra is called a Haar measure if (idC ⊗ h)∆(b) = h(b)1lC =

(h ⊗ idC)∆(b) for every b ∈ C. It is proved in [14] that every compact quantum group

admits a unique Haar measure.

Let Ĝ denote the set of equivalence classes of unitary representations of the group

G. For τ ∈ Ĝ by [uτik]i,k=1,2,...,dτ
we denote the matrix of some representative uτ of the

class τ . By ι we denote the equivalence class of the trivial representation, i.e. dι = 1

and uι11 = 1lC . In [14] Woronowicz proved that the set {uτik : τ ∈ Ĝ, i, k = 1, 2, . . . , dτ}
forms a linear basis of a dense ∗-subalgebra C of C. Moreover, for every τ ∈ Ĝ there

is a unique invertible matrix Fτ ∈ Mdτ (C) such that TrFτ = TrF−1τ and the following

Peter-Weyl-Woronowicz relations hold:

h(uτiku
σ
jl
∗) =

1

TrFτ
δτσδij(Fτ )kl, h(uτik

∗uσjl) =
1

TrFτ
δτσδkl(F

−1
τ )ij (2.2)

for every τ, σ ∈ Ĝ, i, k = 1, 2, . . . , dτ and j, l = 1, 2, . . . , dσ.

Let τ ∈ Ĝ and i, k = 1, 2, . . . , dτ . If b ∈ C then let ρτik(b) = TrFτ
∑dτ
p=1(Fτ )iph(uτpk

∗b)

and ρτ (b) =
∑dτ
i=1 ρ

τ
ii(b). Let also Dτ

ik : C −→ C be linear operators defined by the

formula Dτ
ikb = (idC ⊗ ρτik)∆(b) for every b ∈ C. From (2.2) we easily get

Proposition 2.2. If τ, π ∈ Ĝ, i, k = 1, 2, . . . , dτ , j, l = 1, 2, . . . , dπ then

(a) ρτik(uπjl) = δτπδijδkl, ρ
τ (uπjl) = δτπδjl, D

τ
iku

π
jl = δτπδklu

τ
ji,

(b) Dτ
ikD

π
jl = δτπδjkD

τ
il; D

τ
ii is a projection onto Dτ

iiC = span {uτ1i, uτ2i, . . . , uτdτ i},
(c) h((Dτ

ikb)
∗c) = h(b∗(Dτ

kic)) for every b, c ∈ C.

3. Completely quantum C∗-systems

Definition 3.1 ([10]). Let A be a unital C∗-algebra and G = (C,∆) be a compact

quantum group. A unital ∗-homomorphism α : A −→ A ⊗ C will be called an action of

the group G on A if (α ⊗ idC)α(x) = (idA ⊗∆)α(x) for every x ∈ A, and the subspace

(1lA ⊗ C)α(A) is dense in A⊗ C.

The triple (A,G, α) will be called a completely quantum C∗-system.

Definition 3.2. Let (A,G, α) be a completely quantum C∗-system. A G-module in

(A,G, α) is a finite dimensional linear subspace X ⊂ A such that α(X) ⊂ X ⊗alg C,

where X ⊗alg C = span {x⊗ b : x ∈ X, b ∈ C}.
An element x ∈ A is called G-finite if x ∈ X for some G-module X.

Let us observe that if X is a G-module then α|X : X −→ X⊗algC is a representation

of G on the finite dimensional space X. Two G-modules X,Y are called isomorphic if

α|X and α|Y are equivalent. A G-module X is called simple if α|X is irreducible.

For every subset E ⊂ Ĝ let Mα(E) denote the closed subspace in A generated by

elements of G-modules equivalent with uτ for some τ ∈ E. We will write Mα(τ) instead

of Mα({τ}).
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Proposition 3.3. Let P τik(x) = (idA ⊗ ρτik)α(x) for every τ ∈ Ĝ, i, k = 1, 2, . . . , dτ ,

x ∈ A, and let P τ (x) =
∑dτ
i=1 P

τ
ii(x) for every τ ∈ Ĝ, x ∈ A. Then for every τ, π ∈ Ĝ,

i, k = 1, 2, . . . , dτ and j, l = 1, 2, . . . , dπ we have

(a) P τikP
π
jl = δτπδjkP

τ
il ; P

τ
ii, P

τ are projections;

(b) α(P τik(x)) = (idA ⊗Dτ
ik)α(x), α(P τ (x)) = (idA ⊗Dτ )α(x), for x ∈ A.

P r o o f. It is a simple consequence of Proposition 2.2.

Proposition 3.4 ([10, 8]). For every τ ∈ Ĝ and x ∈ A the following conditions are

equivalent :

(a) x ∈Mα(τ);

(b) x ∈ P τA;

(c) there exist n ≤ dτ and linearly independent G-modules X1, X2, . . . , Xn equivalent

to uτ such that x ∈
⊕n

i=1Xi.

R e m a r k 3.5. Definition 3.1 was first given in [10]. It was shown that Mα(Ĝ) = A

(cf. [10, Theorem 1.5]). Moreover, it was proved that for every τ ∈ Ĝ there exist a set of

indices Jτ and G-modules Xτ
µ equivalent to uτ such that Mα(τ) =

⊕
µ∈Jτ X

τ
µ . In spite of

the fact that Xτ
µ are not uniquely determined, the cardinality of Jτ does not depend on

the choice of these subspaces. This cardinality is called the multiplicity of uτ in (A,G, α)

and is denoted by cτ .

As a consequence of the above remark and Proposition 3.4 we get

Theorem 3.6. Suppose that (A,G, α) is a completely quantum C∗-system. Let A =

{x ∈ A : α(x) ∈ A⊗alg C}. Then A is a dense ∗-subalgebra of A invariant with respect to

α, i.e. α(A) ⊂ A⊗alg C. Moreover

(a) A =
⊕

τ∈ĜM
α(τ),

(b) (idA ⊗ e)α(x) = x for x ∈ A,

(c) (idA ⊗m)(α⊗ idC)(idA ⊗ κ)α(x) = x⊗ 1lC , for x ∈ A,

where e is the counit and κ is the coinverse of the group G (cf. [14, Theorem 1.2]), and

m : C ⊗alg C −→ C is the multiplication map.

R e m a r k 3.7. In [14] it is proved that the ∗-algebra C spanned by the elements uτij
with comultiplication ∆ has the structure of a ∗-Hopf algebra. It follows from Theorem

3.6 that the ∗-algebra A of G-finite elements with α is a right C-comodule (cf. [11]).

Corollary 3.8. Let (A,G, α) be a completely quantum C∗-system, and let A be the
∗-subalgebra defined in Theorem 3.6. Then, for every x ∈ A, α(x) = 0 implies x = 0.

P r o o f. Let x ∈ A and α(x) = 0. From Proposition 3.4 we get x =
∑n
j=1 xj , where

xj ∈ Xj , j = 1, 2, . . . , n, and X1, X2, . . . , Xn are linearly independent simple G-modules.

The system of vectors {α(xj) : j = 1, 2, . . . , n} is linearly independent, because the sub-

spaces Xj ⊗alg C are linearly independent in A ⊗ C. But
∑
j α(xj) = α(x) = 0, so

α(xj) = 0 for every j = 1, 2, . . . , n. For j = 1, 2, . . . , n let x1j , x2j , . . . , xdτ j be a ba-

sis of Xj such that α(xij) =
∑dτ
k=1 xkj ⊗ uki. Then xj =

∑dτ
i=1 λixij for some λi ∈ C,

i = 1, 2, . . . , dτ . So, 0 = α(xj) =
∑
i λi
∑
k xkj ⊗ uki =

∑
i,k λixkj ⊗ uki. The matrix
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elements uki are linearly independent, hence λixkj = 0 for every k, i = 1, 2, . . . , dτ . The

elements xkj are nonzero, so λi = 0 for every i = 1, 2, . . . , dτ . This implies xj = 0 for

every j = 1, 2, . . . , n, and x = 0.

4. Ergodic actions. Let (A,G, α) be a completely quantum C∗-system. By Aα we

denote the fixed point subalgebra of A, namely Aα = {x ∈ A : α(x) = x⊗ 1lC}. Let us

observe that Aα = Mα(ι), where ι is the trivial representation of G. Let Eα = P ι11.

Proposition 4.1. Let (A,G, α) be a completely quantum C∗-system. Then Eα is a

projection with norm 1 onto the fixed point subalgebra Aα.

P r o o f. By Proposition 3.3 Eα is a projection. Moreover, we have ‖Eα(x)‖ ≤ ‖x‖
because h is a state and α is a ∗-homomorphism, hence it has norm 1.

Definition 4.2. The action α is called ergodic if Aα = C1lA. A state ω on the algebra

A is called α-invariant if (ω ⊗ idC)α(x) = ω(x)1lC for x ∈ A.

Proposition 4.3. If α is an ergodic action of a compact quantum group G on a

unital C∗-algebra A, then there exists a unique α-invariant state ω on A.

P r o o f. Definition 4.2 and Proposition 4.1 imply that for every x ∈ A there exists

ω(x) ∈ C such that Eα(x) = ω(x)1lA. The map ω : A −→ C is a continuous linear

functional on A such that ω(1lA) = 1. The projection Eα is a positive map (cf. Proposition

4.1 and [12]), so ω is a state. Let us show that ω is α-invariant. If x ∈ A then

1lA ⊗ (ω ⊗ idC)α(x) =

= (Eα ⊗ idC)α(x) = (idA ⊗ h⊗ idC)(α⊗ idC)α(x) = [idA ⊗ (h⊗ idC)∆]α(x)

= (idA ⊗ h)α(x)⊗ 1lC = Eα(x)⊗ 1lC = 1lA ⊗ ω(x)1lC .

The fourth equality follows from properties of the Haar measure h. Suppose that ω′ is

another α-invariant state on A. Then for every x ∈ A the α-invariance of ω implies

ω′(x) = h(ω′(x)1lC) = (idC ⊗ h)(ω′ ⊗ idC)α(x) = (ω′ ⊗ idC)(idA ⊗ h)α(x)

= ω′(Eα(x)) = ω′(ω(x)1lA) = ω(x)ω′(1lA) = ω(x),

so the state ω is uniqely determined.

Lemma 4.4. Let φ be a faithful positive linear functional on a ∗-algebra B. If n ∈
IN and b1, b2, . . . , bn ∈ B are linearly independent then the matrix [φ(b∗i bj)]i,j=1,2,...,n is

strictly positive definite.

P r o o f. Let λ1, λ2, . . . , λn ∈ C. Then
∑
i,j φ(b∗i bj)λiλj = φ

(
(
∑
i λibi)

∗(
∑
j λjbj)

)
≥

0, hence the matrix [φ(b∗i bj)] is positive definite. If
∑
i,j φ(b∗i bj)λiλj = 0, then

∑
i λibi = 0

because the state φ is faithful. The system b1, b2, . . . , bn is linearly independent, so λi = 0

for each i = 1, 2, . . . , n.

Proposition 4.5. Let (A,G, α) be a completely quantum C∗-system with an ergodic

action α, and let A be the ∗-subalgebra of G-finite elements and let ω be the α-invariant

state described in Proposition 4.3. For every x ∈ A, if ω(x∗x) = 0 then x = 0.
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P r o o f. Let x ∈ A. As in the proof of Proposition 4.3 we get

ω(x∗x)1lA = (idA ⊗ h)α(x∗x) = (idA ⊗ h)(α(x)∗α(x)). (4.1)

Theorem 3.6 yields α(x) ∈ A ⊗alg C. Hence, there are n ∈ IN and x1, x2, . . . , xn ∈ A,

b1, b2, . . . , bn ∈ C such that b1, b2, . . . , bn are linearly independent and

α(x) =

n∑
i=1

xi ⊗ bi. (4.2)

Suppose that ω(x∗x) = 0. Then (4.1) implies∑
i,j

h(b∗i bj)x
∗
i xj = 0. (4.3)

The state h is faithful on C (cf. [13, Theorem 4.2.5]). Due to Lemma 4.4 and properties

of positive definite matrices there are constants a1, a2, . . . , an > 0 and a unitary matrix

[γij ]i,j=1,2,...,n such that h(b∗i bj) =
∑
k γikakγjk. (4.3) yields 0 =

∑
i,j

∑
k γikakγjkx

∗
i xj =∑

k ak (
∑
i γikx

∗
i ) (
∑
i γikx

∗
i )
∗
, so

∑
i γikx

∗
i = 0 for every k = 1, 2, . . . , n. Consequently,

0 =
∑
k γjk

∑
i γikx

∗
i =

∑
i (
∑
k γjkγik)x∗i =

∑
i δijx

∗
i = x∗j for every j = 1, 2, . . . , n.

Combining this result with (4.2) we get α(x) = 0. Now, Corollary 3.8 implies x = 0.

Proposition 4.6. Suppose (A,G, α) is a completely quantum C∗-system with an er-

godic action α. Then for every τ ∈ Ĝ and i, k = 1, 2, . . . , dτ we have ω((P τikx)∗y) =

ω(x∗(P τkiy)) for x, y ∈ A.

P r o o f. Let τ ∈ Ĝ, i, k = 1, 2, . . . , dτ and x, y ∈ A. Then

ω((P τikx)∗y)1lA =

= (idA ⊗ h)α((P τikx)∗y) = (idA ⊗ h)(α(P τikx)∗α(y))

= (idA ⊗ h)((idA ⊗Dτ
ik)α(x)∗α(y)) = (idA ⊗ h)(α(x)∗(idA ⊗Dτ

ki)α(y))

= (idA ⊗ h)(α(x∗)α(P τkiy)) = (idA ⊗ h)(α(x∗(P τkiy)) = ω(x∗(P τkiy))1lA.

The first equality follows from the proof of Proposition 4.3, the third from Proposition

3.3.(b), the fourth from Proposition 2.2.(c), the fifth from Proposition 3.3.(b), and the

last equality from the proof of Proposition 4.3.

Proposition 4.7. Let (A,G, α) be a completely quantum C∗-system with an ergodic

action α and let τ ∈ Ĝ. Then for every N ∈ IN such that N ≤ dimP τ11A there exists

a set of indices I with cardinality N and there are elements xµi ∈ Mα(τ), µ ∈ I,

i = 1, 2, . . . , dτ , such that

ω(x∗µixνj) = δµνδij , (4.4)

and

α(xµi) =

dτ∑
k=1

xµk ⊗ uτki (4.5)

for every µ, ν ∈ I and i, j = 1, 2, . . . , dτ .

P r o o f. Let (·, ·) be a sesquilinear form on A which is defined by the formula (x, y) =

ω(x∗y) for x, y ∈ A. Theorem 3.6.(a) implies that P τ11A ⊂ Mα(τ) ⊂ A, so using

Proposition 4.5 one concludes that (·, ·) is a scalar product on P τ11A. We assumed that
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N ≤ dimP τ11A, hence there is an orthonormal system {xµ1 : µ ∈ I} of elements of P τ11A,

where I is a set of indices such that card I = N . Let us define xµi = P τi1xµ1 for µ ∈ I and

i = 1, 2, . . . , dτ . Then we have ω(x∗µixνj) = ω((P τi1xµ1)∗(P τj1xν1)) = ω(x∗µ1(P τ1iP
τ
j1xν1)) =

δijω(x∗µ1xν1) = δijδµν , where the first equality follows from Proposition 4.6, the third

from Proposition 3.3.(a), and the last equality follows from orthonormality of the system

{xµ1 : µ ∈ I}. Hence, (4.4) follows.

Proposition 3.3.(b) yields α(xµ1) = α(P τ11xµ1) = (idA ⊗Dτ
11)α(xµ1). So, from Propo-

sition 2.2.(c) we have α(xµ1) ⊂ A ⊗alg span {uτ11, uτ21, . . . , uτdτ1}. Therefore there are el-

ements y1, y2, . . . , ydτ ∈ A such that α(xµ1) =
∑dτ
k=1 yk ⊗ uτk1. If i = 1, 2, . . . , dτ then

xµi = P τi1xµ1 = (idA ⊗ ρτi1)α(xµ1) =
∑dτ
k=1 ykρ

τ
i1(uτk1) =

∑dτ
k=1 ykδik = yi. Hence,

α(xµi) = α(P τi1xµ1) = (idA ⊗ Dτ
i1)α(xµ1) =

∑dτ
k=1 xµk ⊗ Dτ

i1(uτk1) =
∑dτ
k=1 xµk ⊗ uτki,

and (4.5) is proved.

Proposition 4.8. Suppose α is an ergodic action of a compact quantum group G =

(C,∆) on a unital C∗-algebra A and τ ∈ Ĝ. Then cτ ≤ TrFτ .

P r o o f. Let N , I, xµi, µ ∈ I, i = 1, 2, ..., dτ be as in Proposition 4.7. Let d = dτ ,

F = Fτ and M = TrFτ = TrF−1τ . Firstly, we will show that for µ, ν ∈ I, the element

rµν =
∑d
i,j=1(F−1)ijx

∗
µixνj is a fixed point. Indeed, using (4.5) and (2.2) we get

Eα(rµν) =
∑
i,j,k,l

(F−1)ijx
∗
µkxνlh(uτki

∗uτlj) =
∑
i,j,k,l

(F−1)ijx
∗
µkxνl

1

M
δij(F

−1)kl

=
1

M

∑
i

(F−1)ii
∑
k,l

(F−1)klx
∗
µkxνl =

∑
k,l

(F−1)klx
∗
µkxνl = rµν .

The above calculations and Proposition 4.1 imply that rµν ∈ Aα. So, rµν = ω(rµν)1lA,

where we have used the ergodicity of α. On the other hand, relations (4.4) imply ω(rµν) =∑
i,j(F

−1)ijω(x∗µixνj) =
∑
i,j(F

−1)ijδµνδij = δµν
∑
i(F
−1)ii = δµνM . Hence∑

i,j

(F−1)ijx
∗
µixνj = δµνM1lA. (4.6)

Secondly, let sµν =
∑d
i=1 xµix

∗
νi with µ, ν ∈ I. Simple computations making use of

(4.5) and unitarity of [uτij ] show that α(sµν) = sµν ⊗ 1lA. So sµν ∈ Aα. Hence, there are

constants λµν ∈ C such that

sµν = λµνM1lA. (4.7)

The matrix [λµν ]µ,ν∈I ∈MN (C) is selfadjoint (cf. (4.7)). Therefore, one can find elements

x′µi, µ ∈ I, i = 1, 2, . . . , d, such that the relations (4.4), (4.5) hold for the system {x′µi},
and additionally ∑

i

x′µix
′
νi
∗

= δµνλµM1lA, (4.8)

where λµ, µ ∈ I, are eigenvalues of the matrix [λµν ]. For simplicity, we will write xµi
instead of x′µi.

Let a = [
∑
µ∈I xµix

∗
µj ]i,j=1,2,...,d ∈Md(C)⊗A. Then, (4.6) implies∑

k,l

aik(F−1)klalj =
∑
k,l

∑
µ,ν

xµix
∗
µk(F−1)klxνlx

∗
νj = M

∑
µ

xµix
∗
µj = Maij .
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Therefore a(F−1⊗ 1lA)a = Ma. It means that the element M−1(F−
1
2 ⊗ 1lA)a(F−

1
2 ⊗ 1lA)

is a projector in the algebra Md(C)⊗A. So, 0 ≤ a ≤M(F ⊗ 1lA). If ϕ is the normalized

trace on the algebra Md(C) then (ϕ⊗ ω)(a) ≤ M(ϕ⊗ ω)(F ⊗ 1lA) = Mϕ(F ) = M2d−1.

But (ϕ⊗ ω)(a) = d−1
∑
µ ω
(∑

i xµix
∗
µi

)
= Md−1

∑
µ λµ. Therefore we arrived at∑

µ

λµ ≤M. (4.9)

Thirdly, let us observe that due to the fact that xµi are not zero, (4.8) implies that

λµ > 0 for every µ ∈ I. Let yµi = λ
− 1

2
µ x∗µi for µ ∈ I, i = 1, 2, . . . , d. (4.5) leads to

α(yµi) =
∑d
k=1 yµk ⊗ uτki

∗. It is easy to check that the elements
∑d
i=1 y

∗
µiyνi, µ, ν ∈ I,

are fixed points. Moreover, the relations (4.8) imply∑
i

y∗µiyνi = δµνM1lA. (4.10)

Fourthly, suppose b = [
∑
µ∈I yµiy

∗
µj ]i,j=1,2,...,d ∈ Md(C) ⊗ A. Then, taking into ac-

count (4.10) one can check that b2 = Mb. Hence, b = Mp where p is a projector in

Md(C) ⊗ A, and 0 ≤ b ≤ M1lA. If ϕ is again the normalized trace on Md(C), then

(ϕ⊗ ω)(b) = d−1
∑
i ω(
∑
µ yµiy

∗
µi) = d−1

∑
i

∑
µ λ
−1
µ ω(x∗µixµi) =

∑
µ λ
−1
µ . This leads to∑

µ

λ−1µ ≤M. (4.11)

Finally, for every λ > 0 the inequality λ+λ−1 ≥ 2 holds. So, the inequalities (4.9) and

(4.11) give 2N ≤
∑
µ(λµ + λ−1µ ) ≤ 2M . Therefore N ≤M . Recall that N is the number

of elements of any finite orthonormal system in P τ11A. Consequently dimP τ11A ≤M .

Corollary 4.9. Suppose α is an ergodic action of a compact quantum group G =

(C,∆) on a unital C∗-algebra A. Then cτ = cardJτ < ∞ for every τ ∈ Ĝ (cf. Remark

3.5). Moreover , there is a basis {xτµi : τ ∈ Ĝ, µ ∈ Jτ , i = 1, 2, . . . , dτ} of the linear space

A and positive constats λτµ, τ ∈ Ĝ, µ ∈ Jτ , such that α(xτµi) =
∑dτ
j=1 x

τ
µk ⊗ uτki, and

ω(xτµi
∗xπνj) = δτπδµνδij , ω(xτµix

π
νj
∗) = δτπδµνλ

τ
µ (Fτ )ij (4.12)

for every τ, π ∈ Ĝ, µ ∈ Jτ , ν ∈ Jπ, i = 1, 2, . . . , dτ , j = 1, 2, . . . , dπ.

P r o o f. For given τ ∈ Ĝ let Jτ be a set of indices such that cardJτ = dimP τ11A.

Let {xτµi : µ ∈ Jτ , i = 1, 2, . . . , dτ} be the system constructed in Proposition 4.7 for

N = dimP τ11A. In order to prove (4.12) it is enough to show the second equality. But

this follows from straightforward calculations based on α-invariance of ω, (4.5), (2.2) and

(4.8).

Now we are in a position to describe the modular properties of the state ω. In this

description we will use the notion of a holomorphic function of exponential growth on the

upper halfplane. Let us recall that f is such a function provided that there exist positive

constants C,M such that |f(z)| ≤ CeMIm z for every z ∈ C with Im z > 0.

Theorem 4.10. Let α be an ergodic action of a compact quantum group G = (C,∆)

on a unital C∗-algebra A, A its ∗-subalgebra of G-finite elements, and let ω be the unique
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α-invariant state on A. Then there exists a family {σz}z∈C of linear maps σz : A −→ A
such that :

(i) For every linear functional φ on A and x ∈ A the function fφx (z)
df
= φ(σz(x)) is a

holomorphic function with exponential growth on the upper halfplane;

(ii) σz(1lA) = 1lA for every z ∈ C;

(iii) σz(σz′(x)) = σz+z′(x) for every x ∈ A, z, z′ ∈ C. Moreover σ0 = idA;

(iv) For every z ∈ C and x, y ∈ A we have σz(xy) = σz(x)σz(y) and σz(x
∗) = σz(x)∗;

(v) ω(xy) = ω(yσi(x)) for every x ∈ A and y ∈ A.

P r o o f. Let {xτµi : τ ∈ Ĝ, µ ∈ Jτ , i = 1, 2, . . . , dτ} be the system of elements of A
described in Corollary 4.9. The constants λτµ are positive numbers and matrices Fτ are

strictly positive definite. Therefore, for every z ∈ C we can define (λτµ)z = ez log λ
τ
µ and

F zτ = ez logFτ . Let z ∈ C. We define

σz(x
τ
µi) = (λτµ)−iz

dτ∑
j=1

(F−izτ )ijx
τ
µj (4.13)

for every τ ∈ Ĝ, µ ∈ Jτ , i = 1, 2, . . . , dτ .

Let W denote the class of holomorphic functions of exponential growth on the upper

halfplane. Let us observe that if λ > 0 then |λ−iz| = λIm z. Hence, the function C 3
z 7→ λ−iz ∈ C is an element of W. Thus, for any functional φ the function fφxτ

µi
(z) =

(λτµ)−iz
∑
j(F
−iz
τ )ijφ(xτµj) is a linear combination of elements of W. Due to the fact that

W has the structure of a complex linear space we infer that fφxτ
µi
∈ W. We observe that

for every φ and x ∈ A the function fφx is a linear combination of functions fφxτ
µi

. So fφx is

also an element of W. This ends the proof of (i).

(ii) follows from the fact that 1lA = xιµ1, where ι is the trivial representation of G, µ

is the only element of Jι, λιµ = 1 and Fι = 1. (4.13) and rules of matrix calculations lead

to (iii).

To prove (v) we observe that (4.13) implies σi(x
τ
µi) = λτµ

∑
j(Fτ )ijx

τ
µj . Therefore, it

is enough to prove the equality of (v) for x = xτµi and y = xπνj
∗. But this follows from

(4.12).

It remains to prove (iv). Let x, y ∈ A. Firstly, take z = i. Using (v) for every w ∈ A
we get ω(wσi(xy)) = ω(xyw) = ω(ywσi(x)) = ω(wσi(x)σi(y)). Puting w = (σi(xy) −
σi(x)σi(y))∗ in this equlity we are led to

ω((σi(xy)− σi(x)σi(y))∗(σi(xy)− σi(x)σi(y))) = 0.

Taking into account Proposition 4.5 we get the first equality of (iv) for z = i. On the other

hand, we infer from (iii) and (v) that for a given x ∈ A we have ω(wσi(x
∗)) = ω(x∗w) =

ω(w∗x) = ω(σ−i(x)w∗) = ω(wσ−i(x)∗) for any w ∈ A. A similar argument leads to the

second equality of (iv) for z = i. Combining this result with (iii) we can show by induction

that both equalities hold for z = ki where k = 1, 2, . . .. Let φ be any functional and let

x, y ∈ A. Let f1(z) = φ(σz(xy)) and f2(z) = φ(σz(x)σz(y)) where z ∈ C. Both functions

are elements of W. The above considerations also imply f1(ki) = f2(ki) for k = 1, 2, . . ..

Now, let us observe that the functions gj(z) = fj(iz), j = 1, 2, fulfil the assumptions of



306 M. MARCINIAK

Lemma 5.5 in [13]. So g1 ≡ g2, and consequently φ(σz(xy)) = φ(σz(x)σz(y)) for every

z ∈ C. As φ is arbitrary, the first equality is proved. Similarly the second equality follows

and the Theorem is proved.

Theorem 4.11. Let (A,G, α) be as in the previous theorem. Suppose ω is faithful.

Then there exists a one-parameter group {σt}t∈IR of automorphisms of the algebra A

such that ω is a KMS state with respect to this group.

P r o o f. Let {σz}z∈C be the family constructed in the previous theorem. Obviously,

the family {σt}t∈IR is a one-parameter group of automorphisms of ∗-algebra A. Let {xτµi}
be the basis described in Corollary 4.9. Taking into account (4.12) and (4.13) we check

that ω(σt(x
τ
µi)) = ω(xτµi) for every t ∈ IR and xτµi. Let (Hω, πω,Ωω) be the GNS repre-

sentation of the system (A,ω). The faithfulness of ω implies the same property of πω, i.e.

the representation πω : A −→ B(Hω) is faithful. The group {σt}t∈IR is implemented by

a group of unitary operators {Vt}t∈IR because ω is σt-invariant. The representation πω is

faithful, so the mappings σt have extensions on the whole algebra A. By Theorem 4.10

the ∗-algebra is contained in the ∗-algebra of analytic elements of the group {σt}t∈IR.

Moreover, points (iii) and (v) of Theorem 4.10 yield ω(σz(x)y) = ω(yσz+i(x)) for every

z ∈ C, x ∈ A, y ∈ A. The ∗-algebra A is dense in A, so we can complete our proof by

applying Theorem 8.12.3 from [9].

Note added in proof . The author wishes to express his gratitude to W. Pusz for

drawing the author’s attention to the paper of F. Boca (Ergodic actions of compact matrix

pseudogroups on C∗-algebras, in: Recent Advances in Operator Algebras, Astérisque 232

(1995), pp. 93-109) which concerns the same topic.
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