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Abstract. The aim of this paper is the study of a non-commutative decomposition of the

conservation process in quantum stochastic calculus. The probabilistic interpretation of this

decomposition uses time changes, in contrast to the spatial shifts used in the interpretation of

the creation and annihilation operators on Fock space.

1. Notation and preliminaries. Consider the Fock space Γ(H) =
⊕

n≥0 H
◦n over

a Hilbert space H , where H◦n consists of the space of symmetric tensors in the tensor

product H⊗n, endowed with the norm

‖ · ‖2H◦n= n! ‖ · ‖2H⊗n , n ∈ IN.

The Malliavin gradient ∇− : Γ(H) → Γ(H) ⊗ H is defined by transformation of the

tensor f◦n, f ∈ H , into ∇−f◦n = nf◦(n−1) ⊗ f , n ∈ IN, and the Skorohod integral

∇+ : Γ(H) ⊗ H → Γ(H) satisfies ∇+f◦n ⊗ g = f◦n ◦ g, n ∈ IN. Those operators are

extended by polarization, linearity and closability to their respective domains in Γ(H),

Γ(H)⊗H . We let Φ = Γ(L2(IR+)) and denote by 〈·, ·〉 the scalar product on Φ. We call

S the set of elements of Φ whose chaos expansion is finite and involves only functions

which are C1 with compact supports. The basic annihilation, creation and conservation

operators a−h , a
+
h , a

◦
h are defined as

a−h F = (∇−F, h)H , a+h F = ∇+(F ⊗ h), a◦hF = ∇+(h∇F ), F ∈ S, h ∈ H.

We also let aεt = a−1[0,t] , ε = −,+, ◦. The process (a◦t )t∈IR+ is called the conservation

process, or gauge process. For A ∈ B(IR+), let πA : L2(IR+) → L2(IR+) denote the

projection operators defined as πAf = 1Af , f ∈ L2(IR+), and let πt] = π[0,t], π[t = π[t,∞[,
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t ∈ IR+. The exponential vector ξ(f), f ∈ L2(IR+), is defined as

ξ(f) =
∑

n∈IN

1

n!
f◦n.

We say that F ∈ Φ is FA-measurable if Γ(πA)F = F , A ∈ B(IR+). Let S([a, b[), 0 ≤ a < b,

resp. St], S[t, denote the elements of S that are F[a,b[-measurable, resp. Ft]-measurable,

F[t-measurable. The second quantization Γ(U) : Φ → Φ of a bounded operator U :

L2(IR+) → L2(IR+) is defined as

Γ(U) =
⊕

n≥0

U◦n.

The Fock space Φ is isomorphic to the tensor product Φt]⊗Φ[t, t ∈ IR+, via the mapping

ξ(f) 7→ ξ(πt]f)⊗ ξ(π[tf), with Φt] = Γ(L2([0, t])) and Φt] = Γ(L2([t,∞[)), t ∈ IR+, cf. [5].

In this paper, tensor products between vector spaces are completed if and only if vector

spaces are complete.

2. A remark on non-commutative stochastic integration. The goal of this

section is to notice that in quantum stochastic integration, integrator processes need not

be adapted. Therefore, the stochastic integral of adapted processes can be defined with

respect to processes other than (a−t )t∈IR+ , (a
+
t )t∈IR+ and (a◦t )t∈IR+ . We recall that a process

(Xt)t∈IR+ of operators on Φ is said to be adapted if Xt is written as Yt ⊗ Id on Φt] ⊗Φ[t,

t ∈ IR+, where Id denotes the identity operator, cf. [1], [3]. If U− : Φ → Φ ⊗ L2(IR+)

and U+ : Φ ⊗ L2(IR+) → Φ are operators densely defined on S and S ⊗ L2(IR+), we let

u−
h , u

+
h : Φ → Φ, h ∈ L2(IR+), be the operators defined on S as

u−
h F = (h, U−F )L2(IR+), u+

h F = U+(F ⊗ h), F ∈ S, h ∈ L2(IR+).

We also let u−
t = u−

1[0,t]
, u+

t = u+
1[0,t]

, t ∈ IR+, and note that (u−
t )t∈IR+ is adapted if and

only if (u+
t )t∈IR+ is.

Definition 1. Let A denote the class of couples (U−, U+) where U− : Φ → Φ ⊗

L2(IR+) and U+ : Φ ⊗ L2(IR+) → Φ are two closable and mutually adjoint operators

densely defined on S, that map St] into Φt] and S[t into Φ[t, and such that

u−
h (F ⊗G) = (u−

h F )⊗G+ F ⊗ (u−
hG), F ∈ St], G ∈ S[t, h ∈ L2(IR+), t ∈ IR+.

We note that (∇−,∇+) belongs to A.

Definition 2. A couple (U−, U+) ∈ A is said to be an extension of the stochastic

integral if Γ(πs])U
−
t = Γ(πs])∇

−
t , 0 ≤ s < t, t ∈ IR+.

The last property states that the adapted projections of U−F and ∇F coincide ∀F ∈

S. Let U denote the set of elements of Φ ⊗ L2(IR+) of the form
∑i=n

i=1 Fi ⊗ hi, with

h1, . . . , hn ∈ C1
c (IR+), and F1, . . . , Fn ∈ S, n ∈ IN. The set of square-integrable adapted

processes is the completion in Φ ⊗ L2(IR+) of the set of adapted processes in U . If Φ is

identified to the L2-space of a stochastic process (Zt)t∈IR+ with stationary independent

increments and (U−, U+) ∈ A is an extension of the stochastic integral, then U+ coincides

with the stochastic integral with respect to (Zt)t∈IR+ on the square-integrable adapted

processes.
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Proposition 1. A couple (U−, U+) ∈ A is an extension of the stochastic integral if

and only if U+ and ∇+ coincide on the square-integrable adapted processes.

P r o o f. Let 1[a,b[G ∈ U be a simple adapted process. We have

〈U+(1[a,b[G), F 〉 =

∞\
0

1[a,b[(s)〈G,U−
s F 〉ds

=

∞\
0

1[a,b[(s)〈G,∇−
s F 〉ds = 〈∇+(1[a,b[G), F 〉, F ∈ S.

This statement is extended by linearity and closability to the square-integrable adapted

processes in Φ⊗ L2(IR+).

R ema r k 1. Let (U−, U+) ∈ A be an extension of the stochastic integral, and assume

that (u−
t )t∈IR+ , (u

+
t )t∈IR+ are adapted. Then (U−, U+) = (∇−,∇+).

P r o o f. We will show that for any t ∈ IR+, Γ(πs])U
−
t = Γ(πs])∇

−
t , s < t, and

Γ(π[s)U
−
t = Γ(π[s)∇

−
t , s > t, on S. The first part is a consequence of the fact that

(U−, U+) is an extension of the stochastic integral. Assume t < a < s and let F ∈ Sa],

G ∈ S[a. Then since (u−
t )t∈IR+ and (a−t )t∈IR+ are adapted,

Γ(π[s)U
−
t (F ⊗G) = Γ(π[s)((U

−
t F )⊗G) = 〈U−

t F, 1〉Γ(π[s)G

= 〈∇−
t F, 1〉Γ(π[s)G = Γ(π[s)∇

−
t (F ⊗G),

since Γ(π[s)U
−
t F = 〈U−

t F, 1〉 = 〈∇−
t F, 1〉 = Γ(π[s)∇

−
t F , a < s. Hence U− = ∇−.

As a consequence of this remark, if (U−, U+) ∈ A is an extension of the stochastic

integral that differs from (∇−,∇+), then (u−
t )t∈IR+ and (u+

t )t∈IR+ cannot be adapted.

R ema r k 2. Let (U−, U+) ∈ A. For the stochastic integral of simple adapted

processes to be defined with respect to du−
t , du

+
t , it is sufficient that

(ut − us) = Id ⊗ (ut − us) on Φs] ⊗ Φ[s, ∀s ≥ t, t ∈ IR+.

This condition is satisfied in particular if (U−, U+) is an extension of the stochastic inte-

gral. Hence quantum stochastic integrals of simple adapted operator processes (u−
t )t∈IR+ ,

(u+
t )t∈IR+ can be defined without requiring the adaptedness of (u−

t )t∈IR+ , (u
+
t )t∈IR+ .

P r o o f. Let

X =

i=n
∑

i=1

Xi1[ti,ti+1[

be a simple adapted operator process. The composition (u−
t −u−

s )Xs, t ≥ s, is well-defined

by

(u−
t − u−

s )Xs(F ⊗G) = XsF ⊗ (u−
t − u−

s )G, t ≥ s,

on Φs] ⊗ Φ[s. Consequently, the integral of X with respect to du−
t is well-defined as

∞\
0

Xsdu
−
s =

i=n
∑

i=1

Xi(u
−
ti+1

− u−
ti
).
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And
T∞
0

Xsdu
+
s is defined by duality as

∞\
0

Xsdu
+
s =

i=n
∑

i=1

Xi(u
+
ti+1

− u+
ti
),

with
〈

∞\
0

Xsdu
−
s F,G

〉

=
〈

F,

∞\
0

X∗
s du

+
s G

〉

, F,G ∈ S.

We may also write
∞\
0

Xsdu
−
s F =

∞\
0

U−
s XsFds,

∞\
0

Xsdu
+
s F = U+(XF ), F ∈ S.

The notion of extension of the stochastic integral on Fock space also allows to extend

the Clark representation formula, cf. [2, 8].

Proposition 2. Let (U−, U+) ∈ A be an extension of the stochastic integral on Fock

space. Then the mapping F 7→ (Γ(πs])U
−
s F )s∈IR+ is continuous from Φ to Φ ⊗ L2(IR+),

and any F ∈ Φ can be represented as

F = 〈F, 1〉+ U+(Γ(π·])U
−
· F ).

P r o o f. For F ∈ S, Γ(πt])U
−
t F is defined as

Γ(πt])U
−
t F = lim

s↑t
Γ(πs])U

−
t F = lim

s↑t
Γ(πs])∇

−
t F = Γ(πt])∇

−
t F, t ∈ IR+.

The continuity result and the representation formula are well-known facts in case

(U−, U+) = (∇−,∇+), cf. [12], and they immediately extend to U− from its definition

and Proposition 1.

3. A decomposition of the conservation operator. The main goal of this section

is to introduce a non-commutative decomposition of the number operator on Fock space

and study its probabilistic interpretations. Let
◦

h, denote the function defined as
◦

h(t) =Tt
0
h(s)ds, h ∈ L2(IR+), and let f ′(t) = d

dt
f(t), t ∈ IR+, f ∈ C1

c (IR+).

Definition 3. We define the linear operators ∇⊖ : Φ → Φ ⊗ L2(IR+) on S and

∇⊕ : Φ⊗ L2(IR+) → Φ on U by

∇⊖
t f

◦n = −n(π[tf
′) ◦ f◦(n−1), t ∈ IR+, f ∈ C1

c (IR+), n ∈ IN,

and

∇⊕(f◦n ⊗ h) = n
(

f
◦

h

)′

◦ f◦(n−1), f, h ∈ C1
c (IR+),

and by polarization of these expressions.

The operators ∇⊖ and ∇⊕ are unbounded, closable, densely defined, and adjoint of

each other. We note that (∇−+∇⊖,∇++∇⊕) ∈ A and is an extension of the stochastic

integral. Let also a⊖h , a
⊕
h be defined on S as

a⊖h F = (∇⊖F, h)L2(IR+), a⊕h F = ∇⊕(F ⊗ h), n ∈ IN, F ∈ S, h ∈ L2(IR+),

and let a⊖t = a⊖1[0,t] , a
⊕
t = a⊕1[0,t] , t ∈ IR+. The operator a⊖h is adjoint to a⊕h , h ∈ L2(IR+).

Moreover, a⊖h and a⊕h can be defined as the differential second quantizations of f 7→
◦

hf ′
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and f 7→ (f
◦

h)′ as

a⊖h = dΓ(
◦

h∂), a⊕h = dΓ(∂
◦

h).

The following proposition is a simple consequence of the derivation rule of the product

of functions of real variable.

Proposition 3. The operator a◦h admits the non-commutative decomposition

a◦h = a⊖h + a⊕h , h ∈ L2(IR+), (1)

into the sum of two adjoint operators.

The operator a⊖h + a⊕h has a Poisson law with parameter ‖ h ‖2
L2(IR+) in the state

ξ(h) exp(− 1
2 ‖ h ‖2

L2(IR+)), and
(

a⊖t + a⊕t
)

t∈IR+
is a non-commutative Poisson process in

this state, cf. e.g. [1].

Proposition 4. We have the commutation relations

[∇−
s ,∇

⊖
t ]ξ(f) = −(π[tf

′)(s)ξ(f), [a+h ,∇
⊖
t ]ξ(f) = (π[th

′) ◦ ξ(f),

f, h ∈ C1
c (IR+), s, t ∈ IR+.

P r o o f. We have ∇−
s ∇

⊖
t f

◦n = −n(π[tf
′)(s)f◦(n−1) − n(n − 1)f(s)(π[tf

′) ◦ f◦(n−2),

and ∇⊖
t ∇

−
s f

◦n = −n(n − 1)f(s)(π[tf
′) ◦ f◦(n−2). On the other hand, a+h∇

⊖
t f

◦n =

−na+h (π[tf
′)◦f◦(n−1), and∇⊖

t a
+
h f

◦n = ∇⊖
t h◦f

◦n = −n(π[tf
′)◦f◦(n−1)◦h−(π[th

′)◦f◦n.

4. Probabilistic interpretations of the decomposition

4.1. Wiener space interpretation. Let (W,L2(IR+), µ) denote the classical Wiener

space, with Brownian motion (Bt)t∈IR+ . We work here under the identification of L2(W,µ)

and Φ provided by the multiple stochastic integrals with respect to (Bt)t∈IR+ . We are in-

terested here in the properties of ∇⊖ under the above identification. Recall that on the

Wiener space, ∇− is identified to a derivation operator which satisfies

(∇−F, h)L2(IR+) = lim
ε→0

F
(

B· +
T·
0
h(s)ds

)

− F

ε
, F ∈ S, h ∈ L2(IR+),

cf. e.g. [6]. For h ∈ L2(IR+), with supx∈IR+
| h(x) |< 1, let νh(t) = t+

◦

ht, t ∈ IR+.

Definition 4. We define a mapping Th : W → W , t, ε ∈ IR+, as

Th(ω) = ω ◦ ν−1
h , h ∈ L2(IR+), sup

x∈IR+

| h(x) |< 1.

The transformation Th acts on the trajectory of (Bs)s∈IR+ by change of time, or by

perturbation of its predictable quadratic variation. Although Th is not absolutely contin-

uous with respect to the Wiener measure, the functional F ◦Th is well-defined for F ∈ S,

since elements of S can be defined for every trajectory of (Bt)t∈IR+ , using the product

formula for multiple stochastic integrals and the relation
T∞
0

fsdBs = −
T∞
0

f ′(s)Bsds,

a.s., f ∈ C1
c (IR+).

Proposition 5 ([9]). We have for F ∈ S
∞\
0

ht

(

∇⊖
t +

1

2
∇−

t ∇
−
t

)

Fdt = − lim
ε→0

1

ε
(F ◦ Tεh − F ). (2)
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4.2. Poisson space interpretation. We now consider a standard Poisson process on a

probability space (B,P ). The Poisson multiple stochastic integrals provide an isometric

isomorphism between L2(B) and Φ, cf. [11]. From [7], ∇− satisfies

∇−
t f(T1, . . . , Tn) =

k=n
∑

k=1

1[Tk−1,Tk[(t) (f(T1, . . . , Tk, t, Tk+1, . . . , Tn−1)− f(T1, . . . , Tn)) ,

(3)

t ∈ IR+, f ∈ C1
c (IR

n+1
+ ), which amounts to perturbing the trajectories of (Nt)t∈IR+ by

addition of a jump at time t. The operator ∇+ coincides with the Poisson stochastic

integral on the square-integrable adapted processes. The operator ∇−
t +∇⊖

t on Poisson

space, as ∇⊖
t + 1

2∇
−
t ∇

−
t on the Wiener space, is defined by an infinitesimal time change

on the Poisson process.

Proposition 6 ([9]). We have

((∇⊖ +∇−)F, h)L2(IR+) = − lim
ε→0

1

ε
(F ◦ Tεh − F ), F ∈ S, (4)

where the transformation Th is defined as in Def. 4, i.e. it acts on the Poisson process

trajectories via the time change νh.

Rema r k 3. Relations (2) and (4) imply, both in the Wiener and Poisson interpre-

tations, the following product rule for ∇⊖:

∇⊖(FG) = F∇⊖G+G∇⊖F −∇−F∇−G, F,G ∈ S.

As a consequence of this remark, a duality argument shows that Relation (1) can be

extended to random h ∈ U as:

a◦h +∇⊕(h) = a⊖h + a⊕h , h ∈ L2(IR+),

where ∇⊕(h) is identified to a multiplication operator, in both the Wiener and Poisson

interpretations of Φ. It is easy to check that ∇⊕(h) = 0 if h is adapted, since (∇− +

∇⊖,∇+ +∇⊕) ∈ A is an extension of the stochastic integral.

5. Non-commutative stochastic integration and Itô calculus. From Section 3,

the integral of simple adapted processes with respect to the operator processes (a⊖t )t∈IR+

and (a⊕t )t∈IR+ are well-defined. However, the processes (a⊖t )t∈IR+ and (a⊕t )t∈IR+ are not

adapted, hence iterated stochastic integrals of simple adapted processes with respect to

(aεt )t∈IR+ , ε = ⊖,⊕ have to be defined as anticipating stochastic integrals, and a⊖t , a
⊕
t

do not commute in general with the differential du±
t . Our construction of anticipating

quantum stochastic integration parallels that of [4] but concerns (a⊖t )t∈IR+ and (a⊕t )t∈IR+ .

For U− = ∇−,∇⊖, the integrals
Tt
0
du−

s a
ε
s,
Tt
0
aεsdu

+
s , ε = ⊖,⊕, are defined on S as

t\
0

du−
s a

ε
sF =

t\
0

U−
s aεsF,

t\
0

du+
s a

ε
sF = U+(1[0,t](·)a

ε
· F ), F ∈ S.

The integrals
Tt
0
aεsdu

+
s ,
Tt
0
aεsdu

−
s are defined by duality from

Tt
0
du−

s a
ε
s,
Tt
0
du+

s a
∗ε
s , with

∗ε = ⊕,⊖ respectively if ε = ⊖,⊕.
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Proposition 7. Let (U−, U+) ∈ A and (V −, V +) ∈ A be extensions of the stochastic

integral. We have the multiplication table

· dt du−
t dv+t

dt 0 0 0

dv+t 0 0 0

du−
t 0 0 du−

t · dv+t

(5)

The non-vanishing product du−
t · dv+t is given as

(da⊖t + da⊕t ) · (da
⊖
t + da⊕t ) = da◦t , da−t · (da+t + da⊕t ) = dt+ da−t ,

(da−t + da⊖t ) · da
+
t = dt+ da+t , da−t · da+t = dt,

respectively if (U−, V +) = (∇−+∇⊖,∇++∇⊕), (U−, V +) = (∇−,∇++∇⊕), (U−, V +)

= (∇− +∇⊖,∇+), (U−, V +) = (∇−,∇+).

P r o o f. The following relations hold:

〈u+
t F, v

−
t G〉 =

t\
0

〈u+
s F, V

−
s G〉ds+ 〈F,

t\
0

U−
s v−s Gds〉, (6)

〈v−t G, u−
t F 〉 =

t\
0

s\
0

〈V −
z G,U−

s F 〉dzds+

t\
0

u\
0

〈V −
z G,U−

s F 〉dzds, (7)

F,G ∈ S. Let X , Y be simple adapted processes such that S ⊂ Dom(XsYs), s ∈ IR+. By

linearity and adaptedness of (Xt)t∈IR+ , (Yt)t∈IR+ , (6) implies

〈

t\
0

Ysdv
+
s G,

t\
0

X∗
sdu

−
s F

〉

=

t\
0

〈

s\
0

Yzdv
+
z G,X∗

sU
−
s F

〉

ds+

t\
0

〈

YsG, V −
s

s\
0

X∗
zdu

−
z F

〉

ds,

and by duality,

〈

t\
0

Ysdu
−
s G,

t\
0

X∗
s dv

+
s F

〉

=

t\
0

〈

U−
s G, Y ∗

s

s\
0

X∗
zdv

+
z F

〉

ds+

t\
0

〈

V −
s Xs

s\
0

Yzdu
−
z G,F

〉

ds,

for F,G ∈ S. Those relations are written as
t\
0

Xsdu
+
s

t\
0

Ysdv
+
s =

t\
0

du+
s Xs

(

s\
0

Yzdv
+
z

)

+

t\
0

(

s\
0

Xzdu
+
z

)

Ysdv
+
s ,

t\
0

Xsdv
−
s

t\
0

Ysdu
−
s =

t\
0

(

s\
0

Xzdv
−
z

)

Ysdu
−
s +

t\
0

dv−s Xs

(

s\
0

Yzdu
−
z

)

,

hence du+
t · dv+t = 0, and du−

t · dv−t = 0. We have from (7)
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〈

t\
0

Ysdv
−
s G,

t\
0

X∗
sdu

−
s F

〉

=

t\
0

〈

s\
0

Yzdv
−
z G,X∗

sU
−
s F

〉

ds+

t\
0

〈

YsV
−
s G,

s\
0

X∗
zdu

−
z F

〉

ds,

hence
t\
0

Xsdu
+
s

t\
0

Ysdv
−
s =

t\
0

du+
s Xs

(

s\
0

Yzdv
−
z

)

+

t\
0

(

s\
0

Xzdu
+
z

)

Ysdv
−
s ,

which means that du+
t · dv−t = 0. The non-zero terms are explicitly computed in [10]. We

notice here that they can also be obtained formally from the well-known relations

d(a⊖t +a⊕t ) ·d(a
⊖
t +a⊕t ) = da⊖t +da⊕t , da−t ·d(a⊖t +a⊕t ) = da−t , d(a⊖t +a⊕t ) ·da

+
t = da+t .

The Itô multiplication table now gives the commutation relations

d[a⊖t , a
+
t ] = da−t + [a⊖t , da

+
t ], d[a−t , a

⊕
t ] = da+t + [da−t , a

⊕
t ],

and

d[a⊖t , a
⊕
t ] = da◦t + [a⊖t , da

⊕
t ] + [da⊖t , a

⊕
t ].
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