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1. Introduction. In the article we give the explicit bound for the growth at infinity
of a polynomial with a compact set of zeros. Our aim is to prove the following theorem:

Theorem 1. Let F ∈ R[X1, . . . , Xn] be a polynomial of degree d > 2 such that the
set F−1(0) is compact. Then there exist constants c, R > 0 such that

|F (x)| ≥ c|x|d−(d−1)
n

for all |x| > R.

Recall that we have a similar estimation in the complex case. Consider a polynomial
map H : Cn → Cn of degree d such that H−1(0) is finite. Then, by Kollár’s theorem,
|H(z)| ≥ const.|z|d−dn for |z| � 1 (see [Ko]). Our theorem is a real counterpart of this
inequality.

2. Two lemmas. The following lemmas will be used in the proof of the main theo-
rem.

Lemma 1. Let G : Rn → R be a polynomial of positive degree d. Then there exists
a linear automorphism L : Rn → Rn such that the polynomial F = G ◦ L satisfies the
following conditions:

(i) All partial derivatives of F are of degree d− 1.
(ii) The sets Γi = {x ∈ Rn | ∂F/∂X1(x) = . . . = ∂F/∂Xi−1(x) = ∂F/∂Xi+1(x) =

. . . = ∂F/∂Xn(x) = 0, ∂F/∂Xi(x) 6= 0} (1 ≤ i ≤ n) are one-dimensional submanifolds
of Rn whenever they are not empty ,

(iii) For every x ∈ Γi (1 ≤ i ≤ n) the differentials dx(∂F/∂X1), . . . , dx(∂F/∂Xi−1),
dx(∂F/∂Xi+1), . . . , dx(∂F/∂Xn) are linearly independent.
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P r o o f. Let GL(n) be the set of linear automorphisms of Rn. We claim that

{L ∈ GL(n) | deg
∂G ◦ L
∂X1

= . . . = deg
∂G ◦ L
∂Xn

= d− 1}

is a dense subset of GL(n). Let Gd(X1, . . . , Xn) be the leading form of the polyno-
mial G that is the homogeneous polynomial of degree d for which deg(G − Gd) < d.
Consider a substitution Gd ◦ L where L(X1, . . . , Xn) = (

∑n
i=1 l

i
1Xi, . . . ,

∑n
i=1 l

i
nXi). We

have (Gd ◦ L)(X1, . . . , Xn) = Gd(
∑n
i=1 l

i
1Xi, . . . ,

∑n
i=1 l

i
nXi) = Gd(l

1
1, . . . , l

1
n)Xd

1 + . . .
. . . + Gd(l

n
1 , . . . , l

n
n)Xd

n + other monomials. If Gd(l
1
1, . . . , l

1
n) 6= 0, . . . , Gd(l

n
1 , . . . , l

n
n) 6= 0,

then all partial derivatives of G ◦ L are of degree d − 1. Since the set {L ∈ GL(n) |
Gd(l

1
1, . . . , l

1
n) 6= 0, . . . , Gd(l

n
1 , . . . , l

n
n) 6= 0} is a complement of a proper algebraic set, it

is open and dense in GL(n). This proves the claim.
For any x = (x1, . . . , xn) from Rn \ {0} we denote by [x] the corresponding point

[x1, . . . , xn] of the projective space RPn−1. Consider the map

[gradG] : Rn \ (gradG)−1(0)→ RPn−1.

From the semialgebraic version of Sard’s lemma (see [BR], page 82) it follows that the
set of regular values of this map contains an open subset U ⊂ RPn−1. The set V =
{(v1, . . . , vn) ∈ Rn × . . .×Rn | det(vji ) 6= 0, [vi] ∈ U for i = 1, . . . , n} is an open subset
of Rn×. . .×Rn. Each n-tuple v = (v1, . . . , vn) from this set yields a linear automorphism
Av :Rn → Rn, Av(x) = (〈v1, x〉, . . . , 〈vn, x〉). Hence the set {Av ∈ GL(n) | v ∈ V } is open
in GL(n). Since GL(n) 3 A → A−1 ∈ GL(n) is an open map, {A−1v ∈ GL(n) | v ∈ V }
is also an open subset of GL(n). Thus, there exists v = (v1, . . . , vn) ∈ V such that the
automorphism L = A−1v satisfies (i).

Let us define the polynomial F = G◦L. Since G = F ◦Av, gradG = ATv ◦gradF ◦Av,
where ATv is the adjoint of Av. From this equation it follows that for any w ∈ Rn \ {0},
[w] is a regular value of [gradF ] if and only if [ATv (w)] is a regular value of [gradG]. Let
e1 = (1, . . . , 0), . . . , en = (0, . . . , 1) form the standard basis of Rn. Since ATv (ei) = vi

for i = 1, . . . , n, we conclude that [e1], . . . , [en] are regular values of [gradF ]. Applying
the implicit function theorem to the map [gradF ] we see that each of the sets Γi =
[gradF ]−1([ei]) (1 ≤ i ≤ n) is either a one-dimensional submanifold of Rn or is empty.
This proves (ii).

We prove the third part of the lemma for Γn. To simplify the notation we write
∂iF for ∂F/∂Xi. Because [en] is a regular value of [gradF ], 0 ∈ Rn−1 is a regular
value of the map ψ : Rn \ (∂nF )−1(0) → Rn−1, ψ = (∂1F/∂nF, . . . , ∂n−1F/∂nF ) that
is, the map [gradF ] written in the coordinates {[x1, . . . , xn] ∈ RPn−1 | xn 6= 0} 3
[x1, . . . , xn] → (x1/xn, . . . , xn−1/xn) ∈ Rn−1. Therefore, for every x ∈ Γn the differen-
tials dx(∂1F/∂nF ), . . . , dx(∂n−1F/∂nF ) are linearly independent. On the other hand,
for x ∈ Γn and i = 1, . . . , n − 1 we have dx(∂iF/∂nF ) = (1/∂nF )dx(∂iF ), therefore the
differentials dx(∂1F ), . . . , dx(∂n−1F ) are also linearly independent. The proof for Γi,
i 6= n is similar.

Further, we denote by |x| the supremum norm |x| = max{|x1|, . . . , |xn|} for x =
(x1, . . . , xn). We will also use the following convention: Using notation |x| � 1 we mean
that the corresponding condition is satisfied for |x| > R, where R is sufficiently large.

Lemma 2. Let F ∈ R[X1, . . . , Xn] be a polynomial with a compact set of zeros and
let K = {x ∈ Rn | ∀y ∈ Rn |y| = |x| ⇒ |F (y)| ≥ |F (x)|}. If A ⊂ K is an unbounded
semialgebraic set , then the following conditions are equivalent :
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(i) |F (x)| ≥ c|x|α for |x| � 1,
(ii) |F (x)| ≥ c|x|α for |x| � 1, x ∈ A.

P r o o f. The implication (i) ⇒ (ii) is obvious. Assume that (ii) is true. Since
{|x|

∣∣x ∈ A} is an unbounded semialgebraic subset of R+, there exists a constant R > 0

such that (R,∞) ⊂ {|x|
∣∣x ∈ A}. By (ii) we can choose R sufficiently large so that

|F (x)| ≥ c|x|α for |x| ≥ R, x ∈ A. Let y ∈ Rn be an arbitrary point with |y| > R.
Then there exists x ∈ A such that |x| = |y|. By (ii) and the definition of K we get
|F (y)| ≥ |F (x)| ≥ c|x|α = c|y|α which ends the proof.

3. Proof of Theorem 1. The proof proceeds by induction on the number of vari-
ables. For polynomials in one variable the theorem is obvious. Assume that the theorem
holds for polynomials in n− 1 variables. We shall check that it is true for polynomials in
n variables.

We shall perform some reductions:
If the theorem is true for a polynomial F , then it holds also for F ◦ L, where

L : Rn → Rn is a linear automorphism. Therefore, we can assume that F satisfies the
conditions (i), (ii) and (iii) of Lemma 1.

The set F−1(0) is bounded. Hence F (x) 6= 0 for all |x| > R, where R is sufficiently
large. Since for n ≥ 2 the set {x ∈ Rn

∣∣ |x| > R} is connected, a sign of F restricted

to {x ∈ Rn
∣∣ |x| > R} does not change. Without loss of generality we can assume that

F (x) > 0 for |x| > R.
Let

K = {x ∈ Rn | ∀y ∈ Rn |y| = |x| ⇒ |F (y)| ≥ |F (x)|}.
First, we prove the theorem under the additional assumption that K ∩ (gradF )−1(0) is
unbounded. Let A be an unbounded connected component of this set. Since gradF (x) = 0
for x ∈ A, we conclude that F |A = c with some c > 0 (see [BR], Theorem 2.5.1). By
Lemma 2 we get |F (x)| ≥ c|x|0 for |x| � 1 which ends the proof in this case.

Hence we may assume throughout the rest of the proof that K ∩ (gradF )−1(0) is
bounded.

Let us define

Ai = {x ∈ Rn | |xk| < |xi| for k ∈ {1, . . . , n} \ {i}},
Bi,j = {x ∈ Rn | xi = xj , |xk| ≤ |xi| for k = 1, . . . , n},
Ci,j = {x ∈ Rn | xi = −xj , |xk| ≤ |xi| for k = 1, . . . , n}.

Since Rn =
⋃
Ai ∪

⋃
Bi,j ∪

⋃
Ci,j , at least one of the sets K ∩

⋃
Ai, K ∩

⋃
Bi,j ,

K ∩
⋃
Ci,j is unbounded. Let us consider three cases:

Case 1: K∩
⋃
Bi,j is unbounded. Then at least one of the sets K∩Bi,j (1 ≤ i < j ≤ n)

is unbounded. Without loss of generality we can assume that this is the set K ∩Bn−1,n.

Consider the polynomial F̃ (X1, . . . , Xn−1) = F (X1, . . . , Xn−1, Xn−1) of degree d̃ ≤ d.

By the inductive assumption we have |F̃ (x̃)| ≥ c|x̃|d̃−(d̃−1)n−1

for x̃ ∈ Rn−1, |x̃| � 1.
If we take any x ∈ Bn−1,n, x = (x1, . . . , xn−1, xn−1) and if we set x̃ = (x1, . . . , xn−1),

then |x̃| = |x| and F̃ (x̃) = F (x). Hence |F (x)| ≥ c|x|d̃−(d̃−1)n−1

for |x| � 1, x ∈ Bn−1,n.

By Lemma 2 and by the inequality d̃−(d̃−1)n−1 ≥ d−(d−1)n we get |F (x)| ≥ c|x|d−(d−1)n

for |x| � 1.

Case 2: K ∩
⋃
Ci,j is unbounded. The proof is analogous.
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Case 3: K ∩
⋃
Ai is unbounded. Then at least one of the sets K ∩ Ai (1 ≤ i ≤ n) is

unbounded. Without loss of generality we can assume that this is K ∩An.
Take R > 0 large enough so that F (x) > 0 for |x| > R and let y = (y1, . . . , yn)

be an arbitrary point in K ∩ An with |y| > R. Consider a function f(x1, . . . , xn−1) =
F (x1, . . . , xn−1, yn) defined for |xi| < |yn| (1 ≤ i < n). Taking into account two points,
y = (y1, . . . , yn−1, yn) and x = (x1, . . . , xn−1, yn), where |xi| < |yn| (1 ≤ i < n), we see
that |x| = |y|, therefore F (x) ≥ F (y). Hence the point (y1, . . . , yn−1) is a local minimum
of f . Thus ∂F/∂X1(y) = . . . = ∂F/∂Xn−1(y) = 0.

Summarizing, we see that for all y ∈ K ∩ An, |y| � 1 we have ∂F/∂X1(y) = . . . =
∂F/∂Xn−1(y) = 0, ∂F/∂Xn(y) 6= 0. Moreover, from Lemma 1 it follows that K ∩ An
is a one-dimensional semialgebraic manifold in a neighborhood of infinity. We want to
find a parametrization of a branch at infinity of this set. To that end we employ complex
algebraic geometry.

Define H1 = ∂F/∂X1, . . . , Hn−1 = ∂F/∂Xn−1 and let C = {z ∈ Cn | H1(z) = . . .
. . . = Hn−1(z) = 0}. Decompose C to the union of irreducible algebraic components
C = C1 ∪ . . .∪Cs. Treating Rn as a subset of Cn we see that K ∩An ∩C is unbounded.
Hence there exists a component Ci such that K ∩ An ∩ Ci is unbounded. For simplicity
put Γ = Ci.

We will check that dimC Γ = 1. By Lemma 1 there exists x ∈ K ∩ An ∩ Γ for
which the differentials dxH1, . . . , dxHn−1 are linearly independent. Therefore, dimC Γ ≤
n−rank(Γ, x) ≤ n−rank(dxH1, . . . ,dxHn−1) = 1 (see [BR], pages 122–135). Furthermore,
Γ is unbounded, so dimC Γ = 1.(1)

Next, we will check that deg Γ ≤ (d− 1)n−1. Let us recall an invariant δ of algebraic
sets introduced in  Lojasiewicz’s book ([ Lo] pages 419–420): Let W = W1 ∪ . . . ∪Ws be
a decomposition of an algebraic set W to irreducible components. Then, by definition
δ(W ) =

∑s
i=1 degWi. We will use the inequality δ(W ∩ V ) ≤ δ(W )δ(V ). Applying this

property to the set C we see that deg Γ ≤ δ(C) = δ({H1 = 0} ∩ . . . ∩ {Hn−1 = 0}) ≤∏n−1
i=1 δ({Hi = 0}) ≤ (d− 1)n−1.
Further, we will consider Cn as a affine part of the projective space CPn. We will use

the natural identification between (x1, . . . , xn) ∈ Cn and [1, x1, . . . , xn] ∈ CPn. With the
use of this identification we can treat K, An and Γ as subsets of CPn.

Since K ∩An ∩ Γ is an unbounded set and CPn is compact, there exists a point a in
the hyperplane at infinity {[x0, . . . , xn] ∈ CPn | x0 = 0} such that a ∈ cl(K ∩An ∩ Γ).

The homogeneous coordinates of a can be chosen such that a = [0, a1, . . . , an−1, 1].
Indeed, for all x ∈ An we have |xi| < |xn| for 1 ≤ i < n. Since a ∈ cl(An), |ai| ≤ |an| for
1 ≤ i < n. Therefore, the last coordinate an does not vanish and by homogeneity we can
assume that an = 1.

Let Γ̄ be the projective closure of the curve Γ. Since a ∈ Γ̄, according to [ Lo]
(pages 173–176) there exists a finite sequence of injective holomorphic parametrizations
γi : (D, 0)→ (Γ̄, a) (1 ≤ i ≤ l), where D = {t ∈ C | |t| < δ}, such that the curve Γ̄ is the
union γ1(D) ∪ . . . ∪ γl(D) in some neighborhood of a. These parametrizations are of the
form

γi(t) = [tdi , γi,1(t), . . . , γi,n−1(t), 1].

Furthermore, we can assume that the real branches of Γ̄ are parametrized such that
(tdi , γi,1(t), . . . , γi,n−1(t)) ∈ Rn if and only if t ∈ R. This can be done by substituting

(1) If dimC Γ = 0, then Γ would consist of one point.
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γi(ξit), where ξi is an appropriate di-th root of unity and by shrinking δ if necessary
(see [Mi] or [Du] for the details).

Let H = H(X0, . . . , Xn) be the homogenization of the polynomial ∂F/∂Xn. Recall
that it means that H is a homogeneous polynomial of degree degH = deg ∂F/∂Xn

such that H(1, X1, . . . , Xn) = ∂F/∂Xn(X1, . . . , Xn). We can calculate the intersection
multiplicity of the curve Γ̄ and the hypersurface {H = 0} at a using the formula

ιa(Γ̄, {H = 0}) =

l∑
i=1

ord0(H ◦ γi)

(see [Sh], pages 190–194). By Bézout’s theorem ιa(Γ̄, {H = 0}) ≤ (deg Γ̄)(degH) ≤
(d− 1)n. Hence ord0(H ◦ γi) ≤ (d− 1)n for i = 1, . . . , l.

One has a ∈ cl(K ∩ An ∩ Γ). Hence there exists i (1 ≤ i ≤ l) such that a ∈ cl(K ∩
An ∩ γi(D)). Since γi is a proper map, 0 ∈ cl(γ−1(K ∩An)). Furthermore, we see by the
definition of γi that γ−1(K ∩ An) is a semianalytic subset of R. Therefore there exists
ε > 0 such that γi((0, ε)) ⊂ K ∩ An or γi((−ε, 0)) ⊂ K ∩ An (see [BM] for the definition
and basic properties of semianalytic sets). In the rest of the proof we assume the former
case (the proof for the case γi((−ε, 0)) ⊂ K ∩ An is similar). We will again treat K, An
and Γ as subsets of Cn.

Set the following meromorphic map

φ : {t ∈ C | 0 < |t| < ε} 3 t→ (γi,1(t)/tdi , . . . , γi,n−1(t)/tdi , 1/tdi) ∈ Cn.

Notice that φ({t ∈ C | 0 < |t| < ε}) ⊂ Γ and that φ((0, ε)) is an unbounded semialgebraic
subset of K ∩An.

We estimate the order of F ◦ φ at zero. Either ord0(F ◦ φ) = 0 or by the equation

(F ◦ φ)′ =

(
∂F

∂X1
◦ φ
)
φ′1 + . . .+

(
∂F

∂Xn
◦ φ
)
φ′n =

(
∂F

∂Xn
◦ φ
)
φ′n

we have ord0(F ◦ φ) = ord0(∂F/∂Xn ◦ φ)− di.
On the other hand we have

∂F

∂Xn
(φ(t)) = H(1, γi,1(t)/tdi , . . . , γi,n−1(t)/tdi , 1/tdi)

= t−di degHH(tti , γi,1(t), . . . , γi,n−1(t), 1) = t−di degHH(γi(t)).

Since degH = d−1 and ord0(H ◦γi) ≤ (d−1)n, we conclude that ord0(∂F/∂Xn◦φ) ≤
(d−1)n−di(d−1). By this inequality and the preceding equalities we have ord0(F ◦φ) ≤
(d− 1)n − did or ord0(F ◦ φ) = 0.

R e m a r k. If f, g : {t ∈ C | 0 < |t| < ε} → C, f 6= 0, g 6= 0 are meromorphic func-
tions, then there exist constants c, ε1 > 0 such that |f(t)| ≥ c|g(t)|ord0 f/ ord0 g for all
t ∈ C, 0 < |t| < ε1.

The proof of this fact is simple and is left to the reader. By the remark and by the
fact that φ((0, ε)) ⊂ An implies |φ(t)| = |φn(t)| for t ∈ (0, ε), we obtain an inequality

|F (φ(t))| ≥ c|φ(t)|ord0(F◦φ)/ ord0(φn) for t ∈ (0, ε1)

with some positive constants c, ε1. By Lemma 2 we have

|F (x)| ≥ c|x|ord0(F◦φ)/ ord0(φn) for |x| � 1.



128 J. GWOŹDZIEWICZ

Moreover, the exponent ord0(F ◦φ)/ ord0(φn) ≥ ((d−1)n−did)/(−di) = d−(d−1)n/di ≥
d− (d− 1)n or is equal zero and thus

|F (x)| ≥ c|x|d−(d−1)
n

for |x| � 1.

4. Concluding remarks. In the course of the proof we have found a parametrization
φ of the set K at infinity such that |F (x)| ≥ c|x|ord0(F◦φ)/ ord0(φn)for|x| � 1. By a slight
modification of the proof one can show that the number ord0(F ◦ φ)/ ord0(φn) is the
 Lojasiewicz exponent at infinity for the polynomial F , i.e. the largest exponent α for
which the estimate |F (x)| ≥ const.|x|α is true for |x| � 1.

We have checked that ord0(F ◦ φ) ≤ (d − 1)n − d ord0(φn) or ord0(F ◦ φ) = 0. One
can also prove the inequality (d − 1)n−1 ≤ ord0(φn) < 0. As a result, there is only a
finite number of fractions which can be the  Lojasiewicz exponents for polynomials of
fixed number of variables n and of fixed degree d.

So far I have not found a polynomial F for which the  Lojasiewicz exponent L∞(F ) =
d − (d − 1)n. For example for the polynomial F (X1, . . . , Xn) = (X2X

m−1
1 − 1)2 +

(X3−Xm
2 )2+. . .+(Xn−Xm

n−1)2+X2m
n of degree d = 2m we have L∞(F ) = d−(1/2n−1)dn.

This suggests that Theorem 1 could be essentially sharpened.
I want to express my thanks to Stanis law Spodzieja for pointing out a mistake in the

first version of this paper.
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