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Abstract. Let Y be a real algebraic subset of Rm and F : Y → Rn be a polynomial
map. We show that there exist real polynomial functions g1, . . . , gs on Rn such that the Euler
characteristic of fibres of F is the sum of signs of gi.

The purpose of this paper is to give a new, self-contained and elementary proof of the

following result.

Theorem. Let Y be a real algebraic subset of Rm and F : Y → Rn be a polyno-

mial map. Then there exist real polynomials g1(y), . . . , gs(y) on Rn such that the Euler

characteristic of fibres of F is the sum of signs of gi, that is

χ(F−1(y)) = sgn g1(y) + . . .+ sgn gs(y).

Our proof is based on a classical and elementary result expressing the number of real

roots of a real polynomial of one variable as the signature of an associated quadratic form

known already to Hermite [He1, He2] and Sylvester [Syl], see also [B], [BW], [BCR, p. 97].

In the proof we use a modern generalized version of this result presented in [PRS] (note

that we need only a one variable case of [PRS], that is precisely [BR, Proposition p. 18]).

Our original proof of the theorem [PS] used different means such as the theory of lo-

cal topological degree of polynomial mappings, Gröbner bases and the Eisenbud-Levine

Theorem and was not so explicit as the one presented below.
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The paper is organized as follows. In Section 1 we prepare the algebraic part of the

proof. In particular we recall Hermite and Sylvester’s theorem. In Section 2 we present ba-

sic properties of Euler characteristic of semialgebraic sets and a useful formalism of Euler

integral of constructible functions. The proof of the theorem for F proper is presented

in Section 3. This case is particularly simple and the proof is obtained by an effective

elimination procedure. In Section 4 we complete the proof in general (non-proper) case.

The main theorem of the paper was inspired by the first preprint version of [CK]. For

its applications see [MP] and [PS].

1. Preliminaries I. Let W be an irreducible real algebraic subset of Rn, let A denote

the ring of real polynomials on W , and K—the field of fractions of A.

Let X be a real indeterminate. Take h1, . . . , hk ∈ K[X] and denote by I the ideal in

K[X] generated by h1, . . . , hk. We assume that at least one of hi is nonzero. The ring

K[X] is a principal ideals domain, and h = g.c.d.(h1, . . . , hk) is a generator of I. One

may find polynomials H1, . . . ,Hk, P1, . . . , Pk ∈ K[X] such that

h = H1h
1 + . . .+Hkh

k, hi = Pih.

Set d = deg h. Then Q = K[X]/I is a K-algebra and d = dimKQ. The monomials

1, X, . . . ,Xd−1 form a basis in Q. In particular, if d = 0, then I = K[X] and Q = {0}.
For any f ∈ K[X] there are unique q, r ∈ K[X] such that f = qh + r and deg r < d.

Thus r = a0 + a1X + . . . + ad−1X
d−1. Put ri(f) = ai ∈ K. This way ri(f) is the i-th

coordinate of f in Q.

Any f ∈ Q defines a K-linear endomorphism Af : Q → Q by multiplication

Af (p) = fp. Let Tr(f) ∈ K be the trace of Af . Clearly

Tr(f) = r0(f) + r1(fX) + . . .+ rd−1(fXd−1).

The trace map Tr : Q→ K is K-linear.

Fix g ∈ K[X]. Define a symmetric bilinear form Θg : Q×Q→ K by Θg(a, b) = Tr(gab).

For 0 ≤ i, j ≤ d−1 put T ij = r0(gXi+j)+ . . .+rd−1(gXi+j+d−1) ∈ K, so that the matrix

of Θg is [T ij ].

Recall that K is the field of fractions of the polynomial ring A of an irreducible real

algebraic set W ⊂ Rn. There exists a proper algebraic subset Σ ⊂ W such that the

numerators and the denominators of all non-trivial elements of K, which have appeared

above, do not vanish on W \Σ. Given f ∈ K[X], f = adX
d + . . .+a0, ai ∈ K. For w ∈W

we denote by fw the evaluation of f at w, that is, fw = ad(w)Xd + . . .+ a0(w). Such fw
is well-defined provided all ai(w) exist. Fix w ∈ W \ Σ. Then deg hw = d and hw is the

greatest common divisor of h1
w, . . . , h

k
w. Let Iw denote the ideal generated by h1

w, . . . , h
k
w.

Hence Iw = (hw), Qw = R[X]/Iw is an R-algebra, dimRQw = d, and 1, X, . . . ,Xd−1

form a basis in Qw.

Given g ∈ K[X]. In the same way as above we define the trace map Trw : Qw → R,

and the symmetric bilinear form Θg
w : Qw × Qw → R, given by Θg

w(a, b) = Tr(gwab).

Then the evaluation [T ij
w ] = [T ij(w)] is the matrix of Θg

w.

Let Vw = {x ∈ R | h1(w, x) = . . . = hk(w, x) = 0} = {x ∈ R | hw(x) = 0}. If
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w ∈W \ Σ then Iw 6= {0} and Vw is finite. Set

(1) Aw =
∑
x∈Vw

sgn g(w, x).

If g = 1 then Aw is just the number of real roots of hw(x). The following result follows

from [He1, He2] and [Syl], see [BR, Proposition p. 18] and [PRS, Theorem 2.1].

Proposition 1. For w ∈W \ Σ

Aw = signature Θg
w = signature[T ij

w ].

Now we apply the lemma of Descartes in order to describe the way Aw depends on w.

Lemma 2. Let f(x) = adx
d + ad−1x

d−1 + . . . + a0 be a real polynomial and assume

that all roots of f(x) are real. Let p+ (resp. p−) denote the number of positive (resp.

negative) roots of f counted with multiplicities. Let Λ denote the set of all pairs (r, s)

with 0 ≤ r < s ≤ n such that ar 6= 0, as 6= 0, and ai = 0 for r < i < s. Define

Λ′ = {(r, s) ∈ Λ | r + s is odd}. Then

p+ − p− = −
∑

(r,s)∈Λ′

sgn (aras).

P r o o f. We say that the pair of real numbers (a, b) changes sign if ab < 0. If this is

the case then (1− sgn ab)/2 = 1, if ab > 0 then (1− sgn ab)/2 = 0.

By Descartes’ lemma (see [MS, Theorem 6, p. 232], or [BR, Proposition 1.1.10, p. 14]),

p+ equals the number of sign changes in the sequence of non-zero coefficients of f(x),

that is

p+ =
∑

(r,s)∈Λ

(1− sgn(aras))/2.

According to the same fact, p− equals the number of sign changes in the sequence of

non-zero coefficients of f(−x), i.e.

p− =
∑

(r,s)∈Λ

(
1− (−1)r+s sgn(aras)

)
/2.

Hence p+ − p− = −
∑

(r,s)∈Λ′ sgn aras as required.

Corollary 3. There exist polynomials ϕ1, . . . , ϕt ∈ A and a proper algebraic subset

Σ ⊂W such that for every w ∈W \ Σ

Aw =

t∑
i=1

sgnϕi(w).

P r o o f. Let T (λ) = Tdλ
d + . . .+ T0, where Ti ∈ K, be the characteristic polynomial

of [T ij ]. Define Λ′ in the same way as above. In particular TrTs ∈ K \ {0} for each

(r, s) ∈ Λ′. Then the evaluation Tw(λ) = Td(w)λd + . . . + T0(w) is the characteristic

polynomial of [T ij
w ]. We enlarge Σ so that Tr(w)Ts(w) 6= 0 for w ∈W \Σ and (r, s) ∈ Λ′.

Then by Lemma 2

(2) signature Θg
w = signature[T ij

w ] = −
∑

(r,s)∈Λ′

sgnTr(w)Ts(w)

as required.
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2. Preliminaries II. In this section we recall the construction and some basic prop-

erties of the Euler integral of a constructible function, see e.g. [MP] for more information.

An integer-valued function ϕ : Rn → Z is called constructible if it admits a presenta-

tion as a finite sum

(3) ϕ =
∑

mi1Xi
,

where for each i, Xi is a closed semialgebraic subset of Rn, 1Xi
is the characteristic

function of Xi, and mi’s are integers. The presentation (3) is not unique. If the support

of ϕ is compact, then we may choose all Xi compact. Then the Euler integral of ϕ is

defined as ∫
ϕ =

∑
miχ(Xi).

For R > 0 let Ψn
R denote the characteristic function of the ball BR centred at the

origin and of radius R. For any constructible ϕ, the product ϕΨn
R has compact support,

and we define the Euler integral of ϕ as∫
ϕ =

∫
ϕΨn

R, forR� 0.

This definition makes sense because of the following

Lemma 4. Let X ⊂ Rn be semialgebraic. Then if R > 0 is large enough, X ∩BR is

a deformation retract of X.

P r o o f. Let ρ : X → R denote the distance to the origin. By topological triviality

of semialgebraic mappings [BCR, Thm. 9.3.1], there is a finite subset {y1, . . . , yp} ⊂ R

such that

ρ : X \ ρ−1({y1, . . . , yp})→ R \ {y1, . . . , yp}

is a locally trivial fibration. In particular, R > max{|y1|, . . . , |yp|} satisfies the statement

of the lemma.

Corollary 5. If X ⊂ Rn is closed semialgebraic then
∫
1X = χ(X).

P r o o f. If R is large enough then X ∩ BR is a deformation retract of X. Hence∫
1X =

∫
1XΨn

R = χ(X ∩BR) = χ(X), as required.

Lemma 6. Let f(x) = adx
d+. . .+a0, ad 6= 0, be a polynomial. Then ϕ(x) = sgn f(x) is

a constructible function. For 2 ≤ k ≤ d define Vk = {x ∈ R | f(x) = . . . = f (k−1)(x) = 0}
and put Zk =

∑
x∈Vk

sgn f (k)(x). Then

∫ ϕ =

{
sgn ad − (Z2 + Z4 + . . .+ Zd), for d even;
−(Z2 + Z4 + . . .+ Zd−1), for d odd.

P r o o f. Clearly sgn f(x) is constructible. Let x1 < . . . < xp be the real roots of f .

Take R > 0 such that −R < x1 and xp < R. Put x0 = −R and xp+1 = R. For

0 ≤ i ≤ p+ 1, let k(i) = min{j ≥ 0 | f (j)(xi) 6= 0}, and Si = sgn f (k(i))(xi).

The sign of f on (xi, xi+1) is constant and equals Si = (−1)k(i+1)Si+1. We have

ϕψ1
R =

p∑
i=0

1

2

(
Si + (−1)k(i+1)Si+1

)
1[xi,xi+1] −

p∑
i=1

(
(−1)k(i) + 1

)
Si1{xi}.



EULER CHARACTERISTIC 179

Hence∫
ϕ =

1

2
(S0 + Sp+1)−

p∑
i=1

1

2

(
(−1)k(i) + 1

)
Si =

1

2
(S0 + Sp+1)− (Z2 + Z4 + . . .).

If d is even then 1
2 (S0 +Sp+1) = sgn ad. If d is odd then 1

2 (S0 +Sp+1) = 0. This ends the

proof of Lemma 6.

Proposition 7. Let W be an irreducible real algebraic subset of Rn and A denote

the ring of real polynomials on W . Let f ∈ A[X]. Then there exist a finite family of

polynomials ψi ∈ A and a proper algebraic subset Σ ⊂W such that for every w ∈W \Σ∫
R

sgn f(w, · ) =
∑

sgnψi(w).

P r o o f. Let f = arx
r + . . .+ a0, where ai ∈ A. We may suppose ar 6= 0 in A. Then

for w ∈W \ a−1
r (0),

∫
R

sgn f(w, · ) is calculated in Lemma 6.

For each 1 ≤ k ≤ r, we apply the construction of Section 1 to the ideal I = (h1, . . . , hk)

generated by h1 = f, . . . , hk = ∂k−1f/∂Xk−1 and g = ∂kf/∂Xk. Then, by Proposition 1

and Corollary 3, each of Zk of Lemma 6 is a finite sum of signs of polynomials in w as

required. This shows the proposition.

Proposition 8. Let W be a real algebraic set and A denote the ring of polynomials

on W . Let f ∈ A[X]. Then there exists a finite family of polynomials γi ∈ A such that

for every w ∈W

(4)

∫
R

sgn f(w, · ) =
∑
i

sgn γi(w).

P r o o f. The proof is by induction on dimW and the number of irreducible compo-

nents of W .

If W is irreducible then, by Proposition 7, we may find a finite family of polynomials

γ′k ∈ A satisfying (4) in the complement of the proper algebraic subset Σ of W . By the

inductive assumption there exists a finite family of polynomials γ′′j on Σ satisfying (4)

on Σ. We consider γ′′j as the restriction of polynomials on W . Let P ∈ A be any non-

negative polynomial such that P−1(0) = Σ. Then

sgnPγ′k =

{
sgn γ′k, on W \ Σ;
0, on Σ.

Similarly

sgn γ′′j − sgnPγ′′j =

{
0, on W \ Σ;
sgn γ′′j , on Σ,

and hence the family {Pγ′k, γ′′j ,−Pγ′′j } satisfies the statement.

Suppose W ′ ⊂ W is an irreducible component of W and let W ′′ be the union of

the other components. Let γ′k (resp. γ′′j ) be the family satisfying (4) on W ′ (resp. W ′′).

Let P ∈ A be any non-negative polynomial such that P−1(0) = W ′. Then, by the same

argument as above, the family {Pγ′k, γ′′j ,−Pγ′′j } satisfies the statement. This ends the

proof.
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3. Proof of Theorem (proper case). Suppose F : Y → Rn is proper. Replacing Y

by the graph of F we may assume that Y ⊂ Rn×Rm and F is induced by the projection

on the first factor.

The proof is by induction on m (we do not assume n to be fixed). Suppose m = 1 and

Y is the zero set of a non-negative polynomial function f(y, x). We apply Proposition 8

to W = Rn and A = R[y]. Note that, since F is proper, F−1(y) has to be finite and

χ(F−1(y)) = 1−
∫
R

sgn f(y, · ). Hence the result follows from Proposition 8.

Inductive step. Let p : Y → Rn×R1 denote the projection. By the inductive hypoth-

esis we may assume that there exists a finite family of polynomials fi(y, x1) such that for

each (y, x1) ∈ Rn ×R

(5) χ(p−1((y, x1))) =
∑
i

sgn fi.

Define ϕ(y, x1) = χ(p−1((y, x1)). We claim that

(6)

∫
R

ϕ(y, · ) = χ(F−1(y)).

Indeed, this follows from a “Fubini-type” formula for the Euler integral,

(7)

∫
{y}×R

ϕ(y, · ) =

∫
{y}×R

p∗1Y =

∫
F−1(y)

1Y = χ(F−1(y)),

see, e.g., [V], [MP, A.4.2]. Then, by (5) and (6)

χ(F−1(y)) =
∑
i

∫
R

sgn fi(y, · ),

and the theorem again follows from Proposition 8.

4. Proof of Theorem (general case). The proof presented in the previous sections

does not work in general since the “Fubini type” formula (7) fails for non-proper maps.

To complete the proof in the general case we use the projective compactification and the

link at infinity. We shall also need the following corollary of the theorem.

Proposition 9. Let Y ⊂ Rm be algebraic and F : Y → R×Rn be a proper polynomial

map. Then there exists a finite family of polynomials γi(y), where y ∈ Rn, such that

lim
t→0+

χ(F−1(t, y)) =
∑

sgn γi(y).

P r o o f. The proposition follows easily from the theorem and the following lemma.

Lemma 10. Let W be real algebraic and g(t, w) be a polynomial on R×W . Then there

exists a finite family of polynomials γi(w) on W such that

(9) lim
t→0+

sgn g(t, w) =
∑

sgn γi(w).

P r o o f. Let ψ(w) = limt→0+ g(t, w). We proceed by induction on dimW . Without

loss of generality we may assume that W is irreducible. We shall show that the statement

of lemma holds generically on W , that is to say, there exist a proper algebraic subset

W ′ of W and the polynomials γi such that (9) holds in the complement of W ′. Then the

lemma will follow from the inductive assumption.
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We may also assume that g does not vanish identically, and then there exists a non-

negative integer k such that g(t, w) = tkh(t, w), where h(t, w) is a polynomial which does

not vanish identically on {0} ×W . Then, in the complement of W ′ = {w | h(0, w) = 0},
ψ(w) = sgnh(0, w) as required. This ends the proof of the lemma and the proposition.

R e m a r k 11. The assumption of properness of F in Proposition 9 is not necessary.

We made it since we are going to use Proposition 9 in the proof of theorem in general

case, and it is only the proper case of theorem which has been proven till now.

LetX be a real algebraic subset of Rm and denote by X̃ the one point compactification

of X (if X is compact then X̃ = Xq{point}). Let LR = X ∩Sm−1
R , where Sm−1

R denotes

the sphere of radius R > 0 centred at the origin. We call such LR, for R sufficiently large,

the link at infinity of X, and denote by L∞(X). By an argument similar to the proof of

Lemma 4 it is easy to see that

(10) χ(X) = χ(X̃) + χ(L∞(X))− 1.

Let us recall the standard construction of X̃ as an algebraic set (we will need it below

in a parametrized case). Suppose X is given by a finite number of equations fi(x) = 0,

i = 1, . . . , s. Set h(x, xm+1) = (f2
1 (x) + . . . + f2

s (x)) + (xm+1 − 1)2, so that h−1(0) is

homeomorphic to X and h is a non-negative polynomial of degree, say, bounded by 2p.

Put x′ = (x, xm+1) ∈ Rm+1 and let H(s, x′) = (s‖x′‖)4ph(x′/(s‖x′‖)2). Then, it is easy

to see that H extends to a non-negative polynomial on R ×Rm+1 such that for s 6= 0,

X̃s = {(x′ ∈ Rm+1 | H(s, x′) = 0} is homeomorphic to the single point compactification

of X. Also Ls = {(x′ ∈ Rm+1 | H(s, x′) = 0, ‖x′‖ = 1}, for s 6= 0 and small enough, is

homeomorphic to the link at infinity of X.

Now we are ready to prove the theorem. First we assume that Y ⊂ Rn × Rm and

F is induced by the projection onto the first factor. Proceeding exactly in the same way

as above we may compactify simultaneously the fibres of F . In particular the following

statement holds.

Proposition 12. Let Y ⊂ Rn ×Rm be algebraic and F : Y → Rn be the projection

on the first factor. Then there exists a non-negative polynomial H : R×Rn×Rm+1 → R

such that for every y ∈ Rn

(i) Ỹ = {x′ ∈ Rm+1 | H(s, y, x′) = 0, s = 1} is homeomorphic to the single point

compactification of F−1(y). Moreover , the induced projection Ỹ → Rn is proper ;

(ii) {x′ ∈ Rm+1 | H(s, y, x′) = 0, ‖x′‖ = 1}, for s = s(y) 6= 0 small enough, is

homeomorphic to the link at infinity of F−1(y).

Note that identity (10) holds for every X = F−1(y). Hence to prove the theorem it

suffices to consider the families of compactifications and links at infinity of fibres F−1(y)

parametrized by y ∈ Rn. For the first one the statement holds by Proposition 12 (i)

and the proper case. For the family of links consider L ⊂ R × Rn × Rm+1 given by

H(s, y, x′) = 0, ‖x′‖ = 1. Then, clearly the projection L→ R×Rn, (s, y, x′)→ (s, y), is

proper and we apply to it Proposition 9. Now Proposition 12 (ii) gives the statement for

the family of links at infinity. This, in virtue of (10), shows the theorem.
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