EXAMPLES OF FUNCTIONS \mathcal{C}^{k}-EXTENDABLE FOR EACH k FINITE, BUT NOT \mathcal{C}^{∞}-EXTENDABLE

WIESŁAW PAWEUCKI
Instytut Matematyki, Uniwersytet Jagielloński
ul. Reymonta 4, 30-059 Kraków, Poland
E-mail: pawlucki@im.uj.edu.pl
Dedicated to Professor Stanistaw Eojasiewicz

Abstract

In Example 1, we describe a subset X of the plane and a function on X which has a \mathcal{C}^{k}-extension to the whole \mathbb{R}^{2} for each k finite, but has no \mathcal{C}^{∞}-extension to \mathbb{R}^{2}. In Example 2, we construct a similar example of a subanalytic subset of \mathbb{R}^{5}; much more sophisticated than the first one. The dimensions given here are smallest possible.

1. Introduction. Let X be any subset of \mathbb{R}^{n}. Consider the following \mathbb{R}-algebras of functions on X

$$
\mathcal{C}^{k}(X)=\left\{f: X \longrightarrow \mathbb{R} \mid f=\tilde{f} \text { on } X \text { for some } \mathcal{C}^{k} \text {-function } \tilde{f}: \mathbb{R}^{n} \longrightarrow \mathbb{R}\right\}
$$

where $k \in \mathbb{N} \cup\{\infty\}$, and

$$
\mathcal{C}^{(\infty)}(X)=\lim _{k \in \mathbb{N}} \mathcal{C}^{k}(X)=\bigcap_{k \in \mathbb{N}} \mathcal{C}^{k}(X)
$$

It is clear that $\mathcal{C}^{\infty}(X) \subset \mathcal{C}^{(\infty)}(X) \subset \mathcal{C}^{k}(X)$, with $k \in \mathbb{N}$. An interesting question of differential analysis is the following:

When $\mathcal{C}^{(\infty)}(X)=\mathcal{C}^{\infty}(X)$?
Of course, one can assume that X is closed in \mathbb{R}^{n}. The answer to the above question is affirmative in the following cases:

1) When $n=1$ (see [9]); it is not so when $n=2$ (see Example 1 below).

This research has been partially supported by the KBN grant 2 PO3A 01314.
1991 Mathematics Subject Classification: Primary 32B20. Secondary 14P10, 26B05.
Received by the editors: July 30, 1998.
The paper is in final form and no version of it will be published elsewhere.
2) When $X=\overline{\operatorname{int} X}$, because then $\mathcal{C}^{k}(X)$ is naturally isomorphic to the space $\mathcal{E}^{k}(X)$ of \mathcal{C}^{k}-Whitney fields on $X(k \in \mathbb{N} \cup \infty)$, and so

$$
\mathcal{C}^{(\infty)}(X)=\lim _{k \in \mathbb{N}} \mathcal{C}^{k}(X)=\lim _{k \in \mathbb{N}} \mathcal{E}^{k}(X)=\mathcal{E}^{\infty}(X)=\mathcal{C}^{\infty}(X)
$$

(see [8; Chap. I, §4]). Observe that the isomorphisms $\mathcal{C}^{k}(X)=\mathcal{E}^{k}(X)$, and thus $\mathcal{C}^{(\infty)}(X)=\mathcal{C}^{\infty}(X)$, occurs for more general sets than those satisfying the condition $X=\overline{\operatorname{int} X}$; e.g. for the Cantor set in \mathbb{R}.
3) When X is a semianalytic or, more generally, Nash subanalytic subset of \mathbb{R}^{n} (see [4]). The equality $\mathcal{C}^{(\infty)}(X)=\mathcal{C}^{\infty}(X)$ also holds if X is a subanalytic subset of \mathbb{R}^{n} of dimension not more than two or of pure codimension one (see [11, 4]). Bierstone and Milman ($[1,2]$) give necessary and sufficient conditions for a subanalytic subset X of \mathbb{R}^{n} to satisfy the equality $\mathcal{C}^{(\infty)}(X)=\mathcal{C}^{\infty}(X)$. In particular, it follows from their results and [4] that the construction from [10] provides examples of subanalytic subsets X of \mathbb{R}^{5} of dimension three such that $\mathcal{C}^{\infty}(X) \subsetneq \mathcal{C}^{(\infty)}(X)$. In Example 2 below, we verify this explicitly, constructing a function $f \in \mathcal{C}^{(\infty)}(X) \backslash \mathcal{C}^{\infty}(X)$.
2. Example 1. Let X denote the union of the following arcs

$$
\lambda_{i}=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq \epsilon, y=x^{i+\frac{1}{2}}\right\} \quad(i=1,2, \ldots)
$$

and of the $\operatorname{arc} \lambda_{0}=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq \epsilon, y=0\right\}$, where ϵ is a small positive real number.

We define a function $f: X \longrightarrow \mathbb{R}$ by the following formulae

$$
f(x, y)=i y-1=i x^{i+\frac{1}{2}} \quad \text { for }(x, y) \in \lambda_{i} \quad(i=1,2, \ldots)
$$

and $f(x, y)=0$ for $(x, y) \in \lambda_{0}$.
The function f is \mathcal{C}^{k}-extendable to \mathbb{R}^{2} for each $k \in \mathbb{N}$. To see this, notice that this function on λ_{i} is defined by the \mathcal{C}^{∞}-function $f(x, y)=i y-1$, and by the \mathcal{C}^{k}-function $f(x, y)=i x^{i+\frac{1}{2}}$ on each λ_{i} with $i \geq k$. Now, it is enough to glue all these \mathcal{C}^{k}-functions together, by using, for example, Whitney's extension theorem.

On the other hand, f has no \mathcal{C}^{∞}-extension to \mathbb{R}^{2}. The point is that λ_{i} is \mathcal{C}^{i} but not \mathcal{C}^{i+1}. This implies that if $h \in \mathcal{C}^{i+1}\left(\lambda_{i}\right)$, then each \mathcal{C}^{i+1}-extension $\tilde{h}: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ of h has a uniquely determined derivative $(\partial \tilde{h} / \partial y)(0,1 / i)=i$. It follows that if \tilde{h} were a \mathcal{C}^{∞}-extension of f, then $(\partial \tilde{h} / \partial y)(0,1 / i)=i$, which is a contradiction.
3. Example 2. In this section we will give an example of a subanalytic subset X of \mathbb{R}^{5} and of a function $f \in \mathcal{C}^{(\infty)}(X) \backslash \mathcal{C}^{\infty}(X)$. As for the definitions and basic properties of subanalytic sets, we refer the reader to [5], [6], [7] or [3].

Before describing the example observe that if $\varphi: G \longrightarrow H$ is an analytic mapping, where $G \subset \mathbb{R}^{m}$ and $H \subset \mathbb{R}^{n}$ are open subsets, then, for each point $y \in G, \varphi$ induces a homomorphism of the algebras of germs of analytic functions

$$
\varphi_{y}^{*}: \mathcal{O}_{H, \varphi(y)} \longrightarrow \mathcal{O}_{G, y}, \quad \varphi_{y}^{*}(g)=g \circ \varphi_{y}
$$

We will also need its completion

$$
\widehat{\varphi}_{y}^{*}: \widehat{\mathcal{O}}_{H, \varphi(y)} \longrightarrow \widehat{\mathcal{O}}_{G, y}
$$

which can be identified with the homomorphism

$$
\widehat{\varphi}_{y}^{*}: \mathbb{R}\left[\left[x_{1}, \ldots, x_{n}\right]\right] \longrightarrow \mathbb{R}\left[\left[y_{1}, \ldots, y_{m}\right]\right],
$$

defined by the formula $\widehat{\varphi}_{y}^{*}(Q)=Q \circ\left(\left(T_{y} \varphi\right)-\varphi(y)\right)$.
Then $\operatorname{ker} \varphi_{y}^{*}$ is the ideal of analytic relations among $\varphi_{1}, \ldots, \varphi_{n}$ at y, and $\operatorname{ker} \hat{\varphi}_{y}^{*}$ is the ideal of formal relations at y.

Theorem (see [10]). Let $I=(-1 / 2,1 / 2)$ and $J=I \times 0 \times 0 \subset \mathbb{R} \times \mathbb{R} \times \mathbb{R}=\mathbb{R}^{3}$. Let $A=\left\{\left(a_{\nu}, 0,0\right) \mid \nu=1,2, \ldots\right\}$ be any countable subset of J. Then there exists an analytic mapping $\varphi=\left(\varphi_{1}, \ldots, \varphi_{5}\right): I^{3} \longrightarrow \mathbb{R}^{5}$ such that
(1) $\operatorname{ker} \widehat{\varphi}_{y}^{*}=0$, whenever $y \in A$;
(2) $\operatorname{ker} \varphi_{y}^{*} \neq 0$, whenever $y \in J \backslash \bar{A}$;
(3) $\operatorname{ker} \varphi_{y}^{*}=0 \neq \operatorname{ker} \widehat{\varphi}_{y}^{*}$, whenever $y \in J \cap(\bar{A} \backslash A)$.

We are going to recall the construction of $\varphi=\varphi(u, w, t)=\left(\varphi_{1}, \ldots, \varphi_{5}\right)$.
We put $\varphi_{1}(u, w, t)=u, \varphi_{2}(u, w, t)=t, \varphi_{3}(u, w, t)=t w$. Take two sequences $\{r(n)\}$ $(n=1,2, \ldots)$ and $\{\rho(n)\}(n=1,2, \ldots)$ such that $r(n) \in \mathbb{Z}, 0<r(n) \leq r(n+1)$, $\lim \sup r(n) / n=+\infty, \rho(n) \in \mathbb{R}, 0<\rho(n) \leq n^{-n r(n)}$, for each n, and $\rho(n+1)<\rho(n)$.

Put

$$
p_{n}(u)=\left[\left(u-a_{1}\right) \ldots\left(u-a_{n}\right)\right]^{r(n)}, \quad n=1,2, \ldots
$$

We define φ_{4} by the formula

$$
\varphi_{4}(u, w, t)=t \cdot \sum_{n=1}^{\infty} p_{n}(u) w^{n}
$$

To define φ_{5} we need the following sequence of rational functions

$$
f_{n}=p_{n}^{-1}(u)\left[t^{n-1} y-\sum_{\nu=1}^{n-1} p_{\nu}(u) t^{n-\nu} x^{\nu}\right] \quad(n=1,2, \ldots)
$$

Then

$$
f_{n}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right)=t^{n} \cdot \sum_{\nu=n}^{\infty} p_{n}^{-1}(u) p_{\nu}(u) w^{\nu}
$$

and we define φ_{5} by the formula

$$
\varphi_{5}(u, w, t)=\sum_{n=1}^{\infty} \rho(n) f_{n}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}\right)=\sum_{n=1}^{\infty} \rho(n) t^{n} \cdot \sum_{\nu=n}^{\infty} p_{n}^{-1}(u) p_{\nu}(u) w^{\nu}
$$

The formula

$$
F(u, t, x, y, z)=z-\sum_{n=1}^{\infty} \rho(n) f_{n}(u, t, x, y)
$$

defines an analytic function on $(I \backslash \bar{Z}) \times \mathbb{R}^{4}$, where $Z=\left\{a_{\nu} \mid \nu=1,2, \ldots\right\}$, and $F\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, \varphi_{5}\right)=0$ on $(I \backslash \bar{Z}) \times I^{2}$.

Now we will choose A in a special way: assume that $0<a_{n+1}<a_{n}<1 / 4$ and $\lim a_{n}=0$.

Let $X=\varphi\left([-1 / 4,1 / 4]^{3}\right)$. Take a sequence $\left\{\epsilon_{n}\right\}(n=1,2, \ldots)$ such that $\epsilon_{n}>0$, $a_{n+1}+\epsilon_{n+1}<a_{n}-\epsilon_{n}$.

There are \mathcal{C}^{∞}-functions $\lambda_{n}: \mathbb{R} \longrightarrow[0,1](n=1,2, \ldots)$ such that $\lambda_{n}=1$ in a neighbourhood of $a_{n}, \lambda_{n}(u)=0$ if $\left|u-a_{n}\right| \geq \epsilon_{n}$ and $\left|\lambda_{n}^{(k)}(u)\right| \leq C_{k} \cdot \epsilon_{n}^{-k}$ for each $u \in \mathbb{R}$, where C_{k} is a constant depending only on k (see [8; Chap. I, Lemma 4.2]).

Consider the following sequence of \mathcal{C}^{∞}-functions on \mathbb{R}^{5}

$$
G_{m}(u, t, x, y, z)=\left[z-\sum_{n=1}^{m-1} \rho(n) f_{n}(u, t, x, y)\right] \cdot m \cdot \lambda_{m}(u), \quad m=1,2, \ldots
$$

Now we have

$$
\begin{aligned}
& G_{m}\left(\varphi_{1}, \ldots, \varphi_{5}\right)=\left[\varphi_{5}-\sum_{n=1}^{m-1} \rho(n) f_{n}\left(\varphi_{1}, \ldots, \varphi_{4}\right)\right] \cdot m \cdot \lambda_{m}\left(\varphi_{1}\right) \\
& \quad=\sum_{n=m}^{\infty} m \lambda_{m}(u) \rho(n) t^{n} \omega_{n}(u, w), \quad \text { where } \quad \omega_{n}(u, w)=\sum_{\nu=n}^{\infty} p_{n}^{-1} p_{\nu}(u) w^{\nu}
\end{aligned}
$$

Consider now the function

$$
h=\sum_{m=1}^{\infty} G_{m}\left(\varphi_{1}, \ldots, \varphi_{5}\right)=\sum_{m=1}^{\infty} \sum_{n=m}^{\infty} m \lambda_{m}(u) \rho(n) t^{n} \omega_{n}(u, w)
$$

It is a simple matter to check that h is a \mathcal{C}^{∞}-function on $[-1 / 4,1 / 4]^{3}$. It is easily seen that there is a function $h_{0}: X \longrightarrow \mathbb{R}$ such that $h=h_{0}\left(\varphi_{1}, \ldots, \varphi_{5}\right)$.

We will show that $h_{0} \in \mathcal{C}^{(\infty)}(X) \backslash \mathcal{C}^{\infty}(X)$. If there were a \mathcal{C}^{∞}-extension \widetilde{h}_{0} of h_{0} to \mathbb{R}^{5}, then we would have the equality $h=G_{m}\left(\varphi_{1}, \ldots, \varphi_{5}\right)$ near $\left(a_{m}, 0,0\right)$ for each m, hence, in view of $(1),\left(\partial \widetilde{h}_{0} / \partial z\right)\left(a_{m}, 0,0\right)=m$, which should tend to $\left(\partial \widetilde{h}_{0} / \partial z\right)(0,0,0)$, when m tends to infinity, a contradiction.

Now fix any $k \in \mathbb{N}$. We will show that there is a \mathcal{C}^{k}-function H_{k} on \mathbb{R}^{5} such that $H_{k}=h_{0}$ on X.

Put

$$
\Omega=\left\{(u, t, x) \in \mathbb{R}^{3}| | u|<1 / 4,|t|<1 / 4,|x|<(1 / 4)| t \mid\right\} .
$$

Observe that if $(u, t, x, y, z) \in X$ and $t \neq 0$, then

$$
h_{0}(u, t, x, y, z)=\sum_{m=1}^{k} G_{m}(u, t, x, y, z)+\sum_{m=k+1}^{\infty} \sum_{n=m}^{\infty} \sum_{\nu=n}^{\infty} \theta_{m n \nu}(u, t, x)
$$

where

$$
\theta_{m n \nu}(u, t, x)=m \lambda_{m}(u) \rho(n)\left(p_{n}^{-1} p_{\nu}(u)\right) x^{\nu} t^{n-\nu} .
$$

Let $\alpha, \beta, \gamma \in \mathbb{N}$ be such that $\alpha+\beta+\gamma \leq k$. Then $\partial^{\alpha+\beta+\gamma} \theta_{m n \nu} / \partial u^{\alpha} \partial t^{\beta} \partial x^{\gamma}$ is equal to

$$
\sum_{i=0}^{\alpha} \frac{m \alpha!}{i!(\alpha-i)!} \lambda_{m}^{(i)}(u) \rho(n)\left(p_{n}^{-1} p_{\nu}\right)^{(\alpha-i)}(u) \cdot \frac{\nu!(n-\nu)!}{(\nu-\gamma)!(n-\nu-\beta)!}(x / t)^{\nu-\gamma} t^{n-\gamma-\beta}
$$

Since $n-\gamma-\beta \geq 1$, this derivative extends continuously to $\bar{\Omega}$. Estimating the absolute value of this derivative on Ω, the reader can easily check that there is a \mathcal{C}^{k}-function \widetilde{H}_{k} on \mathbb{R}^{3} such that

$$
\widetilde{H}_{k}(u, t, x)=\sum_{m=k+1}^{\infty} \sum_{n=m}^{\infty} \sum_{\nu=n}^{\infty} \theta_{m n \nu}(u, t, x)
$$

on Ω. Thus, the formula

$$
H_{k}(u, t, x, y, z)=\widetilde{H}_{k}(u, t, x)+\sum_{m=1}^{k} G_{m}(u, t, x, y, z)
$$

defines the required extension.

References

[1] E. Bierstone, P. D. Milman, Geometric and differential properties of subanalytic sets, Bull. Amer. Math. Soc. 25 (1991), 385-383.
[2] E. Bierstone, P. D. Milman, Geometric and differential properties of subanalytic sets, preprint.
[3] E. Bierstone, P. D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5-42.
[4] E. Bierstone, P. D. Milman, W. Pawłucki, Composite differentiable functions, Duke Math. J. 83 (1996), 607-620.
[5] Z. Denkowska, S. Łojasiewicz, J. Stasica, Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Polish Acad. Sci. Math. 27 (1979), 529-536.
[6] A. Gabrielov, Projections of semianalytic sets, Funkcional Anal. i Priložen. 2 no. 4 (1968), 18-30 (in Russian). English transl.: Functional Anal. Appl. 2 (1968), 282-291.
[7] H. Hironaka, Subanalytic sets, in: Number Theory, Algebraic Geometry and Commutative Algebra in Honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, 453-493.
[8] B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, Bombay, 1966.
[9] J. Merrien, Prolongateurs de fonctions différentiables d'une variable réelle, J. Math. Pures Appl. (9) 45 (1966), 291-309.
[10] W. Pawłucki, On relations among analytic functions and geometry of subanalytic sets, Bull. Polish Acad. Sci. Math. 37 (1989), 117-125.
[11] W. Pawłucki, On Gabrielov's regularity condition for analytic mappings, Duke Math. J. 65 (1992), 299-311.

