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Abstract. In Example 1, we describe a subset X of the plane and a function on X which has
a Ck-extension to the whole R2 for each k finite, but has no C∞-extension to R2. In Example 2,
we construct a similar example of a subanalytic subset of R5; much more sophisticated than the
first one. The dimensions given here are smallest possible.

1. Introduction. Let X be any subset of Rn. Consider the following R-algebras of

functions on X

Ck(X) = {f : X −→ R | f = f̃ on X for some Ck-function f̃ : Rn −→ R},

where k ∈ N ∪ {∞}, and

C(∞)(X) = lim←−
k∈N
Ck(X) =

⋂
k∈N
Ck(X).

It is clear that C∞(X) ⊂ C(∞)(X) ⊂ Ck(X), with k ∈ N. An interesting question of

differential analysis is the following:

When C(∞)(X) = C∞(X) ?

Of course, one can assume that X is closed in Rn. The answer to the above question is

affirmative in the following cases:

1) When n = 1 (see [9]); it is not so when n = 2 (see Example 1 below).
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2) When X = intX, because then Ck(X) is naturally isomorphic to the space Ek(X)

of Ck-Whitney fields on X (k ∈ N ∪∞), and so

C(∞)(X) = lim←−
k∈N
Ck(X) = lim←−

k∈N
Ek(X) = E∞(X) = C∞(X),

(see [8; Chap. I, §4]). Observe that the isomorphisms Ck(X) = Ek(X), and thus

C(∞)(X) = C∞(X), occurs for more general sets than those satisfying the condition

X = intX; e.g. for the Cantor set in R.

3) When X is a semianalytic or, more generally, Nash subanalytic subset of Rn
(see [4]). The equality C(∞)(X) = C∞(X) also holds if X is a subanalytic subset of Rn
of dimension not more than two or of pure codimension one (see [11, 4]). Bierstone and

Milman ([1, 2]) give necessary and sufficient conditions for a subanalytic subset X of Rn
to satisfy the equality C(∞)(X) = C∞(X). In particular, it follows from their results

and [4] that the construction from [10] provides examples of subanalytic subsets X of R5

of dimension three such that C∞(X) ( C(∞)(X). In Example 2 below, we verify this

explicitly, constructing a function f ∈ C(∞)(X) \ C∞(X).

2. Example 1. Let X denote the union of the following arcs

λi = {(x, y) ∈ R2 | 0 ≤ x ≤ ε, y = xi+
1
2 } (i = 1, 2, . . .),

and of the arc λ0 = {(x, y) ∈ R2 | 0 ≤ x ≤ ε, y = 0}, where ε is a small positive real

number.

We define a function f : X −→ R by the following formulae

f(x, y) = iy − 1 = ixi+
1
2 for (x, y) ∈ λi (i = 1, 2, . . .)

and f(x, y) = 0 for (x, y) ∈ λ0.

The function f is Ck-extendable to R2 for each k ∈ N. To see this, notice that this

function on λi is defined by the C∞-function f(x, y) = iy − 1, and by the Ck-function

f(x, y) = ixi+
1
2 on each λi with i ≥ k. Now, it is enough to glue all these Ck-functions

together, by using, for example, Whitney’s extension theorem.

On the other hand, f has no C∞-extension to R2. The point is that λi is Ci but

not Ci+1. This implies that if h ∈ Ci+1(λi), then each Ci+1-extension h̃ : R2 −→ R of

h has a uniquely determined derivative (∂h̃/∂y)(0, 1/i) = i. It follows that if h̃ were a

C∞-extension of f , then (∂h̃/∂y)(0, 1/i) = i, which is a contradiction.

3. Example 2. In this section we will give an example of a subanalytic subset X

of R5 and of a function f ∈ C(∞)(X) \ C∞(X). As for the definitions and basic properties

of subanalytic sets, we refer the reader to [5], [6], [7] or [3].

Before describing the example observe that if ϕ : G −→ H is an analytic mapping,

where G ⊂ Rm and H ⊂ Rn are open subsets, then, for each point y ∈ G, ϕ induces a

homomorphism of the algebras of germs of analytic functions

ϕ∗y : OH,ϕ(y) −→ OG,y, ϕ∗y(g) = g ◦ ϕy.

We will also need its completion

ϕ̂∗y : ÔH,ϕ(y) −→ ÔG,y
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which can be identified with the homomorphism

ϕ̂∗y : R[[x1, . . . , xn]] −→ R[[y1, . . . , ym]],

defined by the formula ϕ̂∗y(Q) = Q ◦ ((Tyϕ)− ϕ(y)).

Then kerϕ∗y is the ideal of analytic relations among ϕ1, . . . , ϕn at y, and ker ϕ̂∗y is the

ideal of formal relations at y.

Theorem (see [10]). Let I = (−1/2, 1/2) and J = I × 0× 0 ⊂ R × R × R = R3. Let

A = {(aν , 0, 0) | ν = 1, 2, . . . } be any countable subset of J . Then there exists an analytic

mapping ϕ = (ϕ1, . . . , ϕ5) : I3 −→ R5 such that

(1) ker ϕ̂∗y = 0, whenever y ∈ A;

(2) kerϕ∗y 6= 0, whenever y ∈ J \A;

(3) kerϕ∗y = 0 6= ker ϕ̂∗y, whenever y ∈ J ∩ (A \A).

We are going to recall the construction of ϕ = ϕ(u,w, t) = (ϕ1, . . . , ϕ5).

We put ϕ1(u,w, t) = u, ϕ2(u,w, t) = t, ϕ3(u,w, t) = tw. Take two sequences {r(n)}
(n = 1, 2, . . .) and {ρ(n)} (n = 1, 2, . . .) such that r(n) ∈ Z, 0 < r(n) ≤ r(n + 1),

lim sup r(n)/n = +∞, ρ(n) ∈ R, 0 < ρ(n) ≤ n−nr(n), for each n, and ρ(n+ 1) < ρ(n).

Put

pn(u) =
[
(u− a1) . . . (u− an)

]r(n)
, n = 1, 2, . . . .

We define ϕ4 by the formula

ϕ4(u,w, t) = t ·
∞∑
n=1

pn(u)wn.

To define ϕ5 we need the following sequence of rational functions

fn = p−1n (u)
[
tn−1y −

n−1∑
ν=1

pν(u)tn−νxν
]

(n = 1, 2, . . .).

Then

fn(ϕ1, ϕ2, ϕ3, ϕ4) = tn ·
∞∑
ν=n

p−1n (u)pν(u)wν ,

and we define ϕ5 by the formula

ϕ5(u,w, t) =

∞∑
n=1

ρ(n)fn(ϕ1, ϕ2, ϕ3, ϕ4) =

∞∑
n=1

ρ(n)tn ·
∞∑
ν=n

p−1n (u)pν(u)wν .

The formula

F (u, t, x, y, z) = z −
∞∑
n=1

ρ(n)fn(u, t, x, y)

defines an analytic function on (I \ Z) × R4, where Z = {aν | ν = 1, 2, . . . }, and

F (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) = 0 on (I \ Z)× I2.

Now we will choose A in a special way: assume that 0 < an+1 < an < 1/4 and

lim an = 0.

Let X = ϕ([−1/4, 1/4]3). Take a sequence {εn} (n = 1, 2, . . .) such that εn > 0,

an+1 + εn+1 < an − εn.
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There are C∞-functions λn : R −→ [0, 1] (n = 1, 2, . . .) such that λn = 1 in a

neighbourhood of an, λn(u) = 0 if |u− an| ≥ εn and |λ(k)n (u)| ≤ Ck · ε−kn for each u ∈ R,

where Ck is a constant depending only on k (see [8; Chap. I, Lemma 4.2]).

Consider the following sequence of C∞-functions on R5

Gm(u, t, x, y, z) =
[
z −

m−1∑
n=1

ρ(n)fn(u, t, x, y)
]
·m · λm(u), m = 1, 2, . . . .

Now we have

Gm(ϕ1, . . . , ϕ5) =
[
ϕ5 −

m−1∑
n=1

ρ(n)fn(ϕ1, . . . , ϕ4)
]
·m · λm(ϕ1)

=

∞∑
n=m

mλm(u)ρ(n)tnωn(u,w), where ωn(u,w) =

∞∑
ν=n

p−1n pν(u)wν .

Consider now the function

h =

∞∑
m=1

Gm(ϕ1, . . . , ϕ5) =

∞∑
m=1

∞∑
n=m

mλm(u)ρ(n)tnωn(u,w).

It is a simple matter to check that h is a C∞-function on [−1/4, 1/4]3. It is easily seen

that there is a function h0 : X −→ R such that h = h0(ϕ1, . . . , ϕ5).

We will show that h0 ∈ C(∞)(X)\C∞(X). If there were a C∞-extension h̃0 of h0 to R5,

then we would have the equality h = Gm(ϕ1, . . . , ϕ5) near (am, 0, 0) for each m, hence,

in view of (1), (∂h̃0/∂z)(am, 0, 0) = m, which should tend to (∂h̃0/∂z)(0, 0, 0), when m

tends to infinity, a contradiction.

Now fix any k ∈ N. We will show that there is a Ck-function Hk on R5 such that

Hk = h0 on X.

Put

Ω = {(u, t, x) ∈ R3
∣∣ |u| < 1/4, |t| < 1/4, |x| < (1/4)|t|}.

Observe that if (u, t, x, y, z) ∈ X and t 6= 0, then

h0(u, t, x, y, z) =

k∑
m=1

Gm(u, t, x, y, z) +

∞∑
m=k+1

∞∑
n=m

∞∑
ν=n

θmnν(u, t, x),

where

θmnν(u, t, x) = mλm(u)ρ(n)(p−1n pν(u))xνtn−ν .

Let α, β, γ ∈ N be such that α + β + γ ≤ k. Then ∂α+β+γθmnν/∂u
α∂tβ∂xγ is equal

to
α∑
i=0

mα!

i!(α− i)!
λ(i)m (u)ρ(n)(p−1n pν)

(α−i)
(u) · ν!(n− ν)!

(ν − γ)!(n− ν − β)!
(x/t)ν−γtn−γ−β .

Since n−γ−β ≥ 1, this derivative extends continuously to Ω. Estimating the absolute

value of this derivative on Ω, the reader can easily check that there is a Ck-function H̃k

on R3 such that

H̃k(u, t, x) =

∞∑
m=k+1

∞∑
n=m

∞∑
ν=n

θmnν(u, t, x)
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on Ω. Thus, the formula

Hk(u, t, x, y, z) = H̃k(u, t, x) +

k∑
m=1

Gm(u, t, x, y, z)

defines the required extension.
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Pures Appl. (9) 45 (1966), 291–309.

[10] W. Paw lucki, On relations among analytic functions and geometry of subanalytic sets,
Bull. Polish Acad. Sci. Math. 37 (1989), 117–125.

[11] W. Paw lucki, On Gabrielov’s regularity condition for analytic mappings, Duke Math. J.
65 (1992), 299–311.


