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Abstract. An effective formula for the  Lojasiewicz exponent for analytic curves in a neigh-
bourhood of 0 ∈ Cm is given.

1. The  Lojasiewicz exponent for sets. In this section we shall assume that Ω is

a neighbourhood of 0 ∈ Cm (m ≥ 2), X, Y — analytic sets in Ω and X ∩ Y = {0}.
Let

N(X,Y ) = {ν ∈ R+ : ∃A > 0, ∃B > 0, ∀z ∈ Ω, |z| < B

⇒ %(z,X) + %(z, Y ) ≥ A|z|ν},

here | · | is the polycylindric norm and %(·, Z) is the distance function to a set Z. One can

prove (see [ L1], IV.7) that under the above assumption N(X,Y ) is not empty.

By the  Lojasiewicz exponent of X, Y at 0 we mean inf N(X,Y ) and denote it by

L0(X,Y ).

One can prove

Proposition 1 ([ L2], s. 18). If X, Y satisfy the above assumptions and 0 is an

accumulation point of X, then

N(X,Y ) = {ν ∈ R+ : ∃A > 0, ∃B > 0, ∀x ∈ X, |x| < B ⇒ %(x, Y ) ≥ A|x|ν}.
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Proposition 2 ([T], Thm. 3.2). If X, Y satisfy the same assumptions as above, then

L0(X,Y ) ∈ N(X,Y ).

Estimations of L0(X,Y ) from above are known. P. Tworzewski and E. Cygan in [T]

and [CT] gave such estimations in terms of the intersection multiplicity of X and Y in

both cases: 0 is or not an isolated point of X ∩ Y .

Let us note an easy property of L0(X,Y ). Let X = X1 ∪ . . . ∪Xr, Y = Y1 ∪ . . . ∪ Ys,
where X1, . . . , Xr, Y1, . . . , Ys are analytic sets in Ω passing through 0 ∈ Cm.

Proposition 3. Under the above assumptions

L0(X,Y ) = max
k, l
L0(Xk, Yl).

2. The  Lojasiewicz exponent for mappings. Let Ω ⊂ Cn (n ≥ 2) be a neigh-

bourhood of the origin, F = (f1, . . . , fm) : Ω → Cm be a holomorphic mapping having

an isolated zero at 0 ∈ Cn. Let S be an analytic set in Ω such that 0 is an accumulation

point of S. Put

N(F |S) = {ν ∈ R+ : ∃A > 0, ∃B > 0, ∀z ∈ S, |z| < B ⇒ A|z|ν ≤ |F (z)|}.

When S = Ω we define N(F ) = N(F |Ω).

By the  Lojasiewicz exponent of F |S at 0 we mean L0(F |S) = inf N(F |S). Analogously,

L0(F ) = inf N(F ).

In the sequel for a holomorphic function g : Ω→ C we put V (g) := {z ∈ Ω : g(z) = 0}.
One can prove

Theorem 1 ([CK]). If Ω ⊂ Cn (n ≥ 2) is a neighbourhood of the origin, F =

(f1, . . . , fm) : Ω→ Cm is a holomorphic mapping having an isolated zero at 0 ∈ Cn and

f := f1 · . . . · fm, then

L0(F ) = L0(F |V (f)).

We shall now prove a theorem on the  Lojasiewicz exponent, needed in the sequel.

Let n = 2 and Ω be a neighbourhood of 0 ∈ C2, F = (f1, . . . , fm) : Ω → Cm be a

holomorphic mapping having an isolated zero at 0 ∈ C2.

Theorem 2. If f1 is a homogeneous form of degree r with r different tangent lines

and r ≤ ord fi <∞, then

L0(F ) = L0(F |V (f1)).

P r o o f. Let f1 = L1 · . . . · Lr be a factorization of f1 into linear factors. Let µ(g, h)

denote the multiplicity of a mapping (g, h) : Ω→ C2 at 0 ∈ C2. Since

L0(F |V (f1)) =
r

max
i=1
L0(F |V (Li)) =

r
max
i=1

m
min
j=2

µ(Li, fj),

then, without loss of generality, we may assume that

(1) L0(F |V (f1)) = µ(L1, fm).

Hence for each i ∈ {1, . . . , r} there exists j ∈ {1, . . . ,m} such that

(2) µ(Li, fj) ≤ µ(L1, fm).
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By Theorem 1 we have

(3) L0(F ) = L0(F |V (f)).

Let O2 be the ring of germs of holomorphic functions at 0 ∈ C2, h : Ω → C — a

holomorphic function and ĥ ∈ O2 — the germ generated by h. Assume that ĥ is an

arbitrary irreducible germ dividing f̂ . It is easy to check that

(4) L0(F |V (f)) = max
h
L0(F |V (h)).

It follows from (1), (3) and (4) that it suffices to show that

(5) L0(F |V (h)) ≤ µ(L1, fm).

Assume to the contrary that (5) does not hold for some h. In the sequel ordh means

the order of h at 0 ∈ C2. Since

L0(F |V (h)) = (1/ ordh)
m

min
k=1

µ(fk, h),

then for every k ∈ {1, . . . ,m} we have

(6) µ(L1, fm) < µ(fk, h)/ ordh.

If the curve V (h) has no common tangent line with the curve V (f1) at 0, then

µ(f1, h)/ ordh = r ≤ µ(L1, fm),

which contradicts (6).

So, assume that the line Li = 0 is tangent to V (h) at 0. Then, there exists j ∈
{1, . . . ,m} such that (2) holds. If Li = 0 is not tangent to V (fj) at 0, then

µ(h, fj)/ ordh = ord fj = µ(Li, fj) ≤ µ(L1, fm),

which contradicts (6). If Li = 0 is tangent to V (fj) at 0, we put s := µ(Li, fj). Then

we have r ≤ rj := ord fj < s. Since the considerations are local, then shrinking Ω, if

necessary, we may assume that fj =
∑∞
ν=rj

Pν , where Pν is a homogeneous polynomial

of degree ν. Let f∗j :=
∑∞
ν=s Pν . Take arbitrary ν ∈ {rj , . . . , s − 1}. Then from the

assumption that f1 has r different tangent lines we have

µ(Pν , h) ≥ µ(Li, h) + (ν − 1) ordh ≥ µ(Li, h) + (r − 1) ordh = µ(f1, h).

Hence

(7) µ(fj − f∗j , h) ≥ µ(f1, h).

On the other hand, from (2) and (6) for k = 1 we have

µ(f∗j , h) = s ordh = µ(Li, fj) ordh ≤ µ(L1, fm) ordh < µ(f1, h).

Hence and from (7)

µ(fj , h) = µ(f∗j , h) ≤ µ(L1, fm) ordh,

which contradicts (6).

This ends the proof.
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3. Main results. In this section we shall give an effective formula for the  Lojasiewicz

exponent for analytic curves (Theorems 3 and 4).

Let, in the sequel, Ω be a neighbourhood of 0 ∈ Cm (m ≥ 2), X, Y — analytic curves

in Ω (i.e. analytic sets of pure dimension 1) and X ∩ Y = {0}. Since the considerations

are local, we may assume that X = X1 ∪ . . . ∪Xr, Y = Y1 ∪ . . . ∪ Ys, where Xi, Yj are

analytic curves in Ω generating irreducible germs at 0. Hence and from Proposition 3 it

follows that the problem of finding the  Lojasiewicz exponent for X, Y reduces to the case

when X and Y generate irreducible germs at 0.

Let now Z be an analytic curve in Ω generating an irreducible germ at 0. Then Z

has only one tangent at 0. Without loss of generality, changing the coordinates linearly

in Cn, if necessary, we may assume that this tangent does not lie in the hyperplane

H1 := {(z1, . . . , zm) ∈ Cm : z1 = 0}. Shrinking Ω, we may equivalently express this

situation in terms of a holomorphic description of Z. Namely, by the second version of

the Puiseux theorem ([ L1], II.6.2) we get easily

Proposition 4. A curve Z generates an irreducible germ at 0 and has the tangent

not lying in H1 if and only if in a neighbourhood Ω′ ⊂ Ω, Z can be represented in the

form

Z ∩ Ω′ = {(tr, λ2(t), . . . , λm(t)) : t ∈W},

where r is a positive integer , W — a neighbourhood of 0 in C, λj — holomorphic functions

in W such that ordλj ≥ r for j = 2, . . . ,m.

If the above mapping W 3 t 7→ (tr, λ2(t), . . . , λm(t)) ∈ Z ∩ Ω′ is a homeomorphism

we shall call this mapping a parametrization of Z ∩ Ω′.

Now, we shall give a formula for L0(X,Y ) in terms of holomorphic descriptions of X

and Y . The assumptions, under which the formula will be obtained, are not restrictive.

It follows from both Proposition 4 and its precedent considerations.

First, we fix some standard notations. Let λ = (λ2, . . . , λm), ϕ = (ϕ2, . . . , ϕm),

ψ = (ψ2 . . . , ψm) be holomorphic mappings in a neighbourhood of 0 ∈ C. Then we define

ordλ := minmi=2 ordλi and ϕ− ψ := (ϕ2 − ψ2, . . . , ϕm − ψm).

Let Ω be a neighbourhood of 0 ∈ Cm (m ≥ 2) and X, Y — analytic curves in Ω.

Theorem 3. If X = {(tp, ϕ(t)) : t ∈ U}, Y = {(tq, ψ(t)) : t ∈ V }, where p, q

are positive integers, U , V — neighbourhoods of 0 in C, ϕ, ψ — holomorphic mappings

satisfying ordϕ ≥ p, ordψ ≥ q and X ∩ Y = {0}, then

L0(X,Y ) = (1/pq)
q

max
i=1

ord
(
ϕ(tq)− ψ(ηitp)

)
(8)

= (1/pq)
p

max
i=1

ord
(
ψ(tp)− ϕ(εitq)

)
,

where η, ε mean primitive roots of unity of degree q and p, respectively.

P r o o f. By the symmetry of X and Y it suffices to prove the first formula in (8).

Denote by ν the right hand side of the first equality in (8). For simplicity, we may assume

that

(9) ν = (1/pq) ord(ϕ(tq)− ψ(tp)).
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Put d := pq. From the assumptions and (9) we get that there exist constants C1, D1,

D2, r > 0 such that for |t| < r

(10) tq ∈ U, tp ∈ U ∩ V,
(11) C1|t|d ≤ |(td, ϕ(tq))| ≤ D1|t|d,
(12) |ϕ(tq)− ψ(tp)| ≤ D2|t|νd.

Let P (δ) := {z ∈ Cm : |z| < δ}. Take additionally δ > 0 such that P (2δ) ⊂ Ω and

2δ < rd.

Since 0 ∈ Cm is an accumulation point of X, then by Proposition 1 it suffices for

x ∈ X ∩ P (δ) to estimate %(x, Y ) from above and from below by |x|ν .

Let U∗ := {t ∈ C : tq ∈ U} and V ∗ := {t ∈ C : tp ∈ V }.
First, we estimate %(x, Y ) from above for x ∈ X ∩P (δ). Let x = (td, ϕ(tq)). From the

definition of infimum and (10), (11), (12) we have

(13)
%(x, Y ) = inf

τ∈V ∗
|(td − τd, ϕ(tq)− ψ(τp))|

≤ |(0, ϕ(tq)− ψ(tp))| ≤ D2|t|νd ≤ D|x|ν ,

where D := D2/C
ν
1 .

Consider the mapping F : U∗ × V ∗ 3 (t, τ) 7→ (td − τd, ϕ(tq) − ψ(τp)) ∈ Cm. The

mapping has an isolated zero at 0 ∈ C2. From the definition of the  Lojasiewicz exponent,

diminishing r if necessary, we have that there exists C2 > 0 such that for |(t, τ)| < r

(14) |F (t, τ)| ≥ C2|(t, τ)|L0(F ).

Let us calculate L0(F ). It is easy to check that F satisfies the assumption of Theorem 2.

Then L0(F ) = L0(F |Γ1), where Γ1 := {(t, τ) ∈ U∗ × V ∗ : td − τd = 0}. Hence and from

the simple fact that

L0(F |Γ1) =
d

max
i=1
L0(F |Γ1i),

where Γ1i := {(t, τ) ∈ U∗ × V ∗ : τ = θit} and θ is a primitive root of unity of degree d,

we get

(15) L0(F ) =
d

max
i=1

ord
(
ϕ(tq)− ψ((θit)p)

)
.

We easily check that {θip : 1 ≤ i ≤ d} = {ηi : 1 ≤ i ≤ q}. Hence

(16)
d

max
i=1

ord
(
ϕ(tq)− ψ((θit)p)

)
=

q

max
i=1

ord
(
ϕ(tq)− ψ(ηitp)

)
.

From (15), (16) and the definition of ν we get

L0(F ) =
q

max
i=1

ord
(
ϕ(tq)− ψ(ηitp)

)
= dν.

Hence and from (14) for |(t, τ)| < r we get

(17) |F (t, τ)| ≥ C2|t|dν .

Now, we estimate %(x, Y ) from below for x ∈ X ∩ P (δ). Since P (2δ) ⊂ Ω, then there

exists y0 ∈ Y ∩ P (2δ) such that %(x, Y ) = %(x, y0). Let x = (td, ϕ(tq)), y0 = (τd0 , ψ(τp0 )).
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Since for x ∈ P (δ), |t| < δ1/d < r and for y0 ∈ P (2δ), |τ0| < (2δ)1/d < r, then from (17)

and (11) we get

(18) %(x, Y ) = %(x, y0) = |F (t, τ0)| ≥ C2|t|dν ≥ C|x|ν ,

where C := C2/D
ν
1 .

Summing up, from (13) and (18) for x ∈ X ∩ P (δ) we obtain

C|x|ν ≤ %(x, Y ) ≤ D|x|ν ,

which gives that L0(X,Y ) = ν.

This ends the proof.

We shall now give a second formula for L0(X,Y ) in terms of the first version of the

Puiseux Theorem ([ L1], II.6.1) in the two-dimensional case.

First we give a simple lemma. Let Ω be a neighbourhood of 0 ∈ C2, h : Ω → C a

distinguished pseudopolynomial in y of degree r and Z := V (h). Assume additionally

that ĥ ∈ O2 is irreducible and that W 3 t 7→ (tr, λ(t)) ∈ Ω is a parametrization of Z.

Lemma 1. If there exist a positive integer D, a disc ∆ = {t ∈ C : |t| < δ} and

functions γ1, . . . , γr — holomorphic in ∆, such that {t ∈ C : |t| < δD/r} ⊂ W and

h(tD, y) =
∏r
i=1(y − γi(t)), then

(a) r|D,

(b) after an appropriate renumbering of γi we have γi(t) = λ(εitD/r) in ∆ where ε is

a primitive root of unity of degree r.

P r o o f. Let Φ(t) :=(tr, λ(t)) and Ψi(t) :=(tD, γi(t)). Put δi : ∆3 t 7→Φ−1◦Ψi(t) ∈W .

The function δi is continuous and [δi(t)]
r = tD in ∆. Hence it is a branch of r-th root

of tD in ∆ \ {0}, so, it is holomorphic in ∆. Hence we easily get that r|D and there

exists j that γi(t) = λ(εjtD/r) for t ∈ ∆. Since h is an irreducible polynomial, then γi
are different. Hence by a renumbering we get γi(t) = λ(εitD/r) for t ∈ ∆. This ends the

proof of the lemma.

Let us return to the announced theorem. Let Ω be a neighbourhood of 0 ∈ C2, X, Y

— analytic curves in Ω and X ∩ Y = {0}. Assume that X = V (f), Y = V (g), where f

and g are distinguished pseudopolynomials in y of degree p and q, respectively.

Theorem 4. If there exist a positive integer D and holomorphic functions α1, . . . , αp,

β1, . . . , βq in a neighbourhood of 0 ∈ C such that ordαi ≥ D, ordβi ≥ D and

(19)

f(tD, y) =

p∏
i=1

(y − αi(t)),

g(tD, y) =

q∏
j=1

(y − βj(t)),

then

(20) L0(X,Y ) = (1/D)
p

max
i=1

q

max
j=1

ord(αi − βj).
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P r o o f. By Proposition 3 we may assume that X, Y generate irreducible germs at 0.

In consequence, we may also assume that f̂ , ĝ are irreducible in O2. Let now U 3 t 7→
(tp, ϕ(t)) ∈ X, V 3 t 7→ (tq, ψ(t)) ∈ Y be parametrizations of X and Y . Let us take such

a small δ that the functions α1, . . . , αp, β1, . . . , βq are defined in ∆ := {t ∈ C : |t| < δ}
and {t ∈ C : |t| < δD/p} ⊂ U , {t ∈ C : |t| < δD/q} ⊂ V hold. Then from (19), by

Lemma 1, we get p|D, q|D and, after a renumbering,

αi(t) = ϕ(εitD/p), βj(t) = ψ(ηjtD/q) for t ∈ ∆,

where ε, η are primitive roots of unity of degree p and q, respectively. Hence we immedi-

ately obtain that ordϕ ≥ p, ordψ ≥ q and

(1/D) ord(αi − βj) = (1/pq) ord(ϕ(εitq)− ψ(ηjtp)).

Since for every i ∈ {1, . . . , p} the function {t ∈ C : εit ∈ U} 3 t 7→ (tp, ϕ(εit)) ∈ X is a

parametrization of X and ordϕ ≥ p, ordψ ≥ q, then from Theorem 3 we have

(1/D)
q

max
j=1

(
ord(αi − βj)

)
= (1/pq)

q

max
j=1

(
ord(ϕ(εitq)− ψ(ηjtp))

)
= L0(X,Y ).

Hence we get (20). This ends the proof.

R e m a r k. The assumptions in Theorem 4 are not restrictive, because for any analytic

curves X, Y in Ω, X ∩ Y = {0}, there is a linear change of coordinates in C2 such that

in these new coordinates X and Y satisfy these assumptions.

4. Concluding remarks. Let Ω be a neighbourhood of 0 ∈ Cm, X, Y ⊂ Ω analytic

curves such that X ∩ Y = {0}. Denote by C(X), C(Y ) the tangent cones at 0 to X, Y ,

respectively. From Theorem 3 we obtain

Corollary ([T], Cor. 3.4). Under the above assumptions

(a) L0(X,Y ) ≥ 1,

(b) L0(X,Y ) = 1 if and only if C(X) ∩ C(Y ) = {0}.
P r o o f. Let H1 := {(z1, . . . , zm) ∈ Cm : z1 = 0}. Without loss of generality,

at the cost of linear change of coordinates, we may assume that H1 ∩ C(X) = {0},
H1 ∩ C(Y ) = {0}. We may also assume (see Proposition 3) that X and Y generate irre-

ducible germs at 0 ∈ Cm. Then X, Y satisfy the assumptions of Theorem 3 and hence

(a) is obvious. Moreover, L0(X,Y ) = 1 if and only if ord(ϕ(tq) − ψ(tp)) = pq. But this

holds if and only if X and Y have different tangent lines at 0.

Let X, Y be as at the beginning of this section. Let µ(X,Y ) mean the intersection

multiplicity of X and Y at 0 and degX, deg Y degrees of X and Y at 0. P. Tworzewski [T]

proved that

(21) L0(X,Y ) ≤ µ(X,Y )− degX deg Y + 1.

Now we give an example for which the equality in (21) does not hold.

Example. Let X = {(x, y, z) ∈ C3 : x3 − yz = 0, y2 − xz = 0, z2 − x2y = 0},
Y = {(x, y, z) ∈ C3 : x3 − εyz = 0, y2 − εxz = 0, z2 − εx2y = 0}, where ε is a primitive

root of unity of degree 3. It is easy to show ([M], Ex. 3.2) that X and Y generate

irreducible germs at 0 ∈ C3. Moreover, C 3 t 7→ (t3, t4, t5) ∈ X, C 3 t 7→ (t3, t4, ε2t5) ∈ Y
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are their parametrizations. Obviously, degX = 3, deg Y = 3 and µ(X,Y ) = 13 (it can be

calculated directly from the definition of the multiplicity, given in [T]). Whereas, from

Theorem 3 we have

L0(X,Y ) = (1/9)
3

max
i=1

min
(

ord(t12 − εit12), ord(t15 − ε2+2it15)
)

= (1/9) max(12, 12, 15) = (5/3).
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