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Abstract. The following two homotopic notions are important in many domains of differ-
ential geometry:

— homotopic homomorphisms between principal bundles (and between other objects),
— homotopic subbundles.
They play a role, for example, in many fundamental problems of characteristic classes. It

turns out that both these notions can be — in a natural way — expressed in the language of
Lie algebroids. Moreover, the characteristic homomorphisms of principal bundles (the Chern-
Weil homomorphism [K4], or the subject of this paper, the characteristic homomorphism for
flat bundles) are invariants of Lie algebroids of these bundles. This enables one to construct the
characteristic homomorphism of a flat regular Lie algebroid, measuring the incompatibility of the
flat structure with a given subalgebroid. For two given Lie subalgebroids, these homomorphisms
are equivalent if the Lie subalgebroids are homotopic. Some new examples of applications of this
characteristic homomorphism to a transitive case (for TC-foliations) and to a non-transitive case
(for a principal bundle equipped with a partial flat connection) are pointed out (Ex. 3.1). An
example of a transitive Lie algebroid of a TC-foliation which leads to the nontrivial characteristic
homomorphism is obtained.

1. Preliminaries

1.1. Characteristic homomorphism of flat bundles. Consider

• a G-principal bundle P,

• a flat connection ω in P,

• an H-reduction P ′ ⊂ P, H being a closed Lie subgroup of G.

Let h and g be the Lie algebras of H and G, respectively. There is a characteristic
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homomorphism

∆#P,P ′,ω : H?(g, H) −→ HdR(M)

measuring the independence of ω and P ′, which means to what extent ω is not contained

in TP ′ (for details, see for example [K-T]). One of the fundamental properties of ∆#P,P ′,ω

is the independence of the choice of a homotopic subbundle P ′ :

if P ′
homotopic
≈ P ′′ ⊂ P, then ∆#P,P ′,ω = ∆#P,P ′′,ω.

This means that the nontriviality of ∆#P,P ′ implies the impossibility of the homotopic

changing of P ′ to contain the connection ω.

We recall that the domain H?(g, H), called the relative Lie algebra cohomology [K-T],

is the cohomology space of the complex (
∧

(g/h)?I , d
H),

H?(g, H) = H?(
∧

(g/h)?I , d
H)

where
∧

(g/h)?I is the space of invariant elements (with respect to the adjoint represen-

tation), whereas the differential dH is defined in such a way that, for ψ ∈
∧k

(g/h)?I and

wi ∈ g,

〈dH(ψ), [wi] ∧ . . . ∧ [wk]〉 =
∑
i<j

(−1)i+j〈ψ, [[wi, wj ]] ∧ [wi] ∧ . . .
∧
i . . .

∧
j . . . ∧ [wk]〉

([wi, wj ] is the bracket in the Lie algebra g, whereas [w] denotes the equivalence class in

g/h). The homomorphism ∆#P,P ′,ω on the level of forms ∆? :
∧

(g/h)? → Ω(M) can be

defined as follows: ∆?(ψ) for ψ ∈
∧k

(g/h)? is the only k-form for which

π′?(∆?ψ) = 1
k! · i

′?〈
∧k

s?(ψ), ω ∧ . . . ∧ ω〉,

with i′ : P ′ ↪→ P, s : g→ g/h, π′ : P ′ →M, ω ∧ . . . ∧ ω ∈ Ωk(P ;
∧k

g).

It turns out that the characteristic homomorphism of a flat bundle described above

is a notion of its Lie algebroid. A construction of its version on the category of regular

Lie algebroids is the aim of this work. A simple example of a transitive Lie algebroid

of the TC-foliation of left cosets of a nonclosed Lie subgroup in a Lie group having this

homomorphism nontrivial is given (see Chap. 8).

1.2. The category of Lie algebroids. Differential geometry has discovered many objects

which determine Lie algebroids playing a role analogous to that of Lie algebras for Lie

groups. For example: differential groupoids, principal bundles, vector bundles, actions of

Lie groups on manifolds, transversally complete foliations, nonclosed Lie subgroups, Pois-

son manifolds, some complete closed pseudogroups, etc. The category of Lie algebroids

is more elastic than the category of principal bundles. It enables one to generalize the

characteristic homomorphisms in the direction of nontransitive objects.

1.2.1. Definitions and notations. By a Lie algebroid on a manifold M [P1], [P2],

we mean a system A = (A, [[·, ·]], γ) consisting of a vector bundle A on M and mappings

[[·, ·]] : SecA×SecA→ SecA, γ : A→ TM, such that (1) (SecA, [[·, ·]]) is an R-Lie algebra,

(2) γ, called the anchor, is a homomorphism of vector bundles, (3) Sec γ : SecA→ X(M),

ξ 7→ γ ◦ ξ, is a homomorphism of Lie algebras, (4) [[ξ, f · η]] = f · [[ξ, η]] + (γ ◦ ξ)(f) · η,
f ∈ C∞(M). A Lie algebroid A is said to be transitive if γ is an epimorphism of vector
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bundles, and regular if γ is of constant rank. In the last situation, if Im γ = F ⊂ TM, then

F is an involutive distribution and A is called a regular Lie algebroid over the foliated

manifold (M,F ). In the sequel, we adopt the notions and the notations from [P1], [M1],

[K4], among them, the adjoint bundle of Lie algebras ggg := Ker γ, the Atiyah sequence

0→ ggg → A→ F → 0 and the notion of a connection.

A principal bundle P and a TC-foliation (M,E) determine transitive Lie algebroids

A(P ) [M1], [K3], [K8] and A(M,E) [MO1], respectively. A geometrically important object

consisting of a given principal bundle P on M and a foliation F on the base M of P is

a source of a nontransitive Lie algebroid A(P )F on a foliated manifold (M,F ) for which

A(P )F = γ−1[F ], γ : A(P ) → TM being the anchor of A(P ). Poisson manifolds are

sources of nontransitive Lie algebroids [C-D-W].

Theorem 1.1 [K2, Th. 1.1]. If A′ ⊂ A(P ) is a transitive Lie subalgebroid of the Lie

algebroid A(P ) of a principal bundle P = (P, π,M,G, ·), then there exists a reduction P ′

of P having A′ as its Lie algebroid.

1.2.2. The Lie algebroid of a vector bundle, representations and invariant cross-

sections. With each vector bundle f we associate a transitive Lie algebroid A(f) which is

the Lie algebroid of the principal bundle L(f) of all frames of f [M1] or of the Lie groupoid

GL(f) of all linear isomorphisms between fibres, see for example [N-V-Q], [KU], [M1].

Equivalently we can construct this Lie algebroid in such a way that the fibre A(f)|x
over x ∈M is equal to the space of all linear homomorphisms

l : Sec f −→ f|x

for which there exists a vector u ∈ TxM such that l(f · ν) = f(x) · l(ν) + u(f) · ν(x),

f ∈ C∞(M), ν ∈ Sec f (see [K4], [B]). The space of global cross-sections SecA(f) is equal

to the space of all covariant differential operators in f [M1].

By a representation of A on f (both over a manifold M) we mean a strong homo-

morphism of regular Lie algebroids T : A → A(f) [M1]. For a cross-section ξ ∈ SecA,

its image T ◦ ξ is a cross-section of A(f), therefore it determines a covariant differential

operator LT◦ξ: Sec f→ Sec f. A cross-section ν ∈ Sec f is called T -invariant if LT◦ξ(ν) = 0

for all ξ ∈ SecA. The space of all T -invariant cross-sections of f is denoted by (Sec f)I0(T )

or, briefly, by (Sec f)I0 .

Example 1.2. (1) The adjoint representation adA : A → A(ggg) of A on its adjoint

bundle of Lie algebras ggg is defined in such a way that for ξ ∈ SecA,

LadA ◦ξ(ν) = [[ξ, ν]], ν ∈ Secggg.

(2) A given representation T : A→ A(f) yields the representations on the associated

vector bundles f?,
∧k

f,
∨k

f, etc. [K4], denoted also by T .

In the context of transitive Lie algebroids, we have two fundamental facts:

• Two cross-sections of f invariant with respect to a representation T of A on f, equal

at one point, must be equal globally [M1], [K9]. (Remark: therefore, for a regular Lie

algebroid over a foliated manifold (M,F ) these cross-sections are equal on the whole leaf

of the foliation F, passing through this point.)
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• Th. IV.1.19 of [M1, p.195] gives the homotopic description of the space (Sec f)Io(M)

of all invariant cross-sections with respect to a representation of a transitive Lie algebroid.

1.2.3. The Chern-Weil homomorphism. In [K4] the Chern-Weil homomorphism dA :

IA → HF (M) of a regular Lie algebroid A over (M,F ) is constructed, whose domain IA
is the algebra of adA-invariant cross-sections of

∨k
ggg?, k ∈ N. For an integrable Lie alge-

broid A = A(P ), P being a connected principal bundle (the structure Lie group G may be

disconnected!), this algebra is isomorphic to the space of invariant polynomials (
∨

g?)I .

Note that this holds although in the Lie algebroid A(P ) there is no direct information

about the structure Lie group of P which may be disconnected and that a Lie algebroid

is — in some sense — a simpler structure than a principal bundle (nonisomorphic prin-

cipal bundles can possess isomorphic Lie algebroids, see [K3]). The case A = A(P )F is

considered in [K6]. Here, IA contains elements of the form
∑
f i · Γi, f i being F -basic

functions and Γi ∈ IA(P ), i.e. contains the subalgebra Fb(M,F ) ·IA(P ). In [K6] there is an

example of P and F for which in the domain IA(P )F there are elements not belonging to

Fb(M,F ) · IA(P ), called singular. For the principal bundle P of frames of a vector bundle

f and any foliation F on the base M, the restriction hA(P )F to Fb(M,F ) · IA(P ) agrees

with the construction of Moore-Schochet [M-S] of the characteristic homomorphism of a

vector bundle f over a foliated manifold. Therefore hA(P )F can be subtler than the one

constructed in [M-S].

For the Lie algebroid A(G;H) over G/H̄ of the TC-foliation of left cosets of a non-

closed Lie subgroup H in a connected Lie group G [K4], the domain IA(G;H) of its

Chern-Weil homomorphism is isomorphic to
∨

(h̄/h)?, h, h̄ being the Lie algebras of

H and its closure H̄. For any connected, compact and semisimple Lie group G, we

have that h2
A(G;H) : (h̄/h)? → H2(G/H̄) is a monomorphism; assuming (in addition)

the simple connectedness of G, we obtain — according to the Almeida-Molino theorem

[A-M] — a nonintegrable transitive Lie algebroid having the nontrivial Chern-Weil homo-

morphism.

1.2.4. Invariant cross-sections over R × M . In [K4, Defs.1.1.5 and 2.3.1] there are

notions of the inverse-image of a regular Lie algebroid f∧A and the inverse-image of a

representation f?T via a morphism of foliated manifolds f : (M ′, E′) → (M,E), where

A is any regular Lie algebroid over (M,E).

According to [K4, Th.2.4.4], the linear mapping f? : Sec f → Sec f?f, ν 7→ ν ◦ f, can

be restricted to the space of cross-sections invariant under T and f?T, respectively:

f?I0 : (Sec f)I0(T ) −→ (Sec f?f)I0(f?T ).

The following theorem plays a crucial role in all problems of the homotopic indepen-

dence of the characteristic homomorphisms considered on the category of Lie algebroids.

Theorem 1.3 (on invariant cross-sections over R×M , [K9]). Let B be a regular Lie

algebroid over the foliated manifold (R×M,TR×E) and f a vector bundle over R×M ,

and T : A→ A(f) a given representation. Take t ∈ R and the mapping ft : M → R×M,

x 7→ (t, x). Then the restriction mapping f?t : Sec f → Sec f|{t}×M (f|{t}×M ∼= f?t f) maps

isomorphically the space of invariant cross-sections with respect to T onto the space of
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invariant cross-sections with respect to the restricted representation f?t T :

(f?t )I0 : (Sec f)I0(T )

∼=−→ (Sec f|{t}×M )I0(f?
t T ).

1.2.5. Cohomology with coefficients. Let A and f be a Lie algebroid and a vector

bundle, both over the same manifold, say M . Each element of

ΩA(M ; f) =
⊕
q≥0

ΩqA(M ; f),

where ΩqA(M ; f) = Sec(
∧q

A? ⊗ f), will be called an A-differential form of degree q, with

values in f; while, for the trivial vector bundle f = M ×R, briefly: an A-differential form

of degree q (or a real form). In the case A = TM (the usual differential forms on M), the

space of A-differential forms with values in f (analogously, the space of real forms) will

be denoted by Ω(M ; f) (Ω(M), respectively). For an involutive C∞ constant dimensional

distribution E on M , ΩE(M ; f) consists of the so-called tangential differential forms on

the foliated manifold (M,E) [M-S], [K4].

ΩA(M ; f) is a graded module over Ω0(M) = C∞(M) and a module over the algebra

ΩA(M) of real forms.

Let f1, . . . , fk, f be vector bundles over M . An arbitrary k-linear homomorphism of

vector bundles ϕ : f1 × . . .× fk → f determines the mapping

ϕ? : ΩA(M ; f1)× . . .× ΩA(M ; fk) −→ ΩA(M ; f)

defined by the standard formula

ϕ?(Ψ1, . . . ,Ψk)(ξ1, . . . , ξm) (1.1)

=
1

q1! · . . . · qk!
·
∑
σ

sgnσ · ϕ(Ψ1(ξσ(1), . . . ), . . . ,Ψk(. . . , ξσ(m)))

in which m =
∑
qi, qi = the degree of Ψi.

For a given representation T : A→ A(f) of a Lie algebroid A on a vector bundle f, we

have three operators ([MR], [K1], [M1])

ιξ, ΘT
ξ , d

T : ΩA(M ; f) −→ ΩA(M ; f), ξ ∈ SecA,

called the substitution operator, the Lie derivative (with respect to ξ), and the exterior

derivative.

For real forms — considering the trivial representation T : A→ A(M × R) = TM ×
End(R) defined by LT◦ξ(f) = (γ ◦ ξ)(f) for f ∈ Ω0(M) and ξ ∈ SecA or, equivalently, by

T (v) = (γ(v), 0)) — the operator dT will be denoted by dA. In particular, if A = E ⊂ TM
is an involutive constant rank distribution on M, we obtain the standard operator of the

exterior derivative dE of tangential differential forms [M-S].

For arbitrary vector bundles f1, . . . , fk, f over M and a k-linear homomorphism ϕ :

f1 × . . .× fk → f and forms Ψj ∈ Ω
qj
A (M ; fj), we have

ιξ(ϕ?(Ψ1, . . . ,Ψk)) =

k∑
j=1

(−1)q1+···+qj−1ϕ?(Ψ1, . . . , ιξΨj , . . . ,Ψk). (1.2)

Let now T 1, . . . , T k, T denote fixed representations of A on f1, . . . , fk, f, respectively, and

assume that ϕ is Hom-invariant where Hom denotes the induced representation on the
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space of k-linear homomorphisms Homk(T 1, . . . , T k;T ) defined by the formula

LHom ◦ξ(ϕ)(ν1, . . . , νk) = LT◦ξ(ϕ(ν1, . . . , νk))−
∑
i

ϕ(ν1, . . . ,LT i◦ξν
i, . . . , νk).

Then

dT (ϕ?(Ψ1, . . . ,Ψk)) =

k∑
j=1

(−1)q1+···+qj−1ϕ?(Ψ1, . . . , d
T j

Ψj , . . . ,Ψk). (1.3)

A form Ψ ∈ ΩA(M ; f) is called a horizontal form if ινΨ = 0 for all ν ∈ Secggg. The

space of horizontal forms is denoted by ΩA,i(M ; f). According to (1.2) ΩA,i(M ; f) is a

module over the algebra of real horizontal forms ΩA,i(M). ΩA,i(M) is stable under dA.

2. Homomorphisms ω∧ and Ω∨. Let A = (A, [[·, ·]], γ) be an arbitrary regular Lie

algebroid over a foliated manifold (M,E), and λ : E → A any connection in A, i.e. any

splitting of its Atiyah sequence [K4]:

0 ggg-
�� -A E-

γ
0.-�

λ

The linear homomorphism of graded vector spaces γ? : ΩE(M ; f) → ΩA(M ; f) defined

by the formula γ?(θ)(x; . . . , vi, . . . ) = θ(x; . . . , γvi, . . . ), vi ∈ A|x, maps isomorphically

ΩE(M ; f) onto the space of horizontal forms ΩA,i(M ; f). The inverse mapping is λ? :

ΩA,i(M ; f) → ΩE(M ; f) defined by λ?(Ψ)(x; . . . , wi, . . . ) = Ψ(x; . . . , λwi, . . . ), wi ∈ E|x.
For the trivial vector bundle f = M×R, one can easily obtain the equality dE = λ?◦dA◦γ?
which is equivalent to

γ? ◦ dE = dA ◦ γ?. (2.1)

Let ω : A→ ggg be the connection form of λ. The mapping H = idA−ω : A→ A is the

horizontal projection of vectors from A. It determines the horizontal projection of forms

H? : ΩA(M ; f) → ΩA(M ; f) by H?(Ψ)(x; . . . , vi, . . . ) = Ψ(x; . . . ,Hvi, . . . ). In [K4] the

curvature tensor Ωb ∈ Ω2
E(M ;ggg) of λ is defined by Ωb(X1, X2) = −ω([[λ ◦ X1, λ ◦ X2]]),

Xi ∈ SecE. We define the so-called curvature form of λ as a horizontal 2-form Ω on the

Lie algebroid A, with values in ggg, by the formula

Ω(ξ1, ξ2) = −ω([[H ◦ ξ1, H ◦ ξ2]]), ξi ∈ SecA.

Below, the exterior derivative of forms on the Lie algebroid A, with values in ggg, [also in

the associated vector bundles] with respect to the adjoint representation adA : A→ A(ggg)

[or induced ones] will be briefly denoted by dggg.

Proposition 2.1 (The Maurer-Cartan equation).

Ω = dgggω − 1
2 [ω, ω].

(The form [ω, ω] is defined via (1.1) for the 2-linear homomorphism [·, ·] : ggg × ggg → ggg where

[·, ·]|x : ggg|x × ggg|x → ggg|x is the Lie algebra structure of the isotropy Lie algebra ggg|x.)

(Remark: The difference here, in comparison with the classical formula for principal

bundles — the sign ”−” before the second component — has its roots in the fact that the
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Lie algebra of the structure Lie group in the principal bundle considered there is taken

left, not right.)

P r o o f. Clearly, it is sufficient to notice that ινΩ = 0 = ιν(dgggω − 1
2 [ω, ω]), ν ∈ Secggg,

and H?(Ω) = H?(d
gggω − 1

2 [ω, ω]).

2.1. Homomorphism. For each point x ∈M, the mapping

ρ : ggg?|x −→ A?|x =
∧1

A?|x ⊂
∧
A?|x, w

? 7−→ w? ◦ ω|x,

is linear and has the property ρ(w?) ∧ ρ(w?) = 0 for w? ∈ ggg?|x.
∧
A?|x is an associative

algebra with unit element, therefore, by the universal property of the exterior algebra∧
A?|x, see [G, p.103], we obtain the existence and uniqueness of a homomorphism of

algebras of degree 0,

ω∧x :
∧
ggg?|x −→

∧
A?|x,

extending ρ and such that ω∧x (1) = 1. Using the canonical duality between the exterior

algebra over a vector space and over its dual [G, p.104] we have that

〈ω∧x (ψ), w1 ∧ . . . ∧ wk〉 = 〈ψ, ω(x;w1) ∧ . . . ∧ ω(x;wk)〉

for ψ ∈
∧k

ggg?|x and wi ∈ A|x. We notice that if Ψ ∈ Sec
∧k

ggg?, then

ω∧(Ψ) : M −→
∧k

A?, x 7−→ ω∧x (Ψ(x)),

is a C∞ cross-section of
∧k

A?, i.e. ω∧(Ψ) ∈ ΩkA(M). Of course

ω∧ :
⊕
k≥0

Sec
∧k

ggg? −→ ΩA(M), Ψ 7−→ ω∧(Ψ),

is a homomorphism of algebras where the space
⊕

k≥0 Sec
∧k

ggg? is equipped with the

structure (Ψ1,Ψ2) 7→ Ψ1 ∧ Ψ2 for which Ψ1 ∧ Ψ2 is defined pointwise. Define a C∞

2-linear homomorphism of vector bundles 〈·, ·〉 :
∧k

ggg? ×
∧k

ggg → R via the family of the

canonical dualities 〈·, ·〉x :
∧k

ggg?|x ×
∧k

ggg|x → R. Looking at formula (1.1) and treating

Ψ ∈ Sec
∧k

ggg? as a 0-form on A, with values in
∧k

ggg?, we can easily show

ω∧(Ψ) =
1

k!
〈Ψ, ω ∧ . . . ∧ ω︸ ︷︷ ︸

k times

〉, (2.2)

where ω ∧ . . . ∧ ω is defined by formula (1.1) for the k-linear homomorphism

∧ : ggg × . . .× ggg −→
∧k

ggg,

whereas 〈Ψ, ω ∧ . . . ∧ ω〉 — for the duality 〈·, ·〉. In view of (1.2) and of (2.2) above, we

have

ιν(ω∧(Ψ)) = ω∧(ιν(Ψ)), if ν ∈ Secggg. (2.3)

2.2. Homomorphism Ω∨. Let Ω ∈ Ω2
A(M ;ggg) be the curvature form of the connection

λ under consideration. For each point x ∈M, the mapping

µ : ggg?|x −→
∧2

A?|x ⊂
∧ev

A?|x, w? 7−→ w? ◦ Ω|x,

is linear and has the property µ(u?)∧µ(w?) = µ(w?)∧µ(u?) for u?, w? ∈ ggg?|x.
∧ev

A?|x is

an associative algebra with unit element, therefore, by the universal symmetric algebra
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property of
∨
ggg?|x [G, p.192], there exists a unique homomorphism of algebras of degree 0

Ω∨x :
∨
ggg?|x −→

∧ev
A?|x

extending µ and such that Ω∨x (1) = 1. Via the canonical dualities [G, pp.104, 193], the

homomorphism Ω∨x is defined by the formula

〈Ω∨x (Γx), w1 ∧ . . . ∧ w2k〉 (2.4)

=
1

k!
· 1

2k
·
∑
σ

sgnσ · 〈Γ,Ω(x;wσ(1) ∧ wσ(2)) ∨ . . . ∨ Ω(x;wσ(2k−1) ∧ wσ(2k))〉

for Γx ∈
∨k

ggg?|x and wi ∈ A|x. Indeed, in view of the linearity with respect to Γx of

both sides of the above equality, it is sufficient to check it on the simple tensors Γx =

w?1 ∨ . . . ∨ w?k, w?i ∈ ggg?|x.

〈Ω∨x (w?1 ∨ . . . ∨ w?k), w1 ∧ . . . ∧ w2k〉
= 〈Ω∨x (w?1) ∧ . . . ∧ Ω∨x (w?k), w1 ∧ . . . ∧ w2k〉

=
1

2k
·
∑
σ

sgnσ · w?1(Ω(x;wσ(1) ∧ wσ(2))) · . . . · w?k(Ω(x;wσ(2k−1) ∧ wσ(2k)))

=
1

k!
· 1

2k
·
∑
σ

sgnσ ·
∑
τ

w?1(Ω(x;wσ(2·τ(1)−1) ∧ wσ(2·τ(1)))) · . . .

. . . · w?k(Ω(x;wσ(2·τ(k)−1) ∧ wσ(2·τ(k))))

=
1

k!
· 1

2k
·
∑
σ

sgnσ · perm[〈w?i ,Ω(x;wσ(2j−1) ∧ wσ(2j))〉; i, j ≤ k]

=
1

k!
· 1

2k
·
∑
σ

sgnσ · 〈w?1 ∨ . . . ∨ w?k,Ω(x;wσ(1) ∧ wσ(2)) ∨ . . .

. . . ∨ Ω(x;wσ(2k−1) ∧ wσ(2k))〉.

Applying (2.4), we see that, for Γ ∈ Sec
∨k

ggg?, the cross-section Ω∨(Γ) of
∧2k

A?

defined by x 7→ Ω∨x (Γ(x)) is C∞, i.e. Ω∨(Γ) ∈ Ω2k
A (M). The space

⊕
k≥0 Sec

∨k
ggg? forms

an algebra in a standard way, and the mapping

Ω∨ :
⊕
k≥0

Sec
∨k

ggg? −→ Ωev
A (M), Γ 7−→ Ω∨(Γ),

is a homomorphism of algebras. By simple calculations, we obtain

Ω∨(Γ) =
1

k!
· 〈Γ,Ω ∨ . . . ∨ Ω︸ ︷︷ ︸

k times

〉 for Γ ∈ Sec
∨k

ggg?

(the forms Ω ∨ . . . ∨ Ω and 〈Γ,Ω ∨ . . . ∨ Ω〉 are defined by (1.1) for suitable multilinear

homomorphisms).

It is well known that, in the vector space
∧
ggg?|x, the classical Chevalley-Eilenberg

differential works, see, for example, [G-H-V, Vol.III, p.107]. For our purpose, we must

slightly modify it by multiplying it by −1 (cf. Remark next to Prop.2.1), i.e. we adopt
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the following differential:

δx :
∧
ggg?|x −→

∧
ggg?|x (2.5)

〈δx(ψ), w0 ∧ . . . ∧ wk〉 = −
∑
i<j

(−1)i+j〈ψ, [wi, wj ] ∧ . . .
∧
i . . .

∧
j . . . ∧ wk〉

for ψ ∈
∧k

ggg?|x (k ≥ 1), wi ∈ ggg|x, and δxψ = 0 for ψ ∈
∧0

ggg?|x. δx is an antiderivation of

degree +1 and, for an arbitrary k ≥ 0, the induced homomorphism of vector bundles

δk :
∧k

ggg? −→
∧k+1

ggg?

is, obviously, C∞.

Applying the Maurer-Cartan equation, we get for w? ∈ Secggg?

Ω∨(w?) = 〈w?, dgggω〉 − ω∧(δ(w?)). (2.6)

Define the mapping

K :
⊕
k≥0

Sec
∧k

ggg? −→ ΩA(M)

by the formula

K(Ψ) =
1

k!
· 〈Ψ, dggg(ω ∧ . . . ∧ ω︸ ︷︷ ︸

k times

)〉 − ω∧(δΨ) for Ψ ∈ Sec
∧k

ggg?. (2.7)

Of course, by (2.6),

K(w?) = Ω∨(w?) if w? ∈ Secggg?. (2.8)

Proposition 2.2. The fundamental formulae for K:

(1) K(w?1 ∧ . . . ∧ w?k) =
∑k
s=1(−1)s−1K(w?s) ∧ ω∧(w?1 ∧ . . .

∧
s . . . ∧ w?k)

for w?s ∈ Secggg?.

(2) K(Ψ) = dA(ω∧(Ψ))− ω∧(δΨ)− 1
k! · 〈d

gggΨ, ω ∧ . . . ∧ ω︸ ︷︷ ︸
k times

〉 for Ψ ∈ Sec
∧k

ggg?.

P r o o f. (1): Applying (1.3), we get

K(w?1 ∧ . . . ∧ w?k)

=
1

(k − 1)!
· 〈w?1 ∧ . . . ∧ w?k, (dgggω) ∧ ω ∧ . . . ∧ ω〉

−
k∑
s=1

(−1)s−1ω∧(δw?s) ∧ ω∧(w?1 ∧ . . .
∧
s . . . ∧ w?k).

On the other hand,

k∑
s=1

(−1)s−1K(w?s) ∧ ω∧(w?1 ∧ . . .
∧
s . . . ∧ w?k)

=

k∑
s=1

(−1)s−1(〈w?s , dgggω〉 − ω∧(δw?s)) ∧ ω∧(w?1 ∧ . . .
∧
s . . . ∧ w?k),
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therefore, it is sufficient to check the equality

1

(k − 1)!
· 〈w?1 ∧ . . . ∧ w?k, (dgggω) ∧ ω ∧ . . . ∧ ω〉

=

k∑
s=1

(−1)s−1〈w?s , dgggω〉 ∧ ω∧(w?1 ∧ . . .
∧
s . . . ∧ w?k).

(2): By (1.3) (treating Ψ as a 0-form on the Lie algebroid A, with values in
∧k

ggg?),

we have dA〈Ψ, ω∧ . . .∧ω〉 = 〈dgggΨ, ω∧ . . .∧ω〉+ 〈Ψ, dggg(ω∧ . . .∧ω)〉. Therefore, by (2.2),

K(Ψ) = dA(ω∧(Ψ))− ω∧(δΨ)− 1
k! · 〈d

gggΨ, ω ∧ . . . ∧ ω〉.

Since each cross-section Ψ ∈ Sec
∧k

ggg? is locally a sum of cross-sections of the form

w?1 ∧ . . . ∧ w?k for w?s ∈ Secggg?, we get

Corollary 2.3. If the connection λ considered is flat (i.e. Ω = 0), then, according

to (2.8) and Prop. 2.2 (1), we see that K ≡ 0, which means, by (2.7) and Prop. 2.2(2),

that

ω∧(δΨ) =
1

k!
· 〈Ψ, dggg(ω ∧ . . . ∧ ω)〉

= dA(ω∧(Ψ))− 1

k!
· 〈dgggΨ, ω ∧ . . . ∧ ω〉.

Remark 1. Assume Ω = 0. If Ψ ∈ Sec
∧k

ggg? is invariant with respect to the represen-

tation adA of A on ggg (equivalently, if dgggΨ = 0 ), then dA(ω∧Ψ) = 0. Indeed, by Cor.2.3,

we have dA(ω∧Ψ) = ω∧(δΨ); but, for each point x ∈ M , the tensor Ψ(x) ∈
∧k

ggg?|x is

invariant under the canonical representation of the Lie algebra ggg|x on
∧k

ggg?|x and such

a tensor is a cycle [G-H-V, Vol.III, p.186], so (δΨ)(x) = δx(Ψx) = 0. Therefore, there

exists a homomorphism of algebras

ω# :
⊕
k≥0

(Sec
∧k

ggg?)I0 −→ ZA(M) −→ HA(M), Ψ 7−→ [ω∧(Ψ)].

3. A construction of the characteristic classes of flat regular Lie algebroids.

Here we construct characteristic classes having the following property:

— the existence of nontrivial classes among them is a measure of the incompatibility

of the flat structure of a given regular Lie algebroid A (over (M,E)) with a given

subalgebroid B of A (also over (M,E)).

In the case of an integrable transitive Lie algebroid A = A(P ), P being any principal

bundle, these classes agree with the so-called characteristic classes of the flat principal

bundle P [K-T].

Consider in a given regular Lie algebroid (A, [[·, ·]], γA) over (M,E) two geometric

structures:

(1) a flat connection λ : E → A,

(2) a subalgebroid B ⊂ A over (M,E), as in the following diagram:
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0 ggg-
�� -A E-

γA
0-�

ω
�

λ

0 hhh- -�� B E-
γB

0-

6 6
j

Notice that hhh = ggg∩B (hhh := ker γB). The system (A, λ,B) will then be called an FS-regular

Lie algebroid (over (M,E)).

Example 3.1. (1) A triad (P, P ′, ω) consisting of a principal bundle P , of an H-

reduction P ′ and a flat connection in P with connection form ω determines an FS-

transitive Lie algebroid (A(P ), λ, A(P ′)) (λ corresponds to ω). For the theory of flat

principal bundles with given reductions, see [K-T].

(2) We recall that a transitive Lie algebroid A = (A, [[·, ·]], γA) on M together with an

involutive distribution F ⊂ TM give rise to the regular Lie algebroid over (M,F ) of the

form AF = γ−1
A [F ] ⊂ A, see [K4, s.1.1.3]. Consider now a triple (A,B, λ) consisting of a

transitive Lie algebroid A on M, a transitive Lie subalgebroid B of A and a partially flat

connection λ in A, over a given involutive distribution F ⊂ TM. The triple

(AF , BF , λ|F )

is an FS-regular Lie algebroid over (M,F ).

(3) Let now the system (P, P ′, ω) be given as in example (1) above with the difference

that ω is assumed to be partially flat, say, over an involutive distribution F ⊂ TM. Such

a system (named a foliated bundle) is investigated, for example, in [K-T]. It determines

the (nontransitive) FS-regular Lie algebroid (A(P )F , A(P ′)F , λ|F ), as above.

(4) Let (M,F ) be any transversally complete foliation with the basic fibration πb :

M → W. Denote by A(M,F ) its transitive Lie algebroid on W defined by P. Molino in

1977 [MO1]. Let Fb ⊂ TM be the vector bundle tangent to the basic foliation. Denote,

as usual, by L(M,F ) the space of foliate vector fields and by α : TM → Q = TM/F,

β : Q→ A(M,F ) the canonical linear homomorphisms (see [K4]). It is easy to see that:

• There is a 1-1 correspondence between transitive Lie subalgebroids

B ⊂ A(M,F )

and involutive vector subbundles B̃ ⊂ TM such that

(1) F ⊂ B̃,
(2) Fb + B̃ = TM,

(3) the Lie algebra Sec(B̃) ∩ L(M,F ) generates at each point x ∈M the entire space

B̃|x.

The correspondence B 7→ B̃ is established in such a way that

B̃|x = α−1
x [β−1

x [B|πb(x)]].

• There is a 1-1 correspondence between connections λ in A(M,F ) and distributions

C ⊂ TM such that

(a) Fb ∩ C = F,
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(b) Fb + C = TM,

(c) SecC ∩ L(M,F ) generates at each point x ∈M the entire vector space C|x.

(The correspondence: λ 7→ C := α−1[β−1[Imλ]].) Such a distribution C exists (because

every Lie algebroid has a connection) and C is involutive if and only if the corresponding

connection λ is flat. Each distribution C on M satisfying (a)÷(c) above is called an

F-connection.

For the Lie algebroid A(G;H) of the TC-foliation of left cosets of a nonclosed Lie

subgroup H in a connected Lie group G, conditions (3) and (c) above are equivalent to

(3’) and (c’) below, respectively:

(3’), (c’) B̃ (and C) is C∞ and H̄-right-invariant.

Thus, for a given TC-foliation (M,F ), the triad (A(M,F ), C, B̃) where C ⊂ TM is

an involutive distribution fulfilling (a), (b), (c) above, and B̃ ⊂ TM is an involutive

distribution fulfilling (1), (2), (3) above, yields an FS-transitive Lie algebroid. Using

the restriction A(M,F )E (to a foliation E on the basic manifold W ), we can obtain an

FS-regular Lie algebroid over (W,E).

We construct some characteristic classes of an FS-regular Lie algebroid (A, λ,B),

measuring the independence of λ and B, i.e. to what extent Imλ is not contained in B.

The construction has a number of steps.

Let sss : ggg → ggg/hhh be the canonical projection. Applying (2.3), we can easily obtain that

the form ϕ(Ψ) := ω∧(
∧k

sss? ◦ Ψ), Ψ ∈ Sec
∧k

(ggg/hhh)?, is hhh-horizontal, i.e., equivalently,

its restriction to the subalgebroid B, j?(ω∧(
∧k

sss? ◦ Ψ)), is horizontal. Therefore there

exists a form ∆Ψ ∈ ΩkE(M) such that

j?(ω∧(
∧k

sss? ◦Ψ)) = (γB)?(∆Ψ).

Notice that if λ is a connection in B (i.e. Imλ ⊂ B), then ∆Ψ = 0.

Put ∆ :
⊕

k≥0 Sec
∧k

(ggg/hhh)? → ΩE(M), Ψ 7→ ∆Ψ. The mapping ∆ is a superposition

of homomorphisms of algebras:

Sec
∧k

ggg? ΩA,hhh(M)-
ω∧

Sec
∧k

(ggg/hhh)? ΩE(M)-∆

?

ϕ

@
@
@
@
@
@
@
@
@R

ΩB,i(M)
?

(γB)?∼=

6
j?

(here ΩA,hhh(M) denotes the space of hhh-horizontal forms on A). Hence it is itself such a

homomorphism.

Directly, ∆ is defined by the formula

(∆Ψ)(x;w1 ∧ . . . ∧ wk) = 〈Ψx; [ω(x; w̃1)] ∧ . . . ∧ [ω(x; w̃k)]〉

for w̃i ∈ B|x such that γB(w̃i) = wi, wi ∈ E|x, x ∈M.
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Define a representation ad∧B,ggg : B → A(
∧k

(ggg/hhh)?) by the formula

〈Lad∧B,ggg ◦ξ(Ψ), [ν1] ∧ . . . ∧ [νk]〉

= (γB ◦ ξ)〈Ψ, [ν1] ∧ . . . ∧ [νk]〉 −
k∑
j=1

〈Ψ, [ν1] ∧ . . . ∧ [[[ξ, νj ]]] ∧ . . . ∧ [νk]〉

for Ψ ∈ Sec
∧k

(ggg/hhh)?, ξ ∈ SecB, and νj ∈ Secggg. The correctness of this definition

follows from the fact that if one of νj ’s lies in hhh, then [[ξ, νj ]] lies in hhh, too. Notice that

ad∧B,ggg =
∧k

(adB,ggg)
\ [K4, 2.1.2-3] where adB,ggg : B → A(ggg/hhh) is a representation given by

LadB,ggg ◦ξ([ν]) = [LadA ◦ξ(ν)] = [[[ξ, ν]]]

for ξ ∈ SecB and ν ∈ Secggg.

In the space
⊕

k≥0(Sec
∧k

(ggg/hhh)?)I0 of cross-sections invariant with respect to ad∧B,ggg,

we introduce a differential δ̄ of degree +1 defined as follows: for Ψ ∈ (Sec
∧k

(ggg/hhh)?)I0

and νj ∈ Secggg, we put

〈δ̄Ψ, [ν0] ∧ . . . ∧ [νk]〉 = −
∑
i<j

(−1)i+j〈Ψ, [[[νi, νj ]]] ∧ [ν0] ∧ . . .
∧
i . . .

∧
j . . . ∧ [νk]〉.

(3.1)

The correctness of this definition is obvious (by the invariance of Ψ and the equality

γB ◦ νj0 = 0).

To see the invariance of δ̄Ψ, take ξ ∈ SecB and νj ∈ Secggg. From the invariance of Ψ

we get

(γB ◦ ξ)〈δ̄Ψ, [ν0] ∧ . . . ∧ [νk]〉

= −
∑
i<j

(−1)i+j
(
〈Ψ, [[[ξ, [[νi, νj ]]]]] ∧ [ν0] ∧ . . .

∧
i . . .

∧
j . . . ∧ [νk]〉+

+
∑

s, s/∈{i,j}

〈Ψ, [[[νi, νj ]]] ∧ [ν0] ∧ . . . ∧ [[[ξ, νs]]] ∧ . . .
∧
i . . .

∧
j . . . ∧ [νk]〉

)
= −

∑
s

( ∑
s 6=i<j 6=s

(−1)i+j〈Ψ, [[[νi, νj ]]] ∧ [ν0] ∧ . . . ∧ [[[ξ, νs]]] ∧ . . .
∧
i . . .

∧
j . . . ∧ [νk]〉

+
∑
i<s

(−1)i+s〈Ψ, [[[νi, [[ξ, νs]]]]] ∧ [ν0] ∧ . . .
∧
i . . .

∧
j . . . ∧ [νk]〉+

+
∑
s<j

(−1)s+j〈Ψ, [[[ξ, [[νs, νj ]]]]] ∧ [ν0] ∧ . . .
∧
i . . .

∧
j . . . ∧ [νk]〉

)
=
∑
s

〈δ̄Ψ, [ν0] ∧ . . . ∧ [[[ξ, νs]]] ∧ . . . ∧ [νk]〉.

It remains to notice that

(i) δ̄2 = 0,

(ii) δ̄ is an antiderivation of degree +1.

For this purpose, firstly, for an arbitrary point x ∈ M, we can define a space of

tensors (
∧k

(ggg|x/hhh|x)?)I0 invariant with respect to the representation of the Lie algebra
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hhh|x, induced on
∧k

(ggg|x/hhh|x)? by the representation ad?x of hhh|x on (ggg|x/hhh|x)? defined as

follows: 〈ad?x(ν)(ψ), [µ]〉 = −〈ψ, [[ν, µ]]〉 for ν ∈ hhh|x, ψ ∈ (ggg|x/hhh|x)? and µ ∈ ggg|x. Secondly,

we define an antiderivation

δ̄x : (
∧k

(ggg|x/ hhh|x)?)I0 −→ (
∧k

(ggg|x/ hhh|x)?)I0

of degree +1 as the one which on elements ψ of degree +1 equals 〈δ̄x(ψ), [ν] ∧ [µ]〉 =

〈ψ, [[ν, µ]]〉, ν, µ ∈ ggg|x. It can easily be seen that if Ψ ∈ (Sec
∧k

(ggg/hhh)?)I0 , then Ψx ∈
(
∧k

(ggg|x/hhh|x)?)I0 , and (δ̄Ψ)x = δ̄x(Ψx).

In consequence, δ̄ fulfils (i) and (ii) in an evident manner. Of course, these properties

of δ̄ can also be checked directly.

Definition 3.2. The relative cohomology algebra of ggg with respect to B is defined as

the cohomology algebra of the complex (
⊕

k≥0(Sec
∧k

(ggg/hhh)?)I0 , δ̄)

H(ggg :B) := H?
(⊕
k≥0

(Sec
∧k

(ggg/hhh)?)I0 , δ̄
)
.

Proposition 3.3. The mapping ∆ restricted to the invariant cross-sections

∆? = ∆(A,λ,B) :
⊕
k≥0

(Sec
∧k

(ggg/hhh)?)I0 −→ ΩE(M), Ψ 7−→ ∆Ψ,

commutes with the differentials δ̄ and dE .

P r o o f. We need to prove the equality

∆(δ̄Ψ) = dE(∆Ψ) (3.2)

for invariant cross-sections Ψ. The fact that (γB)? is a monomorphism implies that

this equality is equivalent to (γB)?(∆(δ̄Ψ)) = (γB)?(d
E(∆Ψ)). But, by definition

(γB)?(∆(δ̄Ψ)) = j?(ω∧(
∧k+1

sss? ◦ (δ̄Ψ))). On the other hand, applying (2.1) and the

obvious fact dB(j?Ψ) = j?(dAΨ), we get

(γB)?(d
E(∆Ψ)) = dB((γB)?(∆Ψ)) = j?(dA(ω∧(

∧k
sss? ◦Ψ))).

Therefore, to prove (3.2), it remains to check that the forms ω∧(
∧k+1

sss? ◦ (δ̄Ψ)) and

dA(ω∧(
∧k

sss? ◦ Ψ)) agree on the cross-sections of B. Let ξ0, . . . , ξk ∈ SecB; then (see

(2.5))

〈ω∧(
∧k+1

sss? ◦ (δ̄Ψ)), ξ0 ∧ . . . ∧ ξk〉

= −
∑
i<j

(−1)i+j〈Ψ, [[[ω(ξi), ω(ξj)]]] ∧ . . .
∧
i . . .

∧
j . . . 〉

= −
∑
i<j

(−1)i+j〈
∧k

sss? ◦Ψ, [[ω(ξi), ω(ξj)]] ∧ . . .
∧
i . . .

∧
j . . . 〉

= 〈ω∧(δ ◦
∧k

sss? ◦Ψ), ξ0 ∧ . . . ∧ ξk〉.

On the other hand, by Prop.2.2(2) and the flatness of λ, we have

dA(ω∧(
∧k

sss? ◦Ψ)) = ω∧(δ ◦
∧k

sss? ◦Ψ) +
1

k!
· 〈dggg(

∧k
sss? ◦Ψ), ω ∧ . . . ∧ ω︸ ︷︷ ︸

k times

〉.

So, it remains to notice that j?〈dggg(
∧k

sss? ◦Ψ), ω ∧ . . . ∧ ω〉 = 0.
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The above Proposition yields as a corollary

Theorem 3.4. The mapping

∆# : H(ggg,B) −→ HE(M), [Ψ] 7−→ [∆?Ψ],

is a correctly defined homomorphism of algebras.

The mapping ∆# is called the characteristic homomorphism of the FS-regular Lie

algebroid (A, λ,B). Its image Im ∆# ⊂ HE(M) is a subalgebra of HE(M), called the

characteristic algebra of the FS-regular Lie algebroid (A, λ,B), and its elements are the

characteristic classes of that algebroid.

The compatibility of λ with B implies the vanishing of ∆# [of course, already on the

level of forms]. ∆# is then a measure of the incompatibility of λ with B.

4. Functoriality

Definition 4.1. Let (A′, λ′, B′) and (A, λ,B) be two FS-regular Lie algebroids over

(M ′, E′) and (M,E), respectively. By a homomorphism

H : (A′, λ′, B′) −→ (A, λ,B)

between them we mean a homomorphism H : A′ → A of regular Lie algebroids, say over

f : (M ′, E′)→ (M,E), such that

(1) H ◦ λ′ = λ ◦ f?,
(2) H[B′] ⊂ B.

Notice that H ′ = H|B′ : B′ → B is then a homomorphism of regular Lie algebroids,

too:

A′ A-

ggg′ ggg-H+

? ?

6

ω′
6

ω

E′ E-

H

? ?

γAγA′

6

λ′ λ

6

B′ B

hhh′ hhh
H ′+

?
-

-

?

E′ E

H ′

?

γBγB′

?
-

��=

��=

��=

��=

��=

��=

0 0

? ?

0 0

? ?

0 0

f?

? ?
0 0

f?

??
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By the pullback of an FS-regular Lie algebroid (A, λ,B) over (M,E) via a mapping

f : (M ′, E′) → (M,E) we mean the FS-regular Lie algebroid (f∧A, λ̄, f∧B) where λ̄ is

the pullback of the connection λ, see definition 3.2.1 from [K4].

Notice that pr2 : f∧A = E′ ×(f?,γ) A → A is a homomorphism of FS-regular Lie

algebroids, called canonical. In view of the equality H̄ ◦ λ′ = λ̄, any homomorphism

H : (A′, λ′, B′) → (A, λ,B) of FS-regular Lie algebroids can be represented in the form

of a superposition of a strong homomorphism with the canonical one:

(A′, λ′, B′)
H̄−→ (f∧A, λ̄, f∧B)

pr2−→ (A, λ,B).

Let H : (A′, λ′, B′)→ (A, λ,B) be a homomorphism of FS-regular Lie algebroids, see

diagram above. We define the pullback

H+? : Sec
∧k

(ggg/hhh)? −→ Sec
∧k

(ggg′/hhh′)?

by the formula

〈H+?(Ψ)x, [w
′
1] ∧ . . . ∧ [w′k]〉 = 〈Ψf(x), [H

+(w′1)] ∧ . . . ∧ [H+(w′k)]〉

where Ψ ∈ Sec
∧k

(ggg/hhh)?, x ∈M, w′i ∈ ggg′|x.

Proposition 4.2. (1) H+? maps the invariant cross-sections into the invariant ones.

(2) H+? restricted to the invariant cross-sections commutes with the differentials δ̄′

and δ̄.

P r o o f. It is enough to prove the proposition in two cases of H: of a strong homo-

morphism and of the canonical one. A very easy proof of (1) and (2) for the first case will

be omitted. Consider now the canonical homomorphism pr2 . Identify the vector bundles

f?(ggg/hhh) ∼= f?ggg/f?hhh. Then, of course, H+?Ψ = f?Ψ and, by standard calculations, we get

the following equality (cf. [K4, 2.3.2]):

f?(adB,ggg) = adf∧B,f?ggg

which, together with f?(
∧k

T ) =
∧k

(f?T ) for any representation T (cf. [K4, 2.3.3]),

yields

f?(ad∧B,ggg) = f?(
∧k

(adB,ggg)
\) =

∧k
(adf∧B,f?ggg)

\ = ad∧f∧B,f?ggg .

Proposition (2) needs now only standard calculations.

As a corollary we obtain that H+? determines a homomorphism of algebras

H+# : H(ggg,B) −→ H(ggg′,B′).

Proposition 4.3 (The functoriality of ∆#). Let (A′, λ′, B′) and (A, λ,B) be two FS-

regular Lie algebroids over (M ′, E′) and (M,E), respectively, and let

H : (A′, λ′, B′) −→ (A, λ,B)

be a homomorphism between them over f : (M ′, E′) → (M,E). Then the following dia-

gram comutes:
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H(ggg′, B′) HE′(M
′)-

∆′#

H(ggg,B) HE(M)-∆#

?

H+#

?

f#

P r o o f. It is sufficient to show the commutativity of the diagram on the level of forms,

that is, the equality: (γB′)?(f
?(∆?Ψ)) = j′?(ω′∧(

∧k
sss′? ◦H+?Ψ)) for an invariant Ψ.

Remark 2. The problem of the equivalence of the characteristic homomorphisms ∆#

and ∆′# for H being a homotopy equivalence is open. The problem reduces to the iso-

morphy of H+#. A definition of the homotopy between homomorphisms of FS-algebroids

can be formulated in the spirit of the definition of the homotopy from [K7].

5. The homotopic independence of ∆# on a subalgebroid. Let (A, [[·, ·]], γ) be

a given regular Lie algebroid with the Atiyah sequence 0→ ggg ↪→A γ→ E → 0 and consider

the Lie algebroid (TR×A, [[·, ·]]′, id×γ), the product of the trivial Lie algebroid TR with

A (see [H-M], [K7]). Its Atiyah sequence is

0 0× ggg- �� - TR×A TR× E-id× γ
0.-

For the mapping ft : M → R ×M, x 7→ (t, x), take the pullback f∧t (TR×A). Notice

that f∧t (TR × A) = {(γ(w), 0, w) ∈ E × (TR×A);w ∈ A}, and that the homomorphism

Ft : A→ TR×A, w 7→ (θt, w), (θt being the null tangent vector at t ∈ R) of regular Lie

algebroids (see the proof of Th. 4.3.1 in [K4]) is represented in the form of the canonical

superposition

Ft : A
F t−→ f∧t (TR×A)

pr2−→ TR×A (5.1)

(see [K4, s.1.1]). It is not difficult to see that

F̄t : A −→ f∧t (TR×A), w 7−→ (γ(w), 0, w),

is an isomorphism of regular Lie algebroids.

Definition 5.1. Two Lie subalgebroids B0, B1 ⊂ A (both over (M,E)) are said to

be homotopic if there exists a Lie subalgebroid B ⊂ TR×A over (R×M,TR× E) such

that the isomorphism F̄t maps Bt onto f∧t (B) for t = 0, 1 (equivalently, if, for v ∈ A, we

have: v ∈ Bt ⇔ (θt, v) ∈ B). B is called joining B0 to B1.

We compare the relation of homotopic subbundles of a principal bundle P with the

relation of homotopic subalgebroids of A(P ). Let P = (P, π,M,G, ·) be a G-principal

bundle over a manifold M . It determines a new G-principal bundle R × P = (R ×
P, id×π,R ×M,G, ·′) with the action (t, z) ·′ a = (t, z · a). For an arbitrary t ∈ R, the

mapping Ft : P → f?t (R×P ), z 7→ (πz, (t, z)), is an isomorphism of G-principal bundles.

Take a Lie subgroup H ⊂ G (nonclosed and disconnected in general). Two H-reductions

Pt ⊂ P, t = 0, 1, are said to be homotopic [K-T] if there exists an H-reduction P̄ ⊂ R×P
such that Ft maps Pt onto f?t (P̄ ) for t = 0, 1. P̄ is called joining P0 to P1. Notice that
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P̄ is determined uniquely by the family of H-reductions Pt = F−1
t [f?t (P̄ )], t ∈ R [which

follows from the observation: z ∈ Pt ⇔ (t, z) ∈ P̄ ].

If H is closed and Pt are defined by C∞ cross-sections σt : M → P/H for t = 0, 1, of

the associated bundle P/H → M, then, P0 and P1 are homotopic if and only if σ0 and

σ1 are homotopic in the usual sense (via cross-sections, of course).

Proposition 5.2. If Pt
it
↪→ P, t = 0, 1, are homotopic H-reductions of P, then the

Lie subalgebroids B0 := d(i0)[A(P0)] and B1 := d(i1)[A(P1)] of A(P ) are homotopic. The

converse theorem is true provided that Pt and G are connected. More generally, if A(P0)

and A(P1) are homotopic and P0 and P1 are connected [G can be disconnected], then

there exists a ∈ G such that Ra[P0] is homotopic to P1.

P r o o f. Let P0, P1 ⊂ P be two H-reductions of P. Assume that they are homotopic,

and that P̄ ⊂ R× P is a joining H-reduction. Then B := ϕ[A(P̄ )] ⊂ TR×A(P ),

ϕ : A(R× P ) = T (R× P )/G 3 [(v, w)] 7−→ (v, [w]) ∈ TR× TP/G = TR×A(P )

being the canonical isomorphism, is a Lie algebroid joining B0 to B1. Indeed, one can

easily see that F̄t : A(P )→ f∧t (TR×A(P )) equals the superposition

A(P )
dFt−→ A(f?t (R× P )) ∼= f∧t (A(R× P )) ∼= f∧t (TR×A(P ))

and then maps Bt onto f∧t (B) for t = 0, 1.

Conversely, assume that the Lie subalgebroids B0 and B1 are homotopic, say, via a

joining Lie subalgebroid B of TR × A(P ). This means that F̄t maps Bt onto f∧t (B) for

t = 0, 1. Let P̄ ⊂ R×P be the arbitrarily taken connected H-reduction corresponding to

the Lie subalgebroid ϕ−1[B] ⊂ A(R× P ), see Th. 1.1. Put P̃t := F−1
t [f?t (P̄ )], t ∈ R. By

its construction, {P̃t, t ∈ R} is a family of homotopic H-reductions. Of course, Pt and P̃t
are, for t = 0, 1, two H-reductions corresponding to the same Lie subalgebroid Bt. If Pt
is connected, then, since Pt and P̃t are integral manifolds of the same G-right invariant

distribution on P, we notice that P̃t = Rgt [Pt] for a point gt ∈ G. Therefore Rg0g−1
1

[P0]

is homotopic to P1. If, additionally, G is connected, Rg0g−1
1

[P0] is homotopic to P0. Thus

P0 and P1 are homotopic then.

For further investigations, we fix

• a regular Lie algebroid A = (A, [[·, ·]], γ) over (M,E),

• a flat connection λ : E → A in it,

• two Lie subalgebroids B0, B1 ⊂ A, both over (M,E), homotopic to each other via

a joining Lie algebroid B ⊂ TR×A.
λ determines a flat connection in TR×A of the form id×λ : TR×E → TR×A. This

implies that the triad

(TR×A, id×λ,B) (5.2)

is an FS-regular Lie algebroid. Moreover,

Ft : (A, λ,Bt) −→ (TR×A, id×λ,B)

is a homomorphism of FS-regular Lie algebroids.
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Proposition 5.3. The characteristic homomorphisms ∆t#, t = 0, 1, of FS-regular

Lie algebroids (A, λ,Bt) are related to each other by the commutativity of the following

diagram:

H(0× ggg,B) HE(M).

∆0#

@
@
@
@R

H(ggg,B0)

6
F+#

0

H(ggg,B1)
?

F+#
1

∆1#

�
�
�
��

P r o o f. By the functoriality of the characteristic homomorphisms of FS-regular Lie

algebroids, we get the commutative diagram

H(0× ggg,B) HTR×E(R×M)-

H(ggg,B0) HE(M)-∆0#

6
F+#

0

6
f#

0

H(ggg,B1) HE(M)-

∆#

?

F+#
1

?

f#
1

∆0#

where ∆# is the characteristic homomorphism of (5.2). Since f#
0 = f#

1 (see the proof

of Th. 4.3.1 from [K4]) and f#
0 is an isomorphism (because f0 and f1 are homotopic in

the category of foliated manifolds and each of them is a homotopy equivalence in this

category) therefore f#
1 = (f#

0 )−1, which implies our proposition.

Notice that if F+#
t , t = 0, 1, are isomorphisms, then ∆0# and ∆1# can be interpreted

as equivalence homomorphisms in the sense of the following definition.

Definition 5.4. Let B0, B1 ⊂ A be two Lie subalgebroids of a flat regular Lie

algebroid A (all three over (M,E)). We say that the characteristic homomorphisms ∆t# :

H(ggg,Bt) → HE(M), t = 0, 1, corresponding to B0 and B1, respectively, are equivalent

if there exists an isomorphism of algebras α : H(ggg,B0)
∼=−→ H(ggg,B1) such that ∆0# =

∆1# ◦ α.

Theorem 5.5. If B0 and B1 are homotopic, then ∆0# and ∆1# are equivalent.

P r o o f. Recall that Ft = pr2 ◦F̄t, see (5.1). F̄t is an isomorphism of FS-regular Lie

algebroids, therefore

F̄+#
t : H(f?t (0× ggg), f∧t B)

∼=−→ H(ggg,Bt)

is an isomorphism of algebras. It remains to consider the homomorphism
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pr+#
2 : H(0× ggg,B)→ H(f?t (0× ggg), f∧t B).

Identifying (via the canonical isomorphism) the vector bundles

f?t (0× ggg)/f?t hhh
∼= f?t (0× ggg/hhh),

we get (cf. the proof of Prop.5.2.1 [K4])

• f∧t (ad∧B,0×ggg) = adf∧t B,f?
t (0×ggg)

∧,

• pr+#
2 :

⊕
k≥0(Sec

∧k
(0 × ggg/hhh)?)I0 →

⊕
k≥0(Sec

∧k
f?t (0 × ggg/hhh)?)I0 is the usual

pullback Ψ 7→ f?t Ψ.

Theorem 5.5 follows now from Theorem 1.3.

6. Comparison with the characteristic classes of a flat principal fibre bun-

dle. Given:

(a) a G-principal fibre bundle P = (P, π,M,G, ·),
(b) a flat connection in P with connection form ω,

(c) a closed Lie subgroup H ⊂ G and an H-reduction P ′ ⊂ P,

let g and h denote the Lie algebras of G and H, respectively. Of course, i : P ′ ↪→ P is

an (H ↪→ G)-homomorphism of principal bundles and its differential di : A(P ′)→ A(P ),

see [K3], [M1], is a monomorphism of the corresponding transitive Lie algebroids

0 ggg-
�� - A(P ) TM-γ 0-

0 hhh- -�� A(P ′) TM-γ
′

0-

6
(di)+

6
di

Identify A(P ′) with Im(di) and hhh with Im(di)+. Then, for each z ∈ P ′|x, the isomor-

phism
∧
z : g → ggg|x, v 7→ [Az?v] (Az : G → P, a 7→ za), see [K4, s.5.1], maps h onto hhh|x

and determines an isomorphism [
∧
z] : g/h

∼=→ (ggg/hhh)|x. It is worth recalling that
∧
z is an

isomorphism of Lie algebras provided that g is the right Lie algebra of G, see [K3], [K4].

According to section 3, we have a representation adA(P ′),ggg : A(P ′) → A(ggg/hhh) such

that LadA(P ′),ggg ◦ξ([ν]) = [[[ξ, ν]]], ξ ∈ SecA(P ′), ν ∈ Secggg, and the representation induced

by it ad∧A(P ′),ggg : A(P ′)→ A(
∧k

(ggg/hhh)?). Consider also the induced representation AdP ′,ggg
of the principal bundle P ′ on the g/h-vector bundle ggg/hhh, defined by AdP ′,ggg : P ′ →
L(ggg/hhh), z 7→ [

∧
z], and the representation Ad∧P ′,ggg : P ′ → L(

∧k
(ggg/hhh)?) induced by it (cf.

[K4, 5.3.2]). By the same argument as in the proof of Th. 5.4.3 in [K4], to see that

adA(P ′),ggg is the differential of AdP ′,ggg, we must only notice an analogous fact concerning

the representations of Lie algebras and of Lie groups: h → End(g/h), v 7→ [adg(v)], and

H → GL(g/h), h 7→ [AdG(h)]. Hence, ad∧A(P ′),ggg is the differential of Ad∧P ′,ggg . Therefore,

according to [K4, Props 5.5.2-3], we have a monomorphism

κ : (
∧

(g/h)?)I
∼=−→
⊕
k≥0

(Sec
∧k

(ggg/hhh)?)I ⊂
⊕
k≥0

(Sec
∧k

(ggg/hhh)?)I0
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defined by the formula κ(ψ)(x) = Ad∧P ′,ggg(z)(ψ), z ∈ P ′|x, and which is an isomorphism

when P ′ is connected. It is necessary to verify that κ commutes with the differentials dH

and δ̄ acting on the spaces (
∧

(g/h)?)I and
⊕

k≥0(Sec
∧k

(ggg/hhh)?)I0 , respectively (notice

that the spaces of cohomology of these are domains of the characteristic homomorphisms).

The differential δ̄ in
⊕

k≥0(Sec
∧k

(ggg/hhh)?)I0 is defined in section 3 above, whereas, the

differential dH in (
∧

(g/h)?)I must be defined by the formula

〈dH(ψ), [w1] ∧ . . . ∧ [wk]〉 =
∑
i<j

(−1)i+j〈ψ, [[wi, wj ]] ∧ [w1] ∧ . . .
∧
i . . .

∧
j . . . 〉,

w1, . . . , wk ∈ g; here [wi, wj ] is the bracket in the left Lie algebra of G [we get it follow-

ing the fact that this differential must be the one for which the canonical isomorphism

GΩ?(G/H)
∼= (
∧

(g/h)?)I (also (
∧
g?)H ∼= (

∧
(g/h)?)I) is an isomorphism of DG-algebras,

see [K-T]]. The equality δ̄ ◦ κk = κk+1 ◦ dH may now be obtained immediately.

Theorem 6.1. The characteristic homomorphisms ∆# : H(g, H) → HdR(M) of the

triad (P, P ′, ω) (see [K-T]) and ∆# : H(ggg,A(P ′)) → HdR(M) of the FS-transitive Lie

algebroid (A(P ), λ, A(P ′)) (λ corresponds to ω) are related by the following commutative

diagram:

∆#

�
�
�
��

HdR(M).

∆#

@
@
@
@R

H(g, H)

H(ggg,A(P ′))
?

κ#

P r o o f. We prove the commutativity on the level of forms. Consider the diagram

ΩA(P ′),i(M) ΩA(P ′)(M)

Ω(M) Ω(P ′)-- π′?

?

∼=
6
ρ

�� -
γ′?

ΩA(P ),hhh(M)
?

(di)?

(
∧

(g/h)?)I

⊕
k≥0(Sec

∧k
(ggg/hhh)?)I0
?

κ

��
�
��

�
��
�*

H
HHH

HHH
HHj

H
HHH

HHH
HHj

ϕ

∆

∆

in which
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• ϕ(Ψ) = (ωA)∧(
∧k

sss? ◦ Ψ) = 1
k! · 〈

∧k
sss? ◦ Ψ, ωA ∧ . . . ∧ ωA〉, ωA : A(P ) → ggg being

the connection form corresponding to λ,

• ΩA(P ),hhh(M) denotes the space of hhh-horizontal forms on A(P ),

• ρ maps real forms on A(P ′) into right-invariant forms on P ′, Θ 7→ Θ̃ for Θ̃ (see

[K3]).

We recall that, for ψ ∈ (
∧k

(g/h)?)I , the form ∆(ψ) ∈ Ωk(M) is defined uniquely in

such a way that π′?(∆(ψ)) = 1
k! · i

?〈
∧k

s?(ψ), ω ∧ . . . ∧ ω〉 where i : P ′ ↪→ P, whereas

s : g → g/h and π′ : P ′ → M are the canonical projections. On the other hand,

∆(Ψ) for Ψ ∈ (Sec
∧k

(ggg/hhh)?)I0 is given as a form for which γ′?(∆(Ψ)) = (di)?(ϕ(Ψ)).

Therefore, to end the proof, we need to prove the equality i?〈
∧k

s?(ψ), ω ∧ . . . ∧ ω〉 =

ρ ◦ (di)?(〈
∧k

sss?(κψ), ωA ∧ . . . ∧ ωA〉) only (very easy calculations are omitted).

7. The tangential characteristic classes of a partially flat principal bundle.

Consider now Ex. 3.1(2), i.e. a triple (A,B, λ) consisting of a transitive Lie algebroid A on

M, a transitive Lie subalgebroid B of A and a partially flat connection λ in A, namely,

flat over a given involutive distribution F ⊂ TM. The characteristic homomorphism

∆F
# : H(ggg,BF ) → HF (M) of the FS-regular Lie algebroid (AF , BF , λ|F ) will be called

the tangential characteristic homomorphism of the system (A,B, λ), and the cohomology

classes from its image the tangential characteristic classes of the system (A,B, λ).

Let now the system (P, P ′, ω) be given as in Ex. 3.1(3). It determines the FS-regular

Lie algebroid (A(P )F , A(P ′)F , λ|F ), and via this a characteristic homomorphism

∆F
# : H(ggg,A(P ′)F ) −→ HF (M),

called the characteristic homomorphism of the system (P, P ′, ω). The cohomology classes

from the image of ∆F
# should be called the tangential characteristic classes of the system

(P, P ′, ω). By construction, they measure the independence of ω and P ′ — exactly the

same as the exotic characteristic classes of a partially flat principal bundle [K-T].

Remark 3. The problem of comparing these two systems of characteristic classes is

open.

8. The case of a TC-foliation. This section is a continuation of Example 3.1(4).

One can prove the following two propositions.

Proposition 8.1. The Lie algebroid TR×A(M,F ) is canonically isomorphic to the

Lie algebroid A(R ×M, F̃ ) of the TC-foliation (R ×M, F̃ ) := (R × Ed) × (M,F ) which

is the product of the discrete foliation Ed of R and the given foliation (M,F ).

Let B0, B1 ⊂ A(M,F ) be two Lie subalgebroids of A(M,F ), and B̃0, B̃1 ⊂ TM

the corresponding involutive subbundles (see Ex. 3.1(4)). A simple consequence of the

definitions and Proposition 8.1 is the following

Proposition 8.2. B0 and B1 are homotopic if and only if there exists an involutive

subbundle B̄ ⊂ T (R×M) = TR× TM such that

(1) 0× F ⊂ B̄,
(2) B̄+(0× Fb) = TR× TM,
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(3) v ∈ B̄t ⇔ (θt, v) ∈ B̄ for t = 0, 1,

(4) the Lie algebra Sec B̄ ∩ L(R×M, F̃ ) generates at each point (t, x) ∈ R×M the

entire space B̄|(t,x).

Here we pass to the Lie algebroid A(G;H) of the TC-foliation H of a connected Lie

group G by left cosets of a connected nonclosed Lie subgroup H ⊂ G. Let h, h̄, g denote,

as usual, the Lie algebras of H, H̄ and G, respectively. By the same argument as in

Example 7.4.7 from [K4] we prove

Lemma 8.3. Let b ⊂ g be a Lie subalgebra such that

h ⊂ b, h̄ + b = g; (8.1)

then the G-left-invariant distribution B̄b ⊂ TG determined by b [i.e. the one tangent to

the foliation {g · B; g ∈ G}, B being the connected Lie subgroup with the Lie algebra b ]

fulfils conditions (1), (2), (3’) from Example 3.1(4), giving at the same time a transitive

Lie subalgebroid of A(G;H).

It seems to be interesting that b can be interpreted as a ”connection”, but in another

Lie algebroid. Namely, let H1 be the connected Lie subgroup of G whose Lie algebra

equals b ∩ h̄. Of course, h ⊂ b ∩ h̄ ⊂ h̄, therefore H ⊂ H1 ⊂ H̄, hence H̄1 = H̄. Then,

it is clear (see [K4, Ex.8.4.7]) that B̄b is an F-connection where F is the foliation of left

cosets of H1 in G.

Lemma 8.4. Let c ⊂ g be a Lie subalgebra such that

c ∩ h̄ = h, c + h̄ = g; (8.2)

then the G-left distribution Cc determined by c is C∞ completely integrable and fulfils (a),

(b), (c’) from Example 3.1(4), giving at the same time a flat connection in A(G;H).

Seeing that the foliation {R × G, H̄} = {R, Ed} × {G,H} is equal to the foliation of

the Lie group R×G by left cosets of a Lie subgroup Θ×H, Θ being the null Lie subgroup

of R, we get

Lemma 8.5. The Lie algebroid TR×A(G;H) is isomorphic to the Lie algebroid A(R×
G; Θ×H). Condition (4) from Theorem 8.2 above is equivalent to

(4’) B̄ is Θ× H̄-right-invariant.

Now, we calculate the characteristic homomorphism of the FS-transitive Lie algebroid

(A(G;H), B, λ) in which

• B = Bb for a Lie subalgebra b fulfilling (8.1),

• λ is the flat connection determined by a Lie subalgebra c fulfilling (8.2). (According

to [K5] for such a Lie subalgebra c to exist, π1(G) must be infinite).

Recall that [K4, 8.2.4] ϕ : G/H̄ × h̄/h→ ggg, (ḡ, [w]) 7→ [X̄w(g)], g ∈ π−1
b (ḡ), is a global

trivialization of the Lie algebra bundle ggg of A(G;H), and that the typical fibre h̄/h of

this bundle is an abelian Lie algebra [X̄w stands for the left-invariant vector field on G

generated by a vector w] [K4, 8.1.3]. The equalities hhh = ggg ∩B and dim(h̄∩ b/h) = rankhhh

yield that ϕ induces a global trivialization ϕ1 : G/H̄ × (h̄ ∩ b)/h → hhh. Next, ϕ and ϕ1

give a global trivialization ϕ2 : G/H̄ × h̄/(h̄ ∩ b) → ggg/hhh. Using ϕ2, we can modify any
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cross-section ν ∈ Secggg/hhh to the h̄/(h̄ ∩ b)-valued function ν̄ : G/H̄ → h̄/(h̄ ∩ b), and,

analogously, any cross-section Ψ ∈ Sec
∧k

(ggg/hhh)? to the function Ψ̄ : G/H̄ →
∧k

(h̄/(h̄ ∩
b))?. Analogously to the proof of Prop. 7.4.1 from [K4] we obtain the following

Proposition 8.6. Ψ is invariant if and only if Ψ̄ is constant.

In the space
⊕

k≥0(Sec
∧k

(ggg/hhh)?)I0 the differential δ̄ defined by (3.1) works. We can

carry δ̄ over to the space
∧

(h̄/(h̄ ∩ b))? and obtain a differential
=

δ.

Proposition 8.7.
=

δ = 0 [hence δ̄ = 0].

P r o o f. Take Ψ̂ ∈
∧k

(h̄/(h̄∩ b))? and let Ψ ∈ (Sec
∧k

(ggg/hhh)?)Io correspond to Ψ̂ (i.e.

Ψ̂ = Ψ̄(ē) = Ψ̄(ḡ)). For w1, . . . , wk ∈ h̄, we have

〈Ψ̂, [w1] ∧ . . . ∧ [wk]〉 = 〈Ψ(ḡ), [ϕḡ([w1])] ∧ . . . ∧ [ϕḡ([wk])]〉

and then (see [K4], [MO2]) for w0, . . . , wk ∈ h̄,

〈
=

δΨ̂, [w0] ∧ . . . ∧ [wk]〉
= 〈(δ̄Ψ)∧, [w0] ∧ . . . ∧ [wk]〉
= 〈(δ̄Ψ), [c(X̄w0)] ∧ . . . ∧ [c(X̄wk

)]〉(ḡ)

= −
∑
i<j

(−1)i+j〈Ψ, [[[c(X̄wi
), c(X̄wj

)]]] ∧ [c(X̄w0
)] ∧ . . .

∧
i . . .

∧
j . . . 〉(ḡ)

= −
∑
i<j

(−1)i+j〈Ψ, [c(X̄[wi,wj ])] ∧ . . .
∧
i . . .

∧
j . . . 〉(ḡ)

= −
∑
i<j

(−1)i+j〈Ψ̂, [[wi, wj ]] ∧ . . .
∧
i . . .

∧
j . . . 〉 = 0

because [wi, wj ] ∈ h ⊂ b ∩ h̄ [h̄/h is abelian!].

As a corollary we obtain an isomorphism of algebras

H(ggg,B) ∼= H(
∧

(h̄/(h̄ ∩ b))?, 0) =
∧

(h̄/(h̄ ∩ b))?

and the fact that the forms from the image of the characteristic homomorphism, Im ∆?,

are closed.

Take into account the connection λ determined by c. Let ω be its connection form.

Conditions (8.2) determine a decomposition g/h = h̄/h⊕ c/h. Define ωo : g→ h̄/h as the

linear mapping which is the superposition ωo : g→ g/h = h̄/h⊕c/h pr1−→ h̄/h. Take also the

canonical linear homomorphism ρ : h̄/h→ h̄/(h̄ ∩ b) and put ω1 = ρ ◦ωo : g→ h̄/(h̄ ∩ b).

Lemma 8.8. The form ∆?(Ψ) for Ψ ∈ (Sec
∧k

(ggg/hhh)?)I0 is a G-left-invariant form on

G/H̄ such that its value ∆?(Ψ)ē ∈
∧k

(g/h̄)? at ē is equal to

〈∆?(Ψ)ē, [w1] ∧ ... ∧ [wk]〉 = 〈Ψ̂, ω1(w̃1) ∧ ... ∧ ω1(w̃k)〉

where w̃i ∈ b are vectors such that [w̃i] = [wi] ∈ g/h̄ (notice that b ↪→ g → g/h̄ is an

epimorphism).
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Lemma 8.9. Consider the DG-algebra (
∧

(g/h̄)?)I of vectors invariant with respect to

the adjoint representation Ad⊥ : H̄ → GL(
∧

(g/h̄)?), see [G-H-V, Vol. II, Prop. XI ]. The

forms from Im ∆̂? are closed, where

∆̂? :
∧

(h̄/(h̄ ∩ b))? −→ (
∧

(g/h̄)?)I

is defined by the equality (w̃i as above)

〈∆̂?(Ψ̄), [w1] ∧ ... ∧ [wk]〉 = 〈Ψ̄, ω1(w̃1) ∧ ... ∧ ω1(w̃k)〉.

From the above we obtain the fundamental commutative diagram

H(ggg,B) HdR(G/H̄)-∆#

∧
(h̄/(h̄ ∩ b))? H((

∧
(g/h̄)?)I) ∼= HI(G/H̄).-∆̂#

∼=
6 6

If G is compact, then the right arrow is an isomorphism.

Theorem 8.10. ∆̂# is trivial if and only if c ⊂ b.

P r o o f. Let c ⊂ b. The epimorphy of b ↪→ g→ g/h̄ implies that it is sufficient to show

the equality ω1(w) = 0 for w ∈ b. For this purpose, take an arbitrary point w ∈ b and

write w = w1 +w2 for w1 ∈ h̄ and w2 ∈ c. Then w1 = w−w2 ∈ b, so ω1(w) = ρ(w1) = 0.

Assume now c ⊂/ b. Take w ∈ c\b and let w̃ ∈ b be a vector such that [w] = [w̃]

in g/h̄. Of course, w̃ − w ∈ h̄\(h̄ ∩ b) and w̃ = (w̃ − w) + w ∈ h̄ + c. Take a covector

Ψ̄ ∈ (h̄/(h̄ ∩ b))? such that Ψ̂(w̃ − w) 6= 0. Then

∆̂?(Ψ̂)([w]) = 〈Ψ̂, ω1(w̃)〉 = 〈Ψ̂, [w̃ − w]〉 6= 0.

Since Z((g/h̄)?)I → H1((
∧

(g/h̄)?)I) is a monomorphism, we obtain ∆̂#(Ψ̂) 6= 0.

Then, for compact G, each case c ⊂/ b is the source of the nontrivial characteristic

homomorphism of a FS-transitive Lie algebroid on the ground of TC-foliations of left

cosets.
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dans la catégorie des groupöıdes infinitésimaux, C. R. Acad. Sci. Ser. A-B, Paris

264 (1967), 245–248.
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