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Introduction. The concept of category weight was introduced by Fadell–Husseini

[FH] and developed by Rudyak and Strom. Here we give a survey, some further develop-

ment and applications of category weight.

The Lusternik–Schnirelmann category of a topological space X, catX, is defined as the

minimal number k such that X admits a numerable covering {A1, . . . , Ak+1} where each

Ai is contractible in X. Lusternik and Schnirelmann [LS] introduced the invariant catX

for manifolds. They proved that, for every connected smooth (=C∞) closed manifold M ,

1 + catM ≤ CritM := min{crit f |f ∈ C∞(M,R)}
where crit f is the number of critical points of a smooth real-valued function f on M .

Afterwards Fox [Fox] suggested considering catX as an invariant of a space X. The

basic information concerning the Lusternik–Schnirelmann category can be found in [Fox],

[Sv], [J].

This (homotopy) invariant is quite far from other invariants like homotopy and homol-

ogy groups, so it is difficult to compute catX. For example, in [G], Ganea asked whether

cat(X × Sn) = catX + 1, n > 0, X connected. The affirmative claim is usually referred

to as the Ganea conjecture. Recently it was disproved by Iwase [I], but it is still unclear

whether it is true for manifolds. Here is another rather naive question. Let f : M → N

be a map of degree 1 of closed manifolds. Is it true that catM ≥ catN?

One of the favorite and famous ways to estimate the Lusternik–Schnirelmann cat-

egory is a so-called cup-length estimation (Froloff–Elsholz [FE], Eilenberg). Namely, if

u1 · · ·un 6= 0 for some ui ∈ H̃∗(X) then catX ≥ n. The idea of the proof is quite

simple: if X = A1 ∪ · · · ∪ An where each Ai is contractible in X then ui|Ai = 0, and so

u1 · · ·un|(A1∪· · ·∪An) = 0. However, the cup-length estimation is not perfect. For exam-

ple, if L = L2n+1
p is the lens space with p an odd prime, then catL = 2n+1 (Krasnosel’ski,
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1955), while the cup-length estimation gives us catL ≥ n+1 only. Fadell–Husseini refined

the cup-length estimation by suggesting that elements ui be equipped with “weights”.

Speaking informally, we say that the category weight of u (cwgtu) is ≥ k if

u|(Ai1 ∪ · · · ∪Aik) = 0

for Ai as above. Clearly, catX ≥ cwgtu if u 6= 0. Furthermore, cwgt(u1 · · ·un) ≥∑
cwgtui, and, since cwgtui ≥ 1, we conclude that

catX ≥ cwgt(u1 · · ·un) ≥
∑

cwgtui ≥ n

provided u1 · · ·un 6= 0. Certainly, this improves the cup-length estimation. For example,

this establishes a short calculation of catL2n+1
p , see [FH]. So, it seems reasonable to find

(indecomposable) elements of high category weight and, more generally, to be able to

compute category weight. Unfortunately, category weight is not a homotopy invariant,

i.e., cwgth∗u is not necessarily equal to cwgtu for a homotopy equivalence h. This makes

category weight difficult for calculations.

Because of this, it makes sense to introduce a homotopy invariant version of category

weight as the author did in a talk at the AMS Summer Research Institute, Seattle, July

1996 (see [R2]). This invariant is called strict category weight and denoted by swgt.

A similar concept was also introduced by Strom [S2]. There are many ways to define

swgtu, u ∈ H∗(X). One of them is:

swgtu = min{cwgth∗u} where h runs over all homotopy equivalences Y → X.

Clearly, cwgtu ≥ swgtu, so we can use swgt to estimate cwgt. Furthermore, swgt has bet-

ter multiplicative properties than cwgt, see §3. It turns out that swgt is quite manageable:

for example, it is possible both to find many elements of high swgt (see §4) and to apply

swgt to certain geometric problems (see §§6,7). Also, notice that strict category weight

yields a decreasing filtration {Fn(X)} of H∗(X), Fn(X) := {u ∈ H∗(X)| swgtu ≥ n}.
Here is another description of swgt: we have X ' BΩX, the classifying space for the

loop space of X. Let {BnΩX} be the Milnor filtration of BΩX, and let in : BnΩX ⊂
BΩX ' X. (Notice that in is homotopy equivalent to a map (1.5) described in §1.) Then

swgtu = sup{k|i∗k(u) = 0}.

In other words, the above filtration {Fn(X)} is just the filtration

Ker{i∗n : H∗(X)→ H∗(BnΩX)}.

This also shows how to apply the Eilenberg–Moore spectral sequence to the study of the

Lusternik–Schnirelmann category, cf. [To].

It is clear that category weight can be defined in more general situations. For example,

we can consider an arbitrary (extraordinary) cohomology theory instead of H∗(−). In this

paper we consider even a little bit more general functors then cohomology.

Throughout this paper, we reserve the term “map” for continuous functions and the

term “inessential map” for homotopy trivial maps (i.e., for maps which are homotopic to

constant maps).

We use the sign ' for homotopy of maps, and we write f '• g when there is a pointed

homotopy between pointed maps f and g.
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The reduced cone of a pointed map f is denoted by Cf .

“Connected” always means “path connected”.

Given a pointed topological space X, the (reduced) cohomology group Hk(X;π) is

defined as [X,K(π, n)] (pointed homotopy classes) where the Eilenberg–Mac Lane space

K(π, n) is assumed to be ( homotopy equivalent to) a CW -space. Two exceptions to this

agreement (in 3.10 and 4.2) are mentioned explicitly.

Given u ∈ Hk(X), the notation u|πk(X) = 0 means that 〈u, a〉 = 0 for every a ∈
Im{h : πk(X)→ Hk(X)} where h is the Hurewicz homomorphism.

The paper is organized as follows. In §1 we consider the Lusternik–Schnirelmann cat-

egory. In §2 we give a definition and background properties of (strict) category weight. In

§3 we demonstrate multiplicative properties of (strict) category weight. In §4 we explain

how to find elements of high category weight. In §5 we show how to use swgt for control

of the Lusternik–Schnirelmann category and in §6 we apply this technique to manifolds.

In particular, we prove special cases of the Ganea conjecture and the degree conjecture.

In §7 we apply our technique to the famous Arnold conjecture about symplectic fixed

points. In fact, we idicate how to prove it for closed symplectic manifolds (M,ω) with

ω|π2(M) = 0 = c1|π2(M).

1. Lusternik–Schnirelmann category

1.1. Definition. (a) ([Fox], [Fet], [BG]) Given a map ϕ : A → X, we say that

catϕ ≤ k if there is a numerable covering U1, . . . , Uk+1 of A such that ϕ|Ui is inessential

for every i. Then catϕ = k if k is minimal with this property. Also, we set catϕ = −1 if

A = ∅.
(b) If i : A→ X is an inclusion then we set catX A := inf{cat i} where i runs over all

the inclusions i : U → X of neighborhoods U of A.

(c) ([LS]) We define the Lusternik–Schnirelmann category catX of a space X by

setting catX := cat 1X = catX X.

1.2. Lemma, Let f : X → Y be a map with Y connected , and let x0 ∈ X be an

arbitrary point. If cat f = k then there is a numerable covering {B1, . . . , Bk+1} such that

f |Bi is inessential and x0 ∈ B for every i.

P r o o f. Let {A1, . . . , Ak+1} be a numerable covering of X with f |Ai inessential, and

let {ϕ1, . . . , ϕk+1} be a partition of unity dominated by {A1, . . . , Ak+1}. We set

Ci := ϕ−1
i [1/(2k + 2), 1]

and Bi := Ci ∪ {x0}. It is easy to see that {Bi} is the desired covering.

1.3. Proposition ([BG]). (i) For every diagram A
ϕ→ Y

f→ X we have cat fϕ ≤
min{catϕ, cat f}. In particular , cat f ≤ min{catX, catY }.

(ii) If ϕ ' ψ : A→ X then catϕ = catψ.

(iii) If h : Y → X is a homotopy equivalence then catϕ = cathϕ for every ϕ : A →
X.

Notice that, in view of 1.3(iii), catX is a homotopy invariant of X. Also, it is easy to

see that catX ≤ dimX for every connected CW -space X.
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1.4. Proposition ([B], [Fox]). For any two connected CW -spaces X,Y we have

max{catX, catY } ≤ cat(X × Y ) ≤ catX + catY.

Let X be a connected space. Take a point x0 ∈ X, set

PX = P (X,x0) = {ω ∈ XI
∣∣ ω(0) = x0}

and consider the fibration p : PX → X, p(ω) = ω(1) with the fiber ΩX. Given a natural

number k, we use the short notation

(1.5) pk : Pk(X)→ X

for the map

pX ∗X · · · ∗X pX︸ ︷︷ ︸
k times

: PX ∗X · · · ∗X PX︸ ︷︷ ︸
k times

−→ X

where ∗X denotes the fiberwise join over X, see e.g. [J]. In particular, P1(X) = PX.

1.6. Theorem ([Sv, Theorems 3 and 19′]). Let ϕ : A→X be a map with X connected.

Then catϕ < k iff there is a map ψ : A→ Pk(X) such that pkψ = ϕ.

For future references we fix the following simple information, the proofs can be found

e.g. in [R2].

1.7. Proposition. (i) Pk(X) is a fibration over X;

(ii) If X has the homotopy type of a CW -space then P−k(X) does;

(iii) catPk(X) ≤ k − 1.

1.8. Proposition ([Sv, Th. 21]). The map p2 : P2(X) → X is homotopy equivalent

over X to the map ε : SΩX → X.

The concept of Lusternik–Schnirelmann category can be generalized as follows. Let T

be the category of pointed spaces and pointed maps. Let E be the category whose objects

are pairs (set, subset) and whose morphisms (U, V )→ (U ′, V ′) are functions f : U → U ′

with f(V ) ⊂ V ′. Given a contravariant functor F : T → E with F (X) = (U, V ) for some

X ∈ T , the notation u ∈ F (X) means that u ∈ U . We say that u ∈ F (X) = (U, V ) is

trivial if u ∈ V . Given u ∈ F (Y ) and f : X → Y , we write f∗u for F (f)(u). Furthermore,

given A ⊂ X, we denote i∗u by u|A.

1.9. Definition. Let F : T → E be a contravariant functor satisfying the following

properties:

(1) (weak homotopy property) If f '• g : X → Y then f∗u is trivial if g∗u is.

(2) (triviality property) F (pt) has the form (U,U), i.e., every u ∈ F (pt) is trivial.

Let X be a connected pointed space. Given u ∈ F (X), we define the Lusternik–Schnirel-

mann category of u, catu, to be the minimal k with the following property: there is a

numerable covering {A1, . . . , Ak+1} where each Ai is a pointed subspace of X and u|Ai
is trivial for every i = 1, . . . , k.

1.10. Examples. (a) Given a pointed topological space Y , set F (X) = TY (X) :=

(U, V ) where U is the set of all pointed maps X → Y and V is the subset of all inessential
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(under non-pointed homotopy) maps. (The action of F on morphisms is given by the

composition.) Then, the definition above leads to the invariant cat f defined in 1.1.

(b) Every pointed set (U, u0) can be considered as the pair (U, {u0}) of sets. Thus,

every functor from T to the category of pointed sets can be regarded as a functor T → E .

(c) Every abelian group can be regarded as a pointed set (with base point 0). So, every

functor from T to the category of abelian groups can be treated as a functor T → E .

(d) (Fary [F]) Because of (c), a reduced cohomology theory (not necessarily additive)

E∗(−) on T yields the functor X 7→ F (X) := (Ei(X), {0}). Then, given u ∈ Ei(X), we

have the invariant catu, the Lusternik–Schnirelmann category of the class u.

(e) Given X ∈ T , set F (X) = (U, V ) where U is the set of fiberwise homotopy

equivalence classes of fibrations over X and V consists of fibrations which admit a section.

The action of F on morphisms is given by passing to induced fibrations. If u ∈ F (X) is

the equivalence class of a fibration ξ, then catu is the genus of ξ, [Sv]; another name is

the sectional category, secat ξ, [J].

Notice that the example (e) generalizes example (a) since cat f = secat f∗ξ where

ξ = {p1 : PY → Y } for f : X → Y .

1.11. Proposition. Let X be a connected pointed space.

(i) cat f∗u ≤ min{cat f, catu} for every f : X → Y in T and every u ∈ F (Y ).

(ii) If f '• g : X → Y then cat f∗u = cat g∗u for every u ∈ F (Y ).

(iii) If h : X → Y is a pointed homotopy equivalence then cath∗u = catu for every

u ∈ F (Y ).

2. Category weight

2.1. Definition. Let F : T → E be a functor as in 1.9, and let u ∈ F (X). We do

not require X to be connected.

(a) We define the category weight of u (denoted by cwgtu) by setting

cwgtu = sup{k
∣∣ u|A is trivial whenever catX A < k}

where A runs over all pointed closed subsets of X.

(b) We define the strict category weight of u (denoted by swgtu) by setting

swgtu = sup{k
∣∣ ϕ∗u is trivial for every map ϕ : A→ X in T with catϕ < k}.

Notice that cwgtu =∞ = swgtu for every trivial element u.

In particular, the (strict) category weight of a map (cf. 1.10(a)) and a cohomology

class (cf.1.10(d)) is defined. Category weight was defined by Fadell and Husseini [FH] (for

F = H∗(−)). Strict category weight was defined by Rudyak for F = E∗(−) as in 1.10(d)

and Strom for F as in 1.10(a), cf. [R2], [S2]; Strom calls it essential category weight. I

must also note that Strom prefers to say that the (strict) category weight of a trivial

element is not defined.

2.2. Theorem (cf. [R2]). (i) swgtu ≤ cwgtu, and cwgtu ≤ catX provided u is not

a trivial element. Furthermore, for every map f : Y → X in T we have cat f ≥ swgtu

provided f∗u is non-trivial. Finally , swgtu ≥ 1 for every u.

(ii) For every inclusion i : A→ X in T we have cwgt i∗u ≥ cwgtu.
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(iii) For every map f : Y → X in T we have swgt f∗u ≥ swgtu.

(iv) If f '• g : X → Y then cwgt f∗u = cwgt g∗u and swgt f∗u = swgt g∗u.

(v) swgtu = swgth∗u for every pointed homotopy equivalence h.

Notice that properties (iii) and (v) of 2.2 are not valid for cwgt even if f = H∗(−), see

[R2], [S2]. In other words, category weight is not a homotopy invariant, and this is the

main motivation for introducing strict category weight. The following proposition gives

us another description of strict category weight.

2.3. Proposition. Let X be a connected pointed space. Then for every u ∈ F (X) we

have:

(i) swgtu = sup{k|p∗k(u) is trivial};
(ii) If swgtu = k then cwgt p∗k+1u = k;

(iii) swgtu = minf∈F{cwgt f∗u} where F is the class of all maps f : Y → X in T .

P r o o f. (i) See [R2, 1.8(v)].

(ii) Since swgtu = k, we conclude that, by (i), p∗k+1u is non-trivial. Now

k = swgtu ≤ swgt p∗k+1u ≤ cwgt p∗k+1u ≤ catPk+1X ≤ k.

(iii) Clearly, swgtu ≤ swgt f∗u ≤ cwgt f∗u. Now, if swgtu = k then, by (ii) swgtu =

cwgt p∗k+1u.

2.4. Theorem. Let X be a connected pointed space.

(i) For every f : X → Y in T and every u ∈ F (Y ) we have

cat f ≥ (swgtu) cat(f∗u).

In particular , for every diagram X
f→ Y

g→ Z we have cat f ≥ (swgt g) cat(gf).

(ii) For every u ∈ F (X) we have

catX A ≥ (cwgtu) cat(u|A).

In particular , for every map f : X → Y we have catX A ≥ (cwgt f) cat(f |A).

Formula (ii) was found by Strom [S2], formula (i) is an obvious analog of (ii). This the-

orem improves properties 1.11(i) and 2.2(i). Notice that the proof does not use properties

(1) and (2) of 1.9.

P r o o f. We prove only (i). Let cat f = n, swgtu = k > 0. We must prove that

cat(f∗u) ≤ p := [n/k]. Let {A1, . . . , An+1} be a numerable covering of X such that f |Ai
is inessential for every i. Without loss of generality we can assume Y to be connected,

and so, by 1.2, we can assume that each Ai contains the base point. We set

B1 := A1 ∪ · · · ∪Ak, B2 = Ak+1 ∪ · · · ∪A2k, . . . ,

Bp = A(p−1)k+1 ∪ · · · ∪Apk, Bp+1 = Apk+1 ∪ · · · ∪An+1.

Since cat(f |Bj) < k, we conclude that, by 2.2(i), (f |Bj)∗u is trivial. So, (f∗u)|Bj is

trivial for every j = 1, . . . , p+ 1. Thus, cat f∗u ≤ p.
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2.5. Corollary ([S2]). For every f : X → Y in T with X connected and every

u ∈ F (Y ) we have

cwgt f∗u ≥ (cwgt f) swgtu, swgt f∗u ≥ (swgt f) swgtu.

2.6. Proposition ([R2], [S2]). Let X be a CW -space, and let f : X → Y , X ∈ T be

an essential map such that πi(Y ) = 0 for i > m. Then cwgt f ≤ m. In particular , if E is

a spectrum with πi(E) = 0 for i > m then cwgtu ≤ q+m for every u ∈ Eq(X), u 6= 0.

3. Multiplicative properties. Let F be a functor as in 1.9. Given a Puppe sequence

X
f→ Y → Cf in T , we conclude, by 1.9(1), that the image of the composition

F (Cf)→ F (Y )→ F (X)

consists of trivial elements.

3.1. Definition. A functor F as 1.9 is called half-exact if, for every pointed polyhedral

pair (X,A), the sequence

F (X ∪ CA)
j∗→ F (X)

i∗→ F (A)

is “exact”, i.e., i∗u is trivial iff u = j∗v for some v ∈ F (X ∪ CA). Here i : A → X and

j : X → X ∪ CA are the inclusions. Given (U1, V1), . . . , (Un, Vn) ∈ E , we set

(U1, V1)× · · · × (Un, Vn) := (U1 × · · ·Un, V1 × · · ·Vn).

Let E,F be two half-exact functors, and let G be an arbitrary functor as in 1.9. Suppose

that, for every two polyhedra X,Y (not necessarily finite), there is a natural transforma-

tion (where × is as described in (3.2))

(3.3) m : E(X)× F (Y )→ G(X ∧ Y ).

This transformation yields a transformation

τ : E(X)× F (Y )
m→ G(X ∧ Y )

λ→ G(X × Y ),

where λ shrinks the wedge X ∨ Y . We set u� v := τ(u, v) for u ∈ E(X), v ∈ F (Y ). If

X = Y and ∆ : X → X ×X is the diagonal, we set u•v := ∆∗(u� v) ∈ G(X).

3.4. Theorem (cf. [FH], [R2]). (i) For every pointed connected polyhedron X and

every u ∈ E(X), v ∈ F (X) we have

cwgt(u•v) ≥ cwgtu+ cwgt v.

(ii) For every pointed connected CW -space X and every u ∈ E(X), v ∈ F (X) we have

swgt(u•v) ≥ swgtu+ swgt v.

P r o o f. (i) First, assume that cwgtu = k < ∞, cwgt v = l < ∞. Take a pointed

closed subspace A of X with catX A < k + l. Then, clearly, A ⊂
⋃k+l
i=1 Vi where each

Vi is open and contractible in X. Since A is closed, there is a subdivision of X with

the following property: every simplex e with e ∩ A 6= ∅ is contained in some Vi, cf. [W,

Theorem 35]. We let Ai, i = 1, . . . , rn be the union of all simplexes contained in Vi.
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Then A ⊂ A1 ∪ · · · ∪ Ak+l where each subpolyhedron Ai is contractible in X. We set

K := A1 ∪ · · · ∪Ak ∪ {∗}, L := Ak+1 ∪ · · · ∪Ak+l ∪ {∗} and let

iK : K ⊂ X, iL : L ⊂ X, jK : X ⊂ X ∪ CK, jL : X ⊂ X ∪ CL, h : X ⊂ X ∪ C(K ∪ L)

be the inclusions. Consider the commutative diagram

E(X ∪ CK)× F (X ∪ CL) G(X ∪ C(K ∪ L))

E(X)× F (X) G(X),

∆∗m //

j∗K×j
∗
L

��
h∗

��
∆∗τ //

where, for the top row, we have used the canonical homotopy equivalence

(X ∪ CX ′) ∧ (Y ∪ CY ′) ' X × Y ∪ C((X × Y ′) ∪ (X ′ × Y ))

which holds for any polyhedral pairs (X,X ′) and (Y, Y ′). Since both i∗Ku and i∗Lv are

trivial, u = j∗Ku
′, v = j∗Lv

′ for some u′ ∈ E(X ∪ CK), v′ ∈ F (X ∪ CL). Clearly, u•v =

h(u′•v′). Thus, (u•v)|A is trivial since A ⊂ K ∪ L.

If, say, cwgtu =∞ then we must prove that u•v|A is trivial if catX A <∞. Arguing

as above, we conclude that there is a pointed subpolyhedron K ⊂ X with A ⊂ K and

catX K < ∞. Then u|K is trivial, and hence (u•v)|K is (take L = ∗ in the above

diagram).

(ii) Let swgt(u•v) = k. Then, by 2.3(ii), cwgt p∗k+1(u•v) = k. Recall that every CW -

space is homotopy equivalent to a polyhedron, and so, by 1.7(ii), there is a homotopy

equivalence ε : Y → Pk+1(X) such that Y is a polyhedron. We put f = pk+1ε : Y → X.

Then f∗(u•v) 6= 0, and

k = swgt(u•v) ≤ cwgt f∗(u•v) ≤ catY ≤ k.

Now

swgt(u•v) = cwgt f∗(u•v) ≥ cwgt f∗u+ cwgt f∗v ≥ swgt f∗u+ swgt f∗v

≥ swgtu+ swgt v.

3.5. Theorem ([R2, 1.14]). swgt(u� v) ≥ swgtu+ swgt v.

Notice that the corresponding inequality for cwgt is wrong, cf. 2.2(iii,v).

Certainly, we can consider not only two functors E,F but any finite number of functors

equipped with a natural transformation like (3.3).

3.6. Examples. (a) Given n arbitrary spectra E(1), . . . , E(n) and n pointed CW -

spaces X1, . . . , Xn, we have the homomorphism

ν : E(1)∗(X1)⊗ · · · ⊗ E(n)∗(Xn)→ (E(1) ∧ · · · ∧ E(n))∗(X1 × · · · ×Xn),

see [Sw]. Furthermore, consider the correspondence (not a homomorphism!)

r : E(1)∗(X1)× · · · × E(n)∗(Xn)→ E(1)∗(X1)⊗ · · · ⊗ E(n)∗(Xn),

r(u1, . . . , un) = u1 ⊗ · · · ⊗ un.

So, we have a natural transformation

τ := νr : E(1)∗(X1)× · · · × E(n)∗(Xn)→ (E(1) ∧ · · · ∧ E(n))∗(X1 × · · · ×Xn).
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Now, by 3.5

swgt (u1 � · · ·� un) ≥
∑

swgtui.

for every ui ∈ E(i)∗(Xi). Furthermore, given ui ∈ E(i)∗(X), we have the element

u1• · · · •un ∈ (E(1) ∧ · · · ∧ E(n))∗(X), and

cwgt(u1• · · · •un) ≥
∑

cwgtui, swgt(u1• · · · •un) ≥
∑

swgtui

(in the first inequality X is assumed to be a polyhedron).

(b) Given a ring spectrum E with a multiplication u : E ∧ E → E, for every n we

have the iterated multiplication

un : E ∧ · · · ∧ E︸ ︷︷ ︸
n times

→ E

which yields a function

τ : E∗(X1)× · · · × E∗(Xn)→ (E ∧ · · · ∧ E)∗(X1 × · · · ×Xn)
(un)∗→ E∗(X1 × · · · ×Xn)

where the first arrow is τ from (a). In this case the element u1• · · · •un ∈ E∗(X) is usually

denoted by u1 · · ·un, and we have

(3.7) catX ≥ cwgt(u1 · · ·un) ≥
∑

cwgtui ≥ n

if u1 · · ·un 6= 0. Certainly, this refines the cup-length estimation catX ≥ n.

3.8. Example ([RO]). A closed connected symplectic manifold is a pair (M2n, ω)

where M is a connected closed smooth 2n-dimensional manifold and ω is a closed non-

degenerate 2-form. Notice that in this case ωn is a volume form for M . In particular, ω

yields a non-trivial de Rham cohomology class which we denote also by ω. Since ωn 6= 0,

we conclude that catM ≥ n. Rudyak–Oprea [RO] proved that swgtω = 2 provided

ω|π2(M) = 0. Thus, if (M2n, ω) is a symplectic manifold with ω|π2(M) = 0 then, by (3.7),

catM ≥ swgtωn ≥ n swgtω = 2n,

and hence catM = 2n (because catM ≤ dimM).

3.9. Examples. (a) ([S2]) Given two pointed spaces A,B, set E(−)=TA(−), F (−)=

TB(−) and G(−) = TA∧B(−) (see 1.10(a)). We define m : E(X)×F (Y )→ G(X ∧Y ) by

setting m(f, g) = f ∧ g, and 3.4 is applicable to this case.

(b) According to 1.10(e), the category weight cwgt ξ of a fibration ξ is defined. It

turns out that, for any fibrations ξ, η over the same base X,

cwgt(ξ ∗X η) ≥ cwgt ξ + cwgt η.

This can be deduced from 3.4, but we indicate a direct proof. Let A,K,L be as in the

proof of 3.4, and let s1 (resp. s2) be a section of ξ over K (resp of η over L). Take a

function ϕ : A→ [0, 1] such that ϕ−1(0, 1] ∈ K and ϕ−1[0, 1) ∈ L. We set

s(x) := 〈s1(x), ϕ(x), s2(x)〉 ∈ {the total space of ξ ∗ η}, x ∈ A.

Then s is a desired section over A. Now, we can formulate (and, probably, exploit) the

obvious analog of (3.7).



56 YU. B. RUDYAK

The following result shows how Massey products help to estimate catX. Let H∗(−;R)

denote singular cohomology with coefficients in a commutative ring R. Given a matrix

V over H∗(X;R), we set cwgtV = min{cwgt v} where v runs over all entries of V .

3.10. Theorem ([R2]). Given X ∈ T , let V1, . . . , Vn be matrices over H∗(X;R).

Suppose that the matrix Massey product 〈V1, . . . , Vn〉 is defined. If 0 /∈ 〈V1, . . . , Vn〉 then

catX ≥ min
i
{cwgtV2i}+ min

i
{cwgtV2i+1}.

My feeling is that this result is somehow related to (3.7), but I can’t say how explicitly.

4. Elements of high category weight. The results of the previous section show

that it makes sense to search for (indecomposable) elements of high category weight. The

first example of this kind was found by Fadell–Husseini [FH]. Namely, they proved that,

for every odd prime p and connected X,

(4.1) cwgtβPnu ≥ 2 if u ∈ H2n+1(X;Z/p).

(Actually, they proved that swgtβPnu ≥ 2.)

4.2. Theorem. Let X ∈ T , and let V1, . . . , Vn be matrices over H∗(X;R) (singular

cohomology with coefficients in a commutative ring). Suppose that the matrix Massey

product 〈V1, . . . , Vn〉 is defined. Then, for every V ∈ 〈V1, . . . , Vn〉 and every entry u of V ,

we have cwgtu ≥ 2.

This theorem was explicitly formulated in [R2]. Actually, it follows from 1.6, 1.8, and

the result of Gugenheim–May [GM] that Ker{ε∗ : H∗(X)→ H∗(SΩX)} contains all the

matrix Massey products. Note that 4.2 implies (4.1) since βPnu ∈ 〈u, . . . , u〉 (p times)

for every u ∈ H2n+1(X;Z/p), Kraines [K].

Let E,F be two spectra, and let θ : E → F be a (stable) cohomology operation.

Without loss of generality we can assume that E = {En} and F = {Fn} are Ω-spectra,

i.e., that there are weak homotopy equivalences σn : En → ΩEn+1, etc. Then θ yields a

family θn : En → Fn of maps such that the diagram

En Fn

ΩEn+1 ΩFn+1

θn //

σE
n

��
σF
n

��
Ωθn+1 //

commutes up to homotopy. Following Strom [S2], set

d = d(θ) = inf{k|θk is an essential map}

4.3. Theorem ([S2]). swgt θn = 1 for n > d, and swgt θd ≥ 2.

Notice that d(θ) = 2n+ 1 for θ = βPn. This gives us another proof of (4.1). Indeed,

if u ∈ H2n+1(X;Z/p) then

swgtβPn(u) = swgt θ2n+1(u) ≥ swgt(θ2n+1) swgtu ≥ 2 swgtu ≥ 2.

4.4. Theorem ([S3]). Let G be a discrete group, and let E be a spectrum such that

πi(E) = 0 for i < m. Then swgtu ≥ k +m for every u ∈ Ek(BG).
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For k = 2 this result goes back to Fadell–Husseini [FH]. Notice that, by 2.6, swgtu = k

for every u ∈ Hk(BG), u 6= 0. As an application of 4.4, we note the following corollary.

4.5. Corollary. Let M be a smooth manifold such that the structure group of its

tangent bundle reduces to a discrete group G. If wI(M) 6= 0 then catM ≥ |I|. Here

I = {i1, . . . , ik}, wI is the Stiefel–Whitney class wi1 · · ·wik and |I| =
∑
ik.

P r o o f. It suffices to prove that swgtwI ≥ |I|. But this follows from 4.3 and 2.2(iii),

since wI is induced from BG.

The last example of elements of high category weight is as follows.

4.6. Theorem. Let X be a simply connected rational space, and let (Λ, d) be the

minimal Sullivan model for X. If a cohomology class x ∈ H∗(X;Q) = H∗(Λ, d) has the

form x = [a1 · · · ak] for some ai ∈ Λ,dim ai ≥ 0, then swgtx ≥ k.

Notice that the ai are not assumed to be cocycles and, hence, we can’t apply (3.6).

P r o o f. This follows from the result of Felix–Halperin [FeH, §3] that p∗k : H∗(X;Q)→
H∗(Pk(X);Q) annihilates all elements of the form [a1 · · · ak].

5. Detecting elements

5.1. Definition. Let F be as 1.9. An element u∈F ∗(X) is called a detecting element

for X if swgtu = catX.

We formulate the above definition for the general situation, but really we will apply

it to the case when F is a cohomology theory, as in 1.9(d).

5.2. Theorem ([R2]). Let X,Y be two connected pointed CW -spaces and let E,G

be two spectra. Suppose that there are detecting elements u ∈ E∗(X), v ∈ G∗(Y ). If

0 6= u� v ∈ (E ∧G)∗(X × Y ) then cat(X × Y ) = catX + catY , and u� v is a detecting

element for X × Y .

P r o o f. By 2.2(i), 3.5 and 1.4,

cat(X × Y ) ≥ swgt(u� v) ≥ swgtu+ swgt v = catX + catY ≥ cat(X × Y ).

5.3. Corollary. If a pointed CW -space X possesses a detecting element then cat(X×
Sn) = catX + 1 for every n ≥ 0. In other words, the Ganea conjecture holds for X.

P r o o f. We take a detecting element u ∈ E∗(X) and apply 5.2 to the case Y =

Sn, Gn(Y ) = Πn(Sn), and v is given by the identity map Sn → Sn. One can prove that

u� v 6= 0 (see e.g. [R2]), and the result follows.

For example, Strom [S1] proved that a (q − 1)-connected CW -space X possesses a

detecting element if catX = [dimX/q], and so such an X satisfies the Ganea conjecture.

5.4. Theorem ([R2]). Let R be a ring spectrum, and let E be an arbitrary R-module

spectrum. Let Mn, Nn be two closed connected HZ-orientable PL manifolds, and let f :

N → M be a map of degree ±1 and such that N is R-orientable. If M possesses a

detecting element u ∈ E∗(M) then cat f = catM . In particular , catN ≥ catM .

P r o o f. It is easy to see that f∗ : E∗(M)→ E∗(N) is monic. So, f∗u 6= 0, and hence,

by 2.2(i), cat f ≥ swgtu = catM . Hence, by 1.3, cat f = catM .
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The results above show that it is useful and important to know whether a space

possesses detecting elements. Consider the Puppe sequence

Pm(X)
pm→ X

jm→ Cm(X) := C(pm)

where pm : Pm(X)→ X is the fibration (1.5) and C(pm) is the cone of pm.

5.5. Theorem ([R2]). Let X be a pointed connected CW -space with catX = k <∞.

If jk is stably essential (i.e., the stable homotopy class of jk is non-zero) then X possesses

a detecting element.

In fact, the stable homotopy class of jm can be treated as a universal (among coho-

mology functors) detecting element. Also, we note that, for every X with catX = k, the

fibration pk : Pk(X) → X is a detecting element (see 1.10(e)). However, unfortunately,

it is difficult to apply analogs of 5.2–5.4 to this case.

6. Manifolds. Given a PL manifold M , we denote by νM the stable normal bundle

of M .

6.1. Theorem ([R2]). Let Mn, n = dimM ≥ 4, be a closed (q − 1)-connected PL

manifold , q ≥ 1. Suppose that there is a natural number m such that νM |M (m) is trivial

and

n ≤ min{2q catM − 4,m+ q catM − 1}.

Then M possesses a detecting element.

Putting m = n+ 1 and m = 1, we get the following corollary.

6.2. Corollary. (i) Let M be a closed (q − 1)-connected stably parallelizable PL

manifold , q ≥ 1. Suppose that 4 ≤ dimM ≤ 2(q catM − 2). Then M possesses a

detecting element.

(ii) Let q ≥ 1, and let Mn, n = dimM ≥ 4 be a closed orientable (q − 1)-connected

PL manifold such that q catM = n. Then M possesses a detecting element. Moreover ,

there exists a detecting element u ∈ Hn(M ;πn(Cn(M))).

6.3. Corollary. Let M be as in 6.1. Then cat(M × Sm1 × · · · × Smn) = catM + n

for any natural numbers m1, . . . ,mn.

Other results about the Ganea conjecture for manifolds can be found in [R1], [R2],

[S1]. Based on 6.2 and 5.4, we get the following theorem.

6.4. Theorem. (i) Let Mn be as in 6.2(i), and let f : Nn →Mn be a map of degree

±1 where N is a stably parallelizable PL manifold. Then cat f = catM . In particular ,

catN ≥ catM .

(ii) Let f : N → M be a map of degree ±1 of closed HZ-orientable PL manifolds. If

catM = dimM then cat f = catM = catN .

6.5. Corollary. Let M be an oriented PL manifold with catM = dimM , and let

f : X →M be a map of an arbitrary topological space such that

f∗ : Hn(M ;πn(Cn(M)))→ Hn(M ;πn(Cn(M)))

is a monomorphism. Then cat f = catM .



CATEGORY WEIGHT 59

P r o o f. By 6.2, there is a detecting element u ∈ Hn(M ;πn(Cn(M))), and f∗u 6= 0.

Thus,

cat f ≥ swgtu = catM.

But, by 1.3(i), cat f ≤ catM .

7. Applications to the Arnold conjecture. In [A, Appendix 9] Arnold proposed a

beautiful conjecture concerning the relation between the number of fixed points of certain

self-diffeomorphisms of a closed symplectic manifold (M,ω) and the minimum number of

critical points of any smooth (= C∞) function on M .

Let (M2n, ω) be a closed symplectic manifold. A symplectomorphism φ : M → M

(i.e., a diffeomorphism with φ∗ω = ω) is called Hamiltonian (or exact) if it belongs to

the flow of a time-dependent Hamiltonian vector field on M . See [HZ] or [MS] for details.

We define Arn(M,ω) to be the minimum number of fixed points for any Hamiltonian

symplectomorphism of M . The Arnold conjecture claims that the following inequality

holds for every closed symplectic manifold (M,ω):

Arn(M,ω) ≥ CritM.

The conjecture, usually (but not universally) weakened by replacing CritM by the cup-

length of M , has been proved under various hypotheses for various classes of manifolds

([CZ], [H], [Fl1], [Fl2]). Here the following theorem (formulated explicitly in [R2] and

based on Floer’s approach) plays the crucial role.

7.1. Theorem. Let (M,ω) be a closed connected symplectic manifold such that ω|π2(M)

= 0 = c1(M)|π2(M). Then there exists a map f : X →M with the following properties:

(i) X is a compact metric space;

(ii) 1 + cat f ≤ Arn(M,ω);

(iii) The homomorphism f∗ : Hn(M ;G) → Hn(X;G) is a monomorphism for every

coefficient group G.

The following theorem is proved in [R3] and [RO].

7.2. Theorem. Let (M2n, ω) be a closed connected symplectic manifold with

ω|π2(M) = 0 = c1|π2(M).

Then Arn(M,ω) ≥ CritM, i.e., the Arnold conjecture holds for M .

P r o o f. First, note that, by 3.8, catM = 2n = dimM . Hence,

1 + catM ≤ CritM ≤ 1 + dimM = 1 + catM

(the last inequality is a theorem of Takens [T]). So, 1 + catM = CritM . Thus, in view

of 7.1, it remains to prove that cat f ≥ catM where f is the map from 7.1. We give two

proofs of this inequality.

First proof. This follows from 6.5.

Second proof. Rudyak–Oprea [RO] proved that swgtω = 2. Thus, since f∗ωn 6= 0,

cat f ≥ swgtωn ≥ 2n = catM.
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fonction, donné sur une variété, Math. Sbornik 42, 5 (1935), 637–643.
[G] T. Ganea, Some problems on numerical homotopy invariants, Symposium in Algebraic

Topology, Seattle 1971, 23–30, Lecture Notes in Mathematics 249, Springer, Berlin 1971.
[GM] V. K. A. M. Gugenheim and J. P. May, On the Theory and Applications of Differential

Torsion Products, Memoirs Amer. Math. Soc. 142, AMS, Providence, Rhode Island 1974.
[H] H. Hofer, Lusternik–Schnirelmann theory for Lagrangian intersections, Annales de
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