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THE OPENNESS OF INDUCED MAPS ON HYPERSPACES

BY

ALEJANDRO ILLANES (MÉXICO)

A continuum is a compact connected metric space. A map is a continuous
function. For a continuum X with metric d, C(X) denotes the hyperspace
of subcontinua of X with the Hausdorff metric H. Given an onto map
f : X → Y between continua, the induced map f1 : C(X) → C(Y ) is defined
by f1(A) = f(A) (the image of A under f). In a similar way f2 : C(C(X)) →
C(C(Y )) is defined. As is observed in [15, 0.49], f1 is continuous.

Properties of induced maps have been studied by J. J. Charatonik,
W. J. Charatonik and H. Hosokawa [2–14].

In [13, Theorem 4.3], H. Hosokawa proved that if f1 is open, then f is
open and he gave an example showing that the converse of this implication
is not true. In the same paper he asked the following question: Is there an
open map f such that f1 is open but f2 is not open?

In this paper we prove the following result.

Theorem. Let f : X → Y be an onto map. If Y is nondegenerate and
f2 is open, then f is a homeomorphism.

As a consequence of this result, we obtain a positive answer to Hosokawa’s
question.

Concepts not defined here will be taken as they appear in [15].

Lemma. Let f : X → Y be a confluent map, let x0 ∈ X and let β be an
order arc in C(Y ) such that f(x0) ∈

⋂
B∈β B. Then there exists an order

arc α in C(X) such that x0 ∈
⋂

A∈α A and f2(α) = β.

P r o o f. For each B ∈ β, let AB be the component of f−1(B) such that
x0 ∈ AB , then f(AB) = B. Define α0 = {AB : B ∈ β}, B0 =

⋂
B∈β B and

B1 =
⋃

B∈β B. Then α0 has the following properties:

(1) If A ∈ α0, then AB0 ⊂ A ⊂ AB1 and
(2) If A1, A2 ∈ α0, then A1 ⊂ A2 or A2 ⊂ A1.
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Proceeding as in Theorem 1.8 in [15], there exists a subset α of C(X)
such that α0 ⊂ α and α is maximal with respect to inclusion among all the
subsets of C(X) having properties (1) and (2). Furthermore, as shown in the
same theorem, α is an order arc from AB0 to AB1 . Let β0 = f2(α) = {f1(A) :
A ∈ α}. Notice that β0 is a subcontinuum of C(Y ) and if B1, B2 ∈ β0, then
B1 ⊂ B2 or B2 ⊂ B1. This implies (see [15, Theorem 1.4]) that β0 is an
order arc in C(Y ). Since β is a subarc of β0 and β contains the end-points
B0 and B1 of β0, we conclude that β = β0.

Theorem. Let f : X → Y be an onto map. If Y is nondegenerate and
f2 is open, then f is a homeomorphism.

P r o o f. We only have to prove that f is one-to-one. Since f2 is open,
then f1 and f are open ([13, Theorem 4.3]). Thus f is confluent [1]. For an
order arc α and elements A and B in α, we denote by 〈A,B〉α the subarc of
α which joins A and B. For each subset A of X, let F1(A) = {{p} : p ∈ A}.
For a nonempty closed subset A of X and ε > 0, define N(ε, A) = {x ∈ X :
there exists a ∈ A such that d(x, a) < ε}. For a nonempty closed subset A
of C(X) and ε > 0, define N1(ε,A) = {B ∈C(X) : there exists A∈A such
that H(A,B) < ε}. Let H1 be the Hausdorff metric in C(C(X)). We divide
the proof into three steps.

Step 1. If E ∈ C(X) and f(E) is nondegenerate, then E is a component
of f−1(f(E)).

Let M = f(E). Suppose on the contrary that the component C of
f−1(M) which contains E is different from E. Choose points p ∈ C − E
and v ∈ M − {f(p)}. Let y = f(p) and let q ∈ E be such that f(q) = v.

Let β and γ be order arcs in C(M), from {y} to M and from {v} to M ,
respectively. From the lemma above, there exist order arcs α and λ in C(X)
such that β = f2(α), γ = f2(λ), p ∈

⋂
A∈α A and q ∈

⋂
A∈λ A. Notice that⋂

A∈α A ∈ α (see [15, 1.5, p. 58]) and f(
⋂

A∈α A)={y}. Taking an order arc
from {p} to

⋂
A∈α A, we can extend α to an order arc α1 in C(X), from {p}

to
⋃

A∈α A, such that β = f2(α1). Similarly, we can extend α to an order
arc from {p} to C. Thus we may assume that α is an order arc from {p} to
C. Analogously, we may assume that λ is an order arc from {q} to C.

Since {v} 6∈ β, there exist elements G1, G2 and G3 in γ − β such that
{v} ( G1 ( G2 ( G3 and 〈{v}, G3〉γ ∩ β = ∅. Let C1, C2 and C3 in λ
be such that f1(Ci) = Gi, for i = 1, 2, 3. Then {q} ( C1 ( C2 ( C3 and
〈{q}, C3〉λ∩α = ∅. Since {y} 6∈ γ, there exists an element K in β−{y} such
that 〈{y},K〉β ∩ γ = ∅. Let D be an element in α such that f(D) = K.
Then 〈{p}, D〉α ∩ λ = ∅.

Let V be an open subset of Y such that y ∈ V ⊂ ClY (V ) ⊂ Y − {v}. It
is easy to check that there exists ε > 0 such that:
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(a) N1(2ε, F1(E) ∪ 〈{q}, C1〉λ) ∩ f−1
1 (〈G2,M〉γ ∪ 〈K, M〉β)= ∅;

(b) N1(2ε, α ∪ 〈C3, C〉λ) ∩ f−1
1 (F1(M − V ) ∪ 〈{v}, G2〉γ)= ∅;

(c) N1(2ε, λ) ∩ f−1
1 (F1(ClY (V ∩M)) ∪ 〈{y},K〉β) = ∅; and

(d) N1(2ε, α)∩ N1(2ε, F1(E)) = ∅.

Let A = F1(E) ∪ α ∪ λ and let B = f2(A) = F1(M) ∪ β ∪ γ. Since f2 is
open, there exists δ > 0 such that if C ∈ C(C(Y )) and H1(B, C) < δ, then
there exists D ∈ C(C(X)) such that H1(A,D) < ε and f2(D) = C.

Choose elements E1 and E2 in γ such that G1 ( E1 ( G2 ( E2 ( G3

and diam(〈E1, E2〉γ) < δ. Define C = F1(M)∪β∪〈{v}, E1〉γ∪〈E2,M〉γ ⊂ B.
Then C ∈ C(C(Y )) and H1(B, C) < δ, so there exists D ∈ C(C(X)) such
that H1(A,D) < ε and f2(D) = C.

We will show that D is disconnected; this contradiction will prove Step 1.
Define

D1 = D ∩ ClC(X)(N1(ε, α ∪ 〈C1, C〉λ))

∩ f−1
1 (ClC(Y )(F1(V ∩M)) ∪ β ∪ 〈E2,M〉γ)

and
D2 = D ∩ ClC(X)(N1(ε, F1(E) ∪ 〈{q}, C3〉λ))

∩ f−1
1 (F1(M) ∪ 〈{y},K〉β ∪ 〈{v}, E1〉γ).

Then D1 and D2 are compact subsets of D.
If there exists an element D ∈ D1 ∩ D2, then f1(D) ∈ ClC(Y )(F1(V ∩

M))∪〈{y},K〉β and D ∈ N1(2ε, α∪〈C1, C〉λ)∩N1(2ε, (F1(E)∪〈{q}, C3〉λ)).
This is a contradiction with (c) and (d). Hence D1 ∩ D2 = ∅.

In order to prove that D = D1 ∪D2, take D ∈ D, and let A ∈ A be such
that H(A,D) < ε. Since f1(D) ∈ C, we have f1(D) ∈ F1(ClC(Y )(V ∩M))∪
β∪〈E2,M〉γ or f1(D) ∈ F1(M)∪〈{y},K〉β ∪〈{v}, E1〉γ . In the first case, if
A ∈ α∪ 〈C1, C〉λ, then D ∈ D1. Suppose then that A ∈ F1(E)∪ 〈{q}, C1〉λ.
From (a), f1(D) ∈ C−(〈G2,M〉γ∪〈K, M〉β), so f1(D) ∈ F1(M)∪〈{y},K〉β∪
〈{v}, E1〉γ . Therefore D ∈ D2. In the second case, if A ∈ F1(E)∪〈{q}, C3〉λ,
then D ∈ D2. Thus we may assume that A ∈ α ∪ 〈C3, C〉λ. From (b),
f1(D) ∈ C− (F1(M−V )∪〈{v}, G2〉γ) ⊂ F1(V ∩M)∪β∪〈E2,M〉γ . Therefore
D ∈ D1. This completes the proof that D = D1 ∪ D2.

Since H1(A,D) < ε and C ∈ A, there exists D1 ∈ D such that H(C,D1)
< ε, and from (b) and (c), f1(D1) ∈ C − (F1(M) ∪ 〈{v}, G2〉γ ∪ 〈{y},K〉β),
which implies that D1 ∈ D1 and D1 6= ∅. Since {q} ∈ A, there exists D2 ∈ D
such that H({q}, D2) < ε. From (a) and (c), f1(D2) ∈ C − (β ∪ 〈G2,M〉γ).
This implies that D2 ∈ D2. Hence D2 6= ∅.

Therefore D is disconnected. This contradiction completes the proof of
Step 1.

Step 2. f is light (i.e., fibers of f are totally disconnected).
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Suppose on the contrary that there exists a point y∈Y and a nondegen-
erate continuum A contained in f−1(y). Choose two points p 6=q in A and let
ε > 0 be such that d(p, q) > 2ε. Let A = F1(A), then f2(A) = {{y}}. Since
f2 is open, there exists δ > 0 such that if C ∈ C(C(Y )) and H1({{y}}, C) <
δ, then there exists D ∈ C(C(X)) such that H1(A,D) < ε and f2(D) = C.
Since Y is nondegenerate, there exists D ∈ C(Y ) such that y ∈ D 6= {y} and
diam(D) < δ. Then there exists B ∈ C(C(X)) such that H1(A,B) < ε and
f2(B) = {D}. Define B =

⋃
C∈B C. Then B ∈ C(X) (see [15, Lemma 1.43])

and f(B) = D. Since H1(A,B) < ε, there exist B1, B2 ∈ B such that
H({p}, B1) < ε and H({q}, B2) < ε. Then B1 ∩ B2 = ∅, so B1 ( B. From
Step 1, B1 is a component of f−1(f(B1)) = f−1(D). This contradicts the
fact that B ⊂ f−1(D) and completes the proof of Step 2.

Step 3. f is one-to-one.

Suppose on the contrary that there exist two points p 6= q in X such
that f(p) = f(q). Let y = f(p). Let A be a subcontinuum of X such that
A is irreducible between p and q. Let B = f(A). From Step 2, B is a
nondegenerate subcontinuum of Y .

We show that B is indecomposable. Suppose on the contrary that there
exist proper subcontinua D and E of B such that B = D ∪ E and y ∈ D.
Let A1 and A2 be the components of f−1(D) such that p ∈ A1 and q ∈ A2.
Since f is confluent, f(A1) = D = f(A2). Then f(A ∪ A1 ∪ A2) = B and
A ∪ A1 ∪ A2 is connected. From Step 1, A is a component of f−1(B), thus
A1 ∪ A2 ⊂ A. Irreducibility of A and f(A1) 6= f(A) imply that q 6∈ A1

and A1 ∩ A2 = ∅. Let z be a point in D ∩ E, let w ∈ A1 be such that
f(w) = z and let B1 be the component of f−1(E) such that w ∈ B1. Step
1 applied to A and to A1 ∪ B1 implies that A = A1 ∪ B1. This implies
that A2 ⊂ B1, so D ⊂ E and B = E. This contradiction proves that B is
indecomposable.

Let v be a point in B such that y and v are in different composants of
B. Choose a point u ∈ A such that f(u) = v. Let β and γ be order arcs in
C(B), from {y} to B and from {v} to B, respectively. The irreducibility of
B between y and v implies that β ∩ γ = {B}. Since f(p) = f(q) = y and
f(u) = v, the previous lemma implies that there exist order arcs α1, α2 and λ
such that f2(α1) = β = f2(α2), f2(λ) = γ, p ∈

⋂
D∈α1

D, q ∈
⋂

D∈α2
D and

u ∈
⋂

D∈λ D. Since {y} ∈ β, there exists D0 ∈ α1 such that f(D0) = {y}.
Then

⋂
D∈α1

D is a subcontinuum of X such that f(
⋂

D∈α1
D) = {y}. From

Step 2, we have {p} =
⋂

D∈α1
D. Since B ∈ β, there exists D1 ∈ α1 such

that f(D1) = B, which implies that f(
⋃

D∈α1
D) = B. From Step 1, we

obtain
⋃

D∈α1
D = A. Hence α1 is an order arc from {p} to A. Similarly,

α2 is an order arc from {q} to A and λ is an order arc from {u} to A.
The irreducibility of A between p and q implies that α1 ∩ α2 = {A}. If
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D ∈ αi ∩ λ, f(D) is a subcontinuum of B which contains the points y and
v, then f(D) = B. From Step 1, D = A. Thus αi ∩ λ = {A} for i = 1, 2.

Choose elements G1, G2 and G3 in γ such that {v} ( G1 ( G2 ( G3 ( B
and elements H1, H2 and H3 in β such that {y} ( H1 ( H2 ( H3 ( B.
Choose C1, C2 and C3 in λ such that f(Ci) = Gi, for each i = 1, 2, 3.
Then {u} ( C1 ( C2 ( C3 ( A. Choose A1 ∈ α1 and A2 ∈ α2 such that
f(A1) = H2 = f(A2). Then {p} ( A1 ( A and {q} ( A2 ( A.

It is easy to verify that there exists ε > 0 such that:

(a) N1(2ε, 〈A1, A〉α1∪〈C3, A〉λ)∩f−1
1 (F1(B)∪〈{y},H1〉β∪〈{v}, G2〉γ)= ∅;

(b) N1(2ε, F1(A)∪〈{q}, A2〉α2∪〈{u}, C1〉λ)∩f−1
1 (〈H3, B〉β∪〈G2, B〉γ)= ∅;

(c) N1(2ε, F1(A) ∪ λ) ∩ f−1
1 (〈H1,H3〉β) = ∅; and

(d) N1(2ε, 〈{q}, A2〉α2)∩ N1(2ε, 〈A1, A〉α1) = ∅.
Define A = F1(A) ∪ 〈{q}, A2〉α2 ∪ 〈A1, A〉α1 ∪ λ, then A ∈ C(C(X)).

Define B = f2(A) = F1(B)∪ β ∪ γ. Since f2 is open, there exists δ > 0 such
that if C ∈ C(C(Y )) and H1(B, C) < δ, then there exists D ∈ C(C(X)) such
that H1(A,D) < ε and f2(D) = C.

Choose elements E1 and E2 in γ such that G1 ( E1 ( G2 ( E2 ( G3

and diam(〈E1, E2〉γ) < δ. Define C = F1(B) ∪ β ∪ 〈{v}, E1〉γ ∪ 〈E2, B〉γ .
Then C ∈ C(C(Y )) and H1(B, C) < δ, so there exists D ∈ C(C(X)) such
that H1(A,D) < ε and f2(D) = C.

As in the proof of Step 1, the proof of Step 3 will be completed by proving
that D is disconnected.

Define
D1 = D ∩ ClC(X)(N1(ε, 〈A1, A〉α1 ∪ 〈C1, A〉λ)) ∩ f−1

1 (〈H1, B〉β ∪ 〈E2, B〉γ)
and

D2 = D ∩ ClC(X)(N1(ε, F1(A) ∪ 〈{q}, A2〉α2 ∪ 〈{u}, C3〉λ))

∩ f−1
1 (F1(B) ∪ 〈{y},H3〉β ∪ 〈{v}, E1〉γ).

Then D1 and D2 are closed subsets of D.
If there exists an element D ∈ D1 ∩ D2, then f1(D) ∈ 〈H1,H3〉β .

From (c), D 6∈ N1(2ε, F1(A) ∪ λ). Since D ∈ D1 ∩ D2, we have D ∈
N1(2ε, 〈{q}, A2〉α2) ∩ N1(2ε, 〈A1, A〉α1), which contradicts (d). Thus D1 ∩
D2 = ∅.

We prove that D = D1 ∪ D2. Let D ∈ D and let E ∈ A be such that
H(E,D) < ε. Then f1(D) ∈ F1(B) ∪ 〈{y},H1〉β ∪ 〈{v}, E1〉γ or f1(D) ∈
〈H3, B〉β ∪ 〈E2, B〉γ or f(D) ∈ 〈H1,H3〉β . In the first case, from (a), E ∈
A − (〈A1, A〉α1 ∪ 〈C3, A〉λ). So E ∈ F1(A) ∪ 〈{q}, A2〉α2 ∪ 〈{u}, C3〉. This
implies that D ∈ D2. In the second case, from (b), E ∈ A − (F1(A) ∪
〈{q}, A2〉α2 ∪ 〈{u}, C1〉λ), so D ∈ D1. Finally, in the third case, from (c),
E ∈ A − (F1(A) ∪ λ), so E ∈ 〈A1, A〉α1 ∪ 〈{q}, A2〉α2 . This implies that
D ∈ D1 ∪ D2. Therefore D = D1 ∪ D2.
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Since A ∈ A, there exists D1 ∈ D such that H(A,D1) < ε. From (a),
f1(D1) ∈ C − (F1(B)∪〈{y},H1〉β ∪〈{v}, G2〉γ). Thus D1 ∈ D1 and D1 6= ∅.
Since {u} ∈ A, there exists D2 ∈ D such that H({u}, D2) < ε. From (b),
f1(D2) ∈ C − (〈H3, B〉β ∪ 〈G2, B〉γ). Thus D2 ∈ D2 and D2 6= ∅.

Therefore D is disconnected. This contradiction proves Step 3 and com-
pletes the proof of the theorem.

Corollary. Let f : X → Y be an onto map. If Y is nondegenerate
then f2 is open if and only if f is a homeomorphism.

Example. Let X be the square [0, 1]×[0, 1], Y = [0, 1] and let f : X → Y
be the natural projection onto the first coordinate. It is easy to check that
f is open and f1 is also open. From the theorem above, f2 is not open. This
example answers Hosokawa’s question.
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