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THE OPENNESS OF INDUCED MAPS ON HYPERSPACES

BY

ALEJANDRO ILLANES (MEXICO)

A continuum is a compact connected metric space. A map is a continuous
function. For a continuum X with metric d, C'(X) denotes the hyperspace
of subcontinua of X with the Hausdorff metric H. Given an onto map
f X — Y between continua, the induced map f; : C(X) — C(Y) is defined
by f1(A) = f(A) (the image of A under f). In a similar way fs : C(C(X)) —
C(C(Y)) is defined. As is observed in [15, 0.49], f; is continuous.

Properties of induced maps have been studied by J. J. Charatonik,
W. J. Charatonik and H. Hosokawa [2-14].

In [13, Theorem 4.3], H. Hosokawa proved that if f; is open, then f is
open and he gave an example showing that the converse of this implication
is not true. In the same paper he asked the following question: Is there an
open map f such that f; is open but fs is not open?

In this paper we prove the following result.

THEOREM. Let f: X — Y be an onto map. If Y is nondegenerate and
fo is open, then f is a homeomorphism.

As a consequence of this result, we obtain a positive answer to Hosokawa’s
question.
Concepts not defined here will be taken as they appear in [15].

LEMMA. Let f: X — Y be a confluent map, let xo € X and let 8 be an
order arc in C(Y') such that f(xo) € (\ges B- Then there exists an order
arc a in C(X) such that xo € (e, A and fa(a) = B.

Proof. For each B € 3, let A be the component of f~1(B) such that
zg € Ap, then f(Ap) = B. Define ag = {Ap : B € B}, By = ez B and
Bi =peg B- Then ag has the following properties:

(1) If A € ap, then Ap, C A C Ap, and
(2) If Al,AQ € ag, then Ay C Ay or Ay C A4
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Proceeding as in Theorem 1.8 in [15], there exists a subset a of C(X)
such that oy C a and « is maximal with respect to inclusion among all the
subsets of C'(X) having properties (1) and (2). Furthermore, as shown in the
same theorem, « is an order arc from Ap, to Ap,. Let By = fa(a) = {f1(A) :
A € a}. Notice that j is a subcontinuum of C(Y') and if By, By € 3y, then
By C By or By C B;. This implies (see [15, Theorem 1.4]) that [y is an
order arc in C(Y'). Since 3 is a subarc of §y and [ contains the end-points
By and B; of 3y, we conclude that g = 3.

THEOREM. Let f: X — Y be an onto map. If Y is nondegenerate and
fo is open, then f is a homeomorphism.

Proof. We only have to prove that f is one-to-one. Since f5 is open,
then f; and f are open ([13, Theorem 4.3]). Thus f is confluent [1]. For an
order arc o and elements A and B in «, we denote by (A, B),, the subarc of
a which joins A and B. For each subset A of X, let F1(A) = {{p} :p € A}.
For a nonempty closed subset A of X and € > 0, define N(g, A) = {z € X :
there exists a € A such that d(x,a) < €}. For a nonempty closed subset A
of C(X) and € >0, define N'(g, A) = {B € C(X) : there exists A € A such
that H(A, B) < ¢}. Let H! be the Hausdorff metric in C(C(X)). We divide
the proof into three steps.

STEP 1. If E € C(X) and f(F) is nondegenerate, then E is a component
of f7Hf(E)).

Let M = f(FE). Suppose on the contrary that the component C of
f~Y(M) which contains F is different from E. Choose points p € C — E
and v € M —{f(p)}. Let y = f(p) and let ¢ € E be such that f(q) = v.

Let 8 and v be order arcs in C'(M), from {y} to M and from {v} to M,
respectively. From the lemma above, there exist order arcs  and A in C(X)
such that 8 = fa(a), v = f2(A), p € (pen A and g € ()4, A. Notice that
Naca A € a (see [15, 1.5, p. 58]) and f(() 4o, A) ={y}. Taking an order arc
from {p} to () 4, A, we can extend « to an order arc a; in C(X), from {p}
to (Jacq A such that 8 = fa(aq). Similarly, we can extend a to an order
arc from {p} to C. Thus we may assume that « is an order arc from {p} to
C'. Analogously, we may assume that A is an order arc from {¢} to C.

Since {v} ¢ (3, there exist elements G1, G2 and G3 in v — (3 such that
{’U} g G1 g GQ g Gg and <{’U},G3>,Y N ﬁ = @ Let 01, CQ and Cg in A
be such that fi(C;) = G, for i = 1,2,3. Then {¢} € C1 € Cy € C5 and
({q},C3),Na = 0. Since {y} & 7, there exists an element K in §—{y} such
that ({y}, K)3 N~y = 0. Let D be an element in « such that f(D) = K.
Then ({p}, D), NA=0.

Let V be an open subset of Y such that y € V C Cly (V) C Y — {v}. It
is easy to check that there exists € > 0 such that:
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(a) N'(2¢, Fi(E) U ({g}, C1)x) N fi 1 ((Ga, M)y U (K, M) g)=0;
(b) N'(2e,a U <03, >A)ﬁff1(F1(M—V)U<{ I3 G2>~y)= ;
(c) Nl( )0 fTHE(Cly (VO M) U ({y}, K)g) = 0; an

(d) N'(2¢,0)n N'(22, Fy (E)) = 0.

Let A= Fi(E)UaUX and let B = fa(A) = F1(M)U B U~. Since fs is
open, there exists § > 0 such that if C € C(C(Y)) and H*(B,C) < 6, then
there exists D € C(C(X)) such that H*(A,D) < ¢ and fo(D) =C.

Choose elements E; and FEs in v such that G C Fy € Gy € Es C G
and diam((E1, E2),) < ¢. Define C = Fy (M)UBU{v}, E1),U(Es, M), C B.
Then C € C(C(Y)) and H*(B,C) < §, so there exists D € C(C(X)) such
that H*(A, D) < ¢ and fo(D) =C.

We will show that D is disconnected; this contradiction will prove Step 1.

Define

Dy = DN Clox)(N' (e, U (C1,C) )
N fi (Clo) (Fy(V N M) U BU (B, M),)
and
Dy =D N Clox) (N (e, Fi(E) U {{g}, C3)x))
NfHEM) U {y} K)g U (v}, Br)y).
Then D; and Dy are compact subsets of D.

If there exists an element D € Dy N Dy, then fi1(D) € Cloy(Fi(V N
M)U({y}, K)s and D € N (22, a0 (Cy, O NN (26, (F (E)Ut{a}, Cs)))-
This is a contradiction with (c¢) and (d). Hence D1 N Dy = ().

In order to prove that D = Dy UD,, take D € D, and let A € A be such
that H(A, D) < e. Since f1(D) € C, we have f1(D) € Fi(Clgy)(VNM))U
BU(Ey, M) or fi(D) e Fi(M)U({{y}, K)gU({v}, E1),. In the first case, if
A€ aU(Cy,C)y, then D € D;. Suppose then that A € Fy(E)U ({q}, C1)a.
From (a), fi(D) € C—((Ga, M),U(K, M)s), s0 f1(D) € Fy(M)U{{y}, K) sU
({v}, E1)~. Therefore D € Dy. In the second case, if A € F1(E)U({q}, Cs)x,
then D € Dy. Thus we may assume that A € a U (C3,C)x. From (b),
fi(D) e C— (Fi(M—-V)U({{v},G2),) C FA(VNM)UBU(E,, M).,. Therefore
D € D,. This completes the proof that D = Dy U Ds.

Since H*(A, D) < € and C € A, there exists D; € D such that H(C, Dy)
< ¢, and from (b) and (c), f1(D1) € C — (F1(M) U ({v},G2), U {y}, K)g),
which implies that D, € Dy and D; # (). Since {q} € A, there exists Dy € D
such that H({q}, D2) < e. From (a) and (c), fi(D2) € C — (BU (G2, M),).
This implies that Dy € Dy. Hence Dy # ().

Therefore D is disconnected. This contradiction completes the proof of
Step 1.

STEP 2. f is light (i.e., fibers of f are totally disconnected).
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Suppose on the contrary that there exists a point y €Y and a nondegen-
erate continuum A contained in f~!(y). Choose two points p#q in A and let
e > 0 be such that d(p,q) > 2¢. Let A = Fy(A), then fo(A) = {{y}}. Since
f2 is open, there exists § > 0 such that if C € C(C(Y)) and H'({{y}},C) <
d, then there exists D € C(C(X)) such that H'(A, D) < € and f2(D) = C.
Since Y is nondegenerate, there exists D € C(Y') such that y € D # {y} and
diam(D) < 6. Then there exists B € C(C (X)) such that H'(A, B) < £ and
f2(B) = {D}. Define B = JoczC. Then B € C(X) (see [15, Lemma 1.43])
and f(B) = D. Since H'(A,B) < ¢, there exist By, By € B such that
H({p},B1) < e and H({q},B2) <e. Then B; N By =), so By € B. From
Step 1, B; is a component of f~1(f(B;)) = f~1(D). This contradicts the
fact that B C f~!(D) and completes the proof of Step 2.

STEP 3. f is one-to-one.

Suppose on the contrary that there exist two points p # ¢ in X such
that f(p) = f(q). Let y = f(p). Let A be a subcontinuum of X such that
A is irreducible between p and gq. Let B = f(A). From Step 2, B is a
nondegenerate subcontinuum of Y.

We show that B is indecomposable. Suppose on the contrary that there
exist proper subcontinua D and F of B such that B= DU FE and y € D.
Let A; and Ay be the components of f~1(D) such that p € A; and ¢ € As.
Since f is confluent, f(A1) = D = f(A2). Then f(AU A; U As) = B and
AU A; U Aj is connected. From Step 1, A is a component of f~1(B), thus
A1 U Ay C A. Trreducibility of A and f(A;) # f(A) imply that ¢ € Ay
and A1 N Ay = (. Let z be a point in D N E, let w € A; be such that
f(w) = z and let By be the component of f~!(E) such that w € B;. Step
1 applied to A and to A; U By implies that A = A; U B;. This implies
that Ao C B1,so D C E and B = E. This contradiction proves that B is
indecomposable.

Let v be a point in B such that y and v are in different composants of
B. Choose a point u € A such that f(u) = v. Let $ and 7 be order arcs in
C(B), from {y} to B and from {v} to B, respectively. The irreducibility of
B between y and v implies that 5N~ = {B}. Since f(p) = f(q) = y and
f(u) = v, the previous lemma implies that there exist order arcs oy, ag and A
such that f2(o1) = 8 = fa(a2), f2(A) =7, P € Npea, D: 4 € (peq, D and
u € [\per D. Since {y} € 3, there exists Dy € a; such that f(Dg) = {y}.
Then (pe,, D is a subcontinuum of X such that f((\pe,, D) = {y}. From
Step 2, we have {p} = [\pc,, D- Since B € 3, there exists D; € a; such
that f(D1) = B, which implies that f(Upc,, D) = B. From Step 1, we
obtain (Jpe,, D = A. Hence oy is an order arc from {p} to A. Similarly,
ao is an order arc from {q} to A and A is an order arc from {u} to A.
The irreducibility of A between p and ¢ implies that oy Nay = {A}. If
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D € a; N A, f(D) is a subcontinuum of B which contains the points y and
v, then f(D) = B. From Step 1, D = A. Thus oy, N A = {A} for i =1,2.

Choose elements G1, G and G3 in v such that {v} C G; T G2 C G3 C B
and elements Hy, Hy and Hs in (3 such that {y} C Hy € Hy C Hs C B.
Choose C7, Cy and C5 in A such that f(C;) = G, for each i = 1,2,3.
Then {u} C C; € Cy € C3 € A. Choose A € a; and Ay € s such that
f(A1) = Hy = f(Az). Then {p} € A; C A and {¢q} C Ay C A.

It is easy to verify that there exists € > 0 such that:

(a) N'(2e, (A1, A)a,U(Cs, A) )N [ (FL(B)U{y}, Hi)gU({v}, Go)y)= 0;
(b) N*(2¢, Fi(A)U({q}, Az)a,U{{u}, Cr)A)NS1 H ((Hs, B)gU(Ga, B),)= 0;
(c) N'(2e, 1 (A)UN) N £ ((Hy, H3)g) = 0; and

(d) N'(2¢, ({g}, A2)a)N N'(2¢, (A1, A)a,) = 0.

Define A = F1(A) U ({q}, A2)a, U (41, A)q, U A, then A € C(C(X)).
Define B = f2(A) = F1(B)U [ U~. Since fs is open, there exists § > 0 such
that if C € C(C(Y')) and H(B,C) < 4, then there exists D € C(C(X)) such
that H'(A, D) < ¢ and f»(D) =C.

Choose elements E; and FEs in v such that G € Fy € Gy € Es C G
and diam((E1, Es),) < d. Define C = Fy(B) U U ({v}, E1), U (E2, B),.
Then C € C(C(Y)) and H*(B,C) < §, so there exists D € C(C(X)) such
that H*(A,D) < ¢ and fo(D) =C.

As in the proof of Step 1, the proof of Step 3 will be completed by proving
that D is disconnected.

Define
Dy = D0\ Clox) (NU(e, (A1, A)a, U (Cr A))) 0 7 ((Hy, B)g U (s, B),)

and
Dy =DnN CIC’(X) (N1(57F1(A) U <{Q}7A2>a2 U <{U}, 03>>\))

NfTH(FU(B) U ({y}, Hs)p U ({0}, Br)s).
Then D; and Dy are closed subsets of D.

If there exists an element D € D; N Dy, then fi1(D) € (Hy, Hs)g.
From (c), D ¢ N'(2¢,F1(A) U\). Since D € D; N Dy, we have D €
NY(2¢,({q}, A2)a,) N N1 (2¢, (A1, A)y, ), which contradicts (d). Thus Dy N
Dy =0).

We prove that D = D1y UDsy. Let D € D and let £ € A be such that
H(E, D) < =. Then f,(D) € Fy(B)U ({y}, H)s U {{v}, E1), or fi(D) €
(Hs,B)g U (Es,B), or f(D) € (Hi,Hs)g. In the first case, from (a), E €
A — ((A1,A)a, U(C3,A))). So E € Fi1(A)U ({¢}, A2)a, U {u},Cs). This
implies that D € D,. In the second case, from (b), £ € A — (F1(A) U
({q}, A2)a, U ({u},C1)x), so D € D;. Finally, in the third case, from (c),
EecA—-(Fi(A)UN),so E e (A1,A) 0, U{{q},A2)a,. This implies that
D € D; UD,y. Therefore D = Dy U Ds.
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Since A € A, there exists D1 € D such that H(A,D;) < e. From (a),
fl(Dl) eC— (F1(B) U <{y}, H1>5 U <{1)}, G2>7). Thus D, € Dy and Dy # 0.
Since {u} € A, there exists Dy € D such that H({u}, D) < . From (b),
f1(D2) eC— (<H3,B>3 U <G2,B>7). Thus Dy € Dy and Dy # 0.

Therefore D is disconnected. This contradiction proves Step 3 and com-
pletes the proof of the theorem.

COROLLARY. Let f : X — Y be an onto map. If Y is nondegenerate
then fo is open if and only if f is a homeomorphism.

EXAMPLE. Let X be the square [0,1]x[0,1], Y = [0,1] and let f : X — Y
be the natural projection onto the first coordinate. It is easy to check that
f is open and f; is also open. From the theorem above, fs is not open. This
example answers Hosokawa’s question.
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