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1. Introduction. We study definability of principal congruences in
certain classes of congruence permutable but not congruence distributive
groupoids related to Brouwerian semilattices. An example of a congruence
permutable variety without DPC generated by a 3-element commutative
groupoid is given. This contrasts with a result of A. F. Pixley implying
DPC for all arithmetical varieties generated by a set of at most 4-element
algebras.

Our example is an equivalential algebra, i.e. a groupoid A = (A,↔) that
can be embedded into a (↔)-reduct of a Brouwerian semilattice, where the
operation ↔ is determined by the term x ↔ y = (x → y) ∧ (y → x). This
notion was introduced by J. Kabziński and A. Wroński [12]. They showed
that the class E of all equivalential algebras is equationally definable by the
following identities:

• (x ↔ x) ↔ y = y,

• ((x ↔ y) ↔ z) ↔ z = (x ↔ z) ↔ (y ↔ z),
• ((x ↔ y) ↔ ((x ↔ z) ↔ z)) ↔ ((x ↔ z) ↔ z) = x ↔ y.

Although the variety E is closely related to the variety BS of all Brouw-
erian semilattices there are some important differences between them.

First note that the definition of E shows that E is locally finite (since
BS is). However, the number of elements of the n-generated free algebra is
known only for n = 0, 1, 2, 3 when it is 1, 2, 9 and 4415434 respectively (see
[18] for the last number).

Note also that the term operation determined by the term x ↔ x is con-
stant in BS and in E as well. The corresponding constant will be denoted
by 1. What is more interesting, the congruences are 1-regular, i.e. they are
determined by their 1-equivalence classes. This is a well known property of
BS, where these equivalence classes are called filters and play an important
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role. An analogous concept of filter can be defined for equivalential alge-
bras. This concept is well motivated since lattices of congruences and filters
of an equivalential algebra are isomorphic under the mapping θ → 1/θ.
This means that E , like BS, is an ideal determined variety in the sense of
H. P. Gumm and A. Ursini [9]. Since all 1-regular varieties are congru-
ence modular and congruence n-permutable for some n (see J. Hagemmann
[10]), E also satisfies these Malcev conditions. Actually, E is congruence
permutable and

p(x, y, z) = ((x ↔ y) ↔ z) ↔ (((x ↔ z) ↔ z) ↔ x)

serves as a Malcev term.
Since among the identities in the language (↔) the same are satisfied

by E and BS, any Malcev condition which holds in E also holds in BS.
However, the converse fails to hold. The simplest, but important, example
is the condition of congruence distributivity. To see this let us only note
that among subvarieties of E there is a smallest non-trivial one, namely the
variety E2 of Boolean groups which is generated by the two-element group
and can be axiomatized, relative to E , by adjoining the associativity law.
This immediately gives that there is no non-trivial congruence distributive
variety of equivalential algebras. From this we see that no non-trivial subva-
riety of E has Equationally Definable Principal Congruences (see P. Köhler
and D. Pigozzi [14]). However, the variety E2 does have (first order) De-
finable Principal Congruences. Moreover, it has the Congruence Extension
Property, another condition fulfilled by BS. As we will see later, E2 is the
only non-trivial subvariety of E which has any of these properties.

To see that CEP fails to hold in E let us denote by E3 the (↔)-reduct of
the 3-element Brouwerian semilattice with elements ordered by 1 > 2 > 3.
Then put A = E3×E3 and observe that B = {(1, 1), (1, 2), (2, 1), (2, 2)} is a
subuniverse of A. Moreover, we have ((1, 2), (2, 1)) ∈ ΘA((1, 1), (2, 2)) while
((1, 2), (2, 1)) 6∈ ΘB((1, 1), (2, 2)). Thus CEP fails to hold in the variety E3

generated by E3. Since for every subvariety V of E we have either V ⊆ E2

or E3 ⊆ V, the trivial subvariety and E2 are the only ones having CEP.
One of the aims of this paper is to show that DPC is another property

which fails in E3. This means, in particular, that there is a congruence
permutable variety generated by a 3-element algebra which does not have
DPC.

The notion of definability of principal congruences was introduced by
J. T. Baldwin and J. Berman in [2] where they showed that in varieties with
DPC certain results of W. Taylor concerning residually small varieties could
be sharpened. They also asked if each finitely generated variety has DPC. A
negative answer was given by S. Burris [5] who described an example of a 4-
element algebra generating a congruence distributive variety without DPC.
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Another example, due to W. Taylor [unpublished], is a variety generated
by a 3-element commutative semigroup. However, congruences of algebras
from Taylor’s variety satisfy no non-trivial lattice identity—in particular,
they do not permute. The first example of a finite algebra generating a
congruence permutable variety without DPC was constructed by S. Burris
and J. Lawrence [6]. In the course of their studies of DPC for groups and
rings they obtained a 6-element group and a 64-element ring with the above
properties. Later, G. Simons [17] obtained an 8-element ring generating
a variety without DPC and showed that this is the smallest possible such
example. The reader may also wish to consult the paper of K. A. Baker [1],
where a complete characterization of finite groups generating varieties with
DPC is given.

On the other hand, J. Berman [3] proved that every variety generated by
a 2-element algebra does have DPC. Another positive result of this kind is
contained in A. F. Pixley’s paper [16] where the assumption that all subdi-
rectly irreducible algebras from a variety have linearly ordered congruences
(following [11] such varieties will be called congruence linear) suffices for a
finitely generated arithmetical variety to have DPC. However, congruence
linearity is not a necessary condition for a finitely generated arithmetical
variety to have DPC, or even EDPC, as examples of some subvarieties of
BS show. On the other hand, it is not true that every finitely generated
arithmetical variety has DPC—an 8-element counterexample has been con-
structed by E. Kiss [13]. We do not know if it is smallest possible, but from
Pixley’s result it follows that each arithmetical variety V generated by a set
K of at most 4-element algebras does have DPC.

To see this first note that all subdirectly irreducible algebras from V are
contained in HS(K) and thus they have at most 4 elements. Therefore their
congruence lattices are embeddable into the lattice Π4 of all partitions of a 4-
element set. The only distributive sublattice of Π4 which has a unique atom
µ and is not a chain must consist of exactly 5 elements 0 < µ < α, β < 1.
Moreover, an algebra A with this congruence lattice must have 4 elements,
say a, b, c, d. Without loss of generality we may assume that the monolith
µ corresponds to the partition {{a, b}, {c}, {d}}. For α and β we have two
essentially different situations: either

A/α = {{a, b, c}, {d}} and A/β = {{a, b, d}, {c}},
or

A/α = {{a, b, c}, {d}} and A/β = {{a, b}, {c, d}}.

However, in the first case we have

c
α≡ a

β
≡ d while (c, d) 6∈ β ◦ α,
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and in the second case

a
α≡ c

β
≡ d while (a, d) 6∈ β ◦ α.

Consequently, A is not congruence permutable. Thus V is congruence linear
and, in view of Pixley’s result, it has DPC.

The above description of small algebras generating varieties without
DPC leads to the following questions:

Question 1. How large is a smallest algebra generating an arithmetical
variety without DPC ?

Question 2. Is there a 3-element algebra generating a congruence dis-
tributive variety without DPC ?

Equivalential algebras are subreducts (i.e. subalgebras of reducts) of
Brouwerian semilattices. Actually, for any subvariety V of BS all algebras
from Ve are subreducts of those from V, i.e. Ve = S(Vr), where Vr is the
class of all (↔)-reducts of algebras from V. In particular, we have E2 =
BSe

2 = S(BSr
2), where BS2 is the smallest non-trivial subvariety of BS.

Actually, we have even more: E2 = BSr
2. Although E3 = BSe

3, where BS3 is
generated by the 3-element Brouwerian semilattice C3, it is no longer true
that E3 = BSr

3. The situation can be even worse since we are unable to prove
that BSr

3 is (first order) axiomatizable. However, any class of the form Vr

is closed under reduced products and thus it is pseudo-elementary (see [7],
p. 177). Thus let us state the following

Question 3. For which varieties V of Brouwerian semilattices is the
class Vr elementary?

The main results of the paper are stated as follows:

Result 4. The only non-trivial variety of equivalential algebras with
Definable Principal Congruences is the variety E2 of all Boolean groups.

Result 5. For a variety V of Brouwerian semilattices the following
conditions are equivalent :

• Vr has Definable Principal Congruences,
• V is generated by a finite chain.

The last theorem contrasts sharply with the fact that every subvariety of
BS has Equationally Definable Principal Congruences. Actually, as shown
by W. Blok, P. Köhler and D. Pigozzi [4], Brouwerian semilattices can serve
as a paradigm for varieties with Equationally Definable Principal Congru-
ences.

2. Preliminaries. By an equivalent algebra we mean a grupoid A =
(A,↔) satisfying the following three identities (we adopt the convention
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of associating to the left and ignoring the symbol ↔ of the equivalence
operation):

xxy = y,(2.1)
xyzz = xz(yz),(2.2)
xy(xzz)(xzz) = xy.(2.3)

The variety of equivalential algebras is denoted by E .

For the basic arithmetic of equivalential algebras as well as for the proofs
of all facts from this section the reader is referred to [12].

Among the identities fulfilled by E we have:

xy = yx,(2.4)
xx = yy,(2.5)
xyy(yxx) = xy,(2.6)
xyyy = xy,(2.7)
xyzz = xzz(yzz),(2.8)
xyyzz = xzzyy,(2.9)
xyy(yzz)(yzz) = xyy,(2.10)
xyy(yz)(yz) = xyyzz,(2.11)
x(yz)y = xyzy,(2.12)
xyyxzz(xyyx) = xzzxyy(xzzx).(2.13)
xyy(xzz)(xww) = xyy(xzz(xww)).(2.14)

According to (2.1), (2.4) and (2.5) we can define a constant term 1 = xx
that is a neutral element for the operation given by ↔.

The identities (2.9) and (2.7) allow us to define an abbreviation c&X
for a finite set X, by putting c&{x1, . . . , xk} = cx1x1 . . . xkxk. (We also put
c&∅ = c for convenience.) Moreover, if X = {X1, . . . , Xk} is a finite family
of finite subsets of an equivalential algebra containing c then, according to
(2.4) and (2.14), we can define c ? X to be (c&X1) . . . (c&Xk) (or 1 in case
k = 0, i.e. X is empty). For a finite subset X of an equivalential algebra we
will also use c ? X to denote the element c ? {{x} : x ∈ X}.

We will need the fact that for every c ∈ A the subalgebra of A gener-
ated by {c&X : X is a finite subset of A} is associative and has the universe
{c ? X : X is a finite family of finite subsets of A}.

By a filter of an equivalential algebra A we mean a non-empty subset F
of A satisfying, for all a, b ∈ A,

• if a, ab ∈ F then b ∈ F,

• if a ∈ F then abb ∈ F.
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As mentioned in the introduction, filters correspond to congruences via the
maps

F 7→ ΘF = {(x, y) : xy ∈ F}, θ 7→ Fθ = 1/θ.
For an element c of an equivalential algebra we define the principal filter
generated by c, denoted by [c), to be the smallest filter containing c.

We will need the following characterization of principal filters proved in
[12].

Lemma 1. Let a and c belong to an equivalential algebra A. Then a ∈ [c)
iff there is a finite family X of finite subsets of A such that acc = c ? X.

Equivalential algebras are subreducts (i.e. subalgebras of reducts) of
Brouwerian semilattices. Actually, for any subvariety V of BS all algebras
from Ve are subreducts of those from V, i.e. Ve = S(Vr), where Vr is the class
of all (↔)-reducts of algebras from V. In particular, E2 = BSe

2 = S(BSr
2),

where BS2 is the smallest non-trivial subvariety of BS. Actually, E2 = BSr
2.

In general, for n = 1, 2, . . . , ω we define En = BSe
n, where BSn is the variety

of Brouwerian semilattices generated by an n-element chain. Analogously
to the case of Brouwerian semilattices all subvarieties of Eω form an infinite
chain

E1 ⊆ E2 ⊆ E3 ⊆ . . . ⊆ Eω.

The variety E1 is trivial, while E2 is the variety of Boolean groups and it
can be axiomatized (relative to E) by either the associativity law or the
identity xyy = x. Moreover, from [12] we know that the variety Eω can be
axiomatized, relative to E , by the identity

x(yzz)(yzz)(x(zyy)(zyy)) = x(yz)(yz)x. (1)
If a variety V of equivalential algebras (Brouwerian semilattices) is not con-
tained in Eω (resp. BSω) then the algebra (22⊕)r (resp. the Brouwerian
semilattice 22⊕) belongs to V. Here 22⊕ denotes the Brouwerian semilat-
tice obtained from a four-element Boolean algebra by adjoining a new largest
element, and (22⊕)r its equivalential reduct.

The arithmetic in equivalential algebras that are reducts of Brouwerian
semilattices can be slightly simplified. This is due to the fact that the
identity

xyyzz = x(y ∧ z)(y ∧ z)
holds in Brouwerian semilattices. Therefore each element of the form a&X
can be replaced by axx. Consequently, Lemma 1 can be rewritten as

Lemma 2. Let a and c belong to a reduct of a Brouwerian semilattice A.
Then a ∈ [c) iff there is a finite subset X of A such that acc = c ? X.

3. Principal congruences in non-Boolean varieties of equivalen-
tial algebras are not definable. The aim of this section is to prove the
following



DEFINABILITY OF PRINCIPAL CONGRUENCES 231

Theorem 3. The only non-trivial variety of equivalential algebras with
definable principal congruences is the variety of Boolean groups.

In proving the above theorem we will need an auxiliary lemma, an easy
proof of which is left to the reader.

Lemma 4. Let S be a non-empty (↔)-subuniverse of the Boolean group
(P(X),↔) of all subsets of a set X. Then

E3[X, S] = {α ∈ EX
3 : α−1({1, 2}) ∈ S}

is a subuniverse of the direct power EX
3 .

P r o o f o f T h e o r e m 3. It is obvious that in any Boolean group the
formula

Φ(x, y) ≡ (x = y or x = 1)
defines the principal filter (i.e. normal subgroup) generated by the element y.

To prove the converse it suffices to show that the variety E3 does not have
definable principal congruences. This will be shown by constructing a family
{An : n < ω} of finite algebras from E3 and two sequences (αn : n < ω),
(γn : n < ω) of elements of An such that αn ∈ [γn) for all n < ω but
(αn)/U 6∈ [(γn)/U) in the ultraproduct of the An’s over an ultrafilter U
containing all cofinite subsets of ω.

Let Πn be the set of all points of a projective geometry of dimension n
over the field Z2. Then each t ∈ Πn can be represented as an (n + 1)-tuple
(t0, . . . , tn) ∈ Zn+1

2 excluding the constant sequence of 0’s. By a hyperplane
we mean any subset of Πn consisting of all points satisfying an equation
(over Z2) of the form e0t0 + . . . + entn = 0. The set of all hyperplanes of
Πn is denoted by Hn. It is easy to see that Hn is a (↔)-subuniverse of
the Boolean algebra P(Πn), and thus, using Lemma 4, we can form a finite
equivalential algebra An = E3[Πn,Hn] belonging to E3.

Now, in each projective space Πn fix a point pn and define two elements
αn and γn in An by putting

αn(t) =
{

2 if t = pn,
1 otherwise, γn(t) = 2 for all t ∈ Πn.

Moreover, for each subset X ⊆ Πn we will need the elements χX , δX of
EΠn

3 defined by

χX(t) =
{

1 if t ∈ X,
3 otherwise, δX(t) =

{ 2 if t ∈ X,
1 otherwise.

Note that δX ∈ An for each X ⊆ Πn and χX ∈ An iff X ∈ Hn.
The reader will find no difficulties in checking that

(3.1) αnγnγn = αn,
(3.2) γn&{χX1 , . . . , χXk

} = δX1∩...∩Xk
whenever X1, . . . , Xk ⊆ Πn,
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(3.3) (γn&X1) . . . (γn&Xs) = δ(
⋂
X1)↔...↔(

⋂
Xs) whenever X1, . . . ,Xs are

finite sets of the form {χX1 , . . . , χXk
} with Xi ⊆ Πn.

Since the intersection of all hyperplanes containing the point pn is equal
to {pn}, by (3.2), we get

γn&{χX : pn ∈ X ∈ Hn} = αn,

which together with (3.1) and Lemma 1 gives αn ∈ [γn) for each n < ω.
Let U be an ultrafilter on ω containing all cofinite subsets of ω. We are

going to show that for α = (αn), γ = (γn) the element α/U of the ultraprod-
uct of all An’s over U does not belong to the principal filter generated by
γ/U . Assume to the contrary that α/U ∈ [γ/U), which, by Lemma 1, means
that there are s < ω and finite subsets X1, . . . ,Xs of

∏
n<ω An such that

[[αγγ = (γ&X1) . . . (γ&Xs)]] ∈ U .

Note that in any algebra An for each element ξ there is an element ζ such
that ζ−1(3) = ξ−1(3), ζ−1(2) = ∅ and therefore γnξξ = γζζ. This implies
that in (3.4) each Xi can be assumed to be a subset of

∏
n<ω An such that

for each n < ω the nth coordinate of any element of this subset is of the
form χX ∈ An for some X ∈ Hn. Let k = |X1 ∪ . . . ∪ Xs|. Denoting by Xn

i

the set of the nth coordinates of elements from Xi, then identifying Xn
i with

{X ⊆ Πn : χX ∈ Xn
i } and using (3.3) together with αγγ = α we get

{n < ω : αn = δ(
⋂
Xn

1 )↔...↔(
⋂
Xn

s )} ∈ U .

This, however, means that there is k < ω such that for infinitely many
n < ω, αn = δZ for some Boolean combination Z of at most k hyperplanes
in Πn, i.e. that for infinitely many n < ω the Boolean combination of at
most k hyperplanes in Πn gives a one-element subset of Πn. This cannot
be true, as otherwise representing this Boolean combination in its normal
form as a join of intersections of hyperplanes or their complements we find
that at least one of those intersections is non-empty. On the other hand,
each such intersection consists of solutions of some sound set of at most k
linear equations over the field Z2. However, for sufficiently large n such a
set of equations has in Πn at least 2n+1−k − 1 ≥ 3 solutions and therefore
the considered Boolean combination has, for almost all n, at least 3 points.
This contradiction finishes the proof of Theorem 3.

4. Principal congruences in equivalential reducts of Brouwerian
semilattices. In this section we prove that the only varieties of Brouwerian
semilattices whose equivalential reducts have definable principal congruences
are those generated by a finite chain. This will be done in three steps. First
we prove that if the Brouwerian semilattice 22⊕ is in the variety V then
Vr does not have definable principal congruences. To do this we need an
auxiliary lemma.



DEFINABILITY OF PRINCIPAL CONGRUENCES 233

By a graph we mean a pair (V,E), where V is a non-empty set and E is
a family of non-empty, at most two-element subsets of V. Any graph of the
form (V,K(V )) with K(V ) = {{a, b} : a, b ∈ V } is called complete.

Lemma 5. There is no natural number s such that for each finite graph
(V,E) there are X1, . . . , Xt ⊆ V with t ≤ s and E =

⊕t
i=1 K(Xi), where

⊕
denotes symmetric difference.

P r o o f. Assume that such natural numbers exist and let s be the small-
est one. Let p be the number of all subsets of {1, . . . , s} with an odd number
of elements.

Now let V = {x0, . . . , xp} and E be the family of all singletons of el-
ements from V. By our assumption E =

⊕t
i=1 K(Xi) for some t ≤ s and

X1, . . . , Xt ⊆ V. Moreover, put Bj = {i ∈ {1, . . . , t} : xj ∈ Xi} for any
j = 0, . . . , p. Since {xj} ∈ E, it follows that |Bj | is odd. Because {1, . . . , t}
has at most p subsets with odd cardinality, there are j1 6= j2 with Bj1 = Bj2 .
This gives that xj1 ∈ Xi iff xj2 ∈ Xi, for all i = 1, . . . , t, and consequently
for all i with xj1 ∈ Xi we have {xj1 , xj2} ∈ K(Xi). But |Bj1 | is odd, which
means that {xj1 , xj2} is in an odd number of components of the form K(Xi).
Consequently, {xj1 , xj2} ∈ E, which gives j1 = j2, a contradiction.

Now we are ready to prove the following.

Theorem 6. If V is a variety of Brouwerian semilattices containing the
algebra 22⊕ then the class Vr of all equivalential reducts of algebras from V
does not have definable principal congruences.

P r o o f. With any graph (V,E) we associate the poset V ∪ E with the
order given by

x ≤ y iff x = y or x ∈ y.

Now let Pn be the poset associated with the complete n-element graph
Kn = (Vn,K(Vn)) and An be the Brouwerian semilattice of all upward
closed subsets of Pn ordered by reverse inclusion. It is routine to check that
An belongs to the variety generated by the Brouwerian semilattice 22⊕.

Define two elements αn, γn of An by putting

αn = {{a} : a ∈ Vn}, γn = {{a, b} : a, b ∈ Vn}.
Our first claim is that αn ∈ [γn) , which means that

αnγnγn = (γnβ1β1) . . . (γnβkβk) (2)

for some β1, . . . , βk ∈ An. To see this, observe that for any βi ∈ An we have
γnβiβi = γn(γn ∧ βi)(γn ∧ βi), and therefore we can consider only βi’s that
satisfy βi ≤ γn in An, i.e. βi ⊇ γn. This allows us to identify each such βi

with a subset Bi = βi − γn of Vn. Then we have

γnβiβi = {{a, b} ⊆ Vn : a 6∈ Bi and b 6∈ Bi} = K(Vn −Bi).
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Moreover, we have

(γnβ1β1) . . . (γnβkβk) =
k⊕

i=1

K(Vn −Bi).

Now, for a ∈ Vn put βa = γn ∪ {a} and observe that γnβaβa = {{a}} =
K({a}), which together with αnγnγn = αn gives

αnγnγn =
⊕
a∈Vn

K({a}) =
⊕
a∈Vn

γnβaβa.

This means that the βa’s witness the equation (2) and shows that for each
n < ω the element αn lies in the equivalential filter of An generated by γn.

On the other hand, by Lemma 5, there is no uniform (with respect to n)
upper bound for k satisfying the equality

αn =
k⊕

i=1

K(Vn −Bi),

with B1, . . . , Bk ⊆ Vn. Now the standard ultraproduct argument shows that,
in the ultraproduct of the An’s over an ultrafilter U containing all cofinite
subsets of ω, the element (αn)/U does not belong to the equivalential filter
generated by (γn)/U .

In the second step we prove the following.

Theorem 7. If V is a variety of Brouwerian semilattices containing an
infinite chain then the class. Vr of all equivalential reducts of algebras from
V does not have definable principal congruences.

P r o o f. Once again we will construct a chain {An : n < ω} of algebras
from V and two chains of elements {αn ∈ An : n < ω}, {γn ∈ An : n < ω}
such that for any n < ω, αn lies in the equivalential filter of An generated by
γn but (αn)/U does not belong to the equivalential filter of the ultraproduct
of the An’s generated by (γn)/U .

Let Cn be the n-element Brouwerian semilattice with elements ordered
by 1 > 2 > . . . > n. It is easy to observe that for each natural number n the
set An consisting of all elements α = (α0, . . . , α2n) of C2n+1

2n+1 satisfying

• if k < 2n and αk 6= 1, 2 then αk+1 = αk,

• if p ∈ C2n+1 − C2 then α takes the value p exactly 0 or p− 1 times,

is a subuniverse of C2n+1
2n+1. Now in the Brouwerian semilattice An put

αn
i =

{
1 if i is even,
2 if i is odd, γn

i =
{ 2 if i 6= 2n,

1 if i = 2n.
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Moreover, for any p ∈ C2n+1 − {1}, let ηp be the only element of An with
the value-set {2, p}. Then an easy calculation shows that

αnγnγn = αn = (γnη2η2)(γnη3η3) . . . (γnη2n+1η2n+1),

which means that αn belongs to the equivalential filter generated by γn.

On the other hand, each element of the form γnδδ with δ ∈ An be-
longs to the set {γnηpηp : p = 2, . . . , 2n + 1}. It is routine to check that
αnγnγn = αn does not belong to any equivalential algebra generated by a
proper subset of this set. This actually shows that (αn)/U does not belong
to the equivalential filter generated by (γn)/U in the ultraproduct of the
An’s over a non-principal ultrafilter U .

The last part of this section deals with the proof of the following.

Theorem 8. If V is a variety of Brouwerian semilattices generated by
a finite chain then the class Vr has definable principal congruences.

P r o o f. Let A be a Brouwerian semilattice. From Malcev’s Lemma we
see that if (a, b) ∈ ΘAr(c, d) then there is a quantifier free (positive) formula
Φ(x, y, u, v, z) such that

Ar |= ∃z Φ(a, b, c, d, z).

Now letA0 be the Brouwerian subsemilattice ofA generated by {a, b, c, d, e},
where e = e1, . . . , ek are elements of A witnessing the above formula. Then
obviously

Ar
0 |= ∃z Φ(a, b, c, d, z)

and consequently (a, b) ∈ ΘAr
0
(c, d). Since the variety BS, and therefore each

subvariety V of it, is locally finite, the standard compactness argument (cf.
proof of Lemma 2.2 in [15]) gives that the class Vr has DPC iff its subclass
Vr

fin of all finite members has DPC.
In view of the correspondence between (principal) congruences and (prin-

cipal) filters in algebras from E and the above mentioned fact applied for
V = BSr

n, to prove our theorem it suffices to show that for each n ∈ ω the
class (BSr

n)fin has definable principal filters.
We claim that the formula

n∨
k=0

∃x1 . . .∃xk acc = (cx1x1) . . . (cxkxk)

defines the relation “a ∈ [c)” in all finite algebras from BSr
n. In view of

Lemma 2 it suffices to show that

(8.1) If c is an element of a finite A ∈ BSn then for every X ⊆ A there
is Z ⊆ A with |Z| ≤ n and c ? X = c ? Z.
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Before proving (8.1) we need some preparations. Through the rest of the
proof we assume that A is a finite Brouwerian semilattice and that 0 is its
smallest element.

We put xr = x00 and xd = x00x, so that x = xdxr. An element is said
to be regular (dense) if x = xr (x = xd). Both these notions are known for
(finite) Brouwerian semilattices (see e.g. [8]). Note also that the set Ad of
all dense elements of A is a subuniverse of A. Moreover, we have Ad ∈ BSn

wheneverA ∈ BSn+1.
If x is a regular element then xuu = x for all u. We will use this in the

proof of

(8.2) If x is regular then axx(bx) = abx.

Indeed, we have

abx = abxxx by (2.7),
= ab(xbb)xx by regularity of x,

= a(xb)bbxx by (2.2),
= a(xb)(xb)(xb)xx by (2.11),
= a(xb)xx by (2.7),
= a(bx)xx by (2.4),
= axx(bxxx) by (2.8),
= axx(bx) by (2.7).

Now, with the help of (8.2) and (2.2), straightforward induction gives

(8.3) (a1x) . . . (akx) =
{

a1 . . . akxx if k is even,
a1 . . . akx if k is odd.

Our final preparatory claim is the following:

(8.4) If c is a dense element of a finite Brouwerian semilattice A from
BSn+1 then for every X ⊆ A there is Z ⊆ A with |Z| ≤ n and
c ? X = c ? Z.

We prove the above claim by induction on n. It is trivial for n = 0. For
n = 1 we have cxx = c for all c, x ∈A, so that c?X ∈ {c, 1} = {c ? {c}, c ? ∅}
for every X ⊆ A.

Assume now that A ∈ BSn+2. Using x = xrxd and (1) (see Section 2),
we get

cxx = c(xrxd)(xrxd)

= c(c(xrxdxd)(xrxdxd))(c(xdxrxr)(xdxrxr))

= c(cxrxr)(cxdxd)
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so that for X = {x1, . . . , xk} we have

c ? X = (cxr
1x

r
1) . . . (cxr

kxr
k)(cxd

1xd
1) . . . (cxd

kxd
k)c′, (3)

where c′ ∈ {c, 1}. On the other hand, for regular elements x, y we get

cxx(cyy) = c(xyy)(xyy)(c(yxx)(yxx)) = c(xy)(xy)c,

which allows us to shorten (3) to

c ? X = (czz)(cxd
1xd

1) . . . (cxd
kxd

k)c′. (4)

Now, since all elements c, xd
1 , . . . , xd

k, c′ are dense, they belong to a subalge-
braAd ofA which itself lies in the variety BSn+1. The induction hypothesis
supplies us with Z ⊆ Ad such that |Z| ≤ n and

(cxd
1xd

1) . . . (cxd
kxd

k)c′ = c ? Z.

Consequently, for Y = Z ∪ {z} we have c ? X = c ? Y and |Y | ≤ n + 1 as
required.

Now to prove (8.1) assume that X = {x1, . . . , xm} ⊆A ∈ BSn. Then

c ? X = (cx1x1) . . . (cxmxm)

= (cdcrx1x1) . . . (cdcrxmxm)

= (cdx1x1(crx1x1)) . . . (cdxmxm(crxmxm))

= (cdx1x1c
r) . . . (cdxmxmcr),

which, in view of (8.3), is equal either to (cdx1x1) . . . (cdxmxm)crcr or to
(cdx1x1) . . . (cdxmxm)cr. Since cd is dense, we can apply (8.4) to get a subset
Z = {z1, . . . , zk} of A with k ≤ n− 1 and

(cdx1x1) . . . (cdxmxm) = (cdz1z1) . . . (cdzkzk).

On the other hand, cdzizi = c00czizi = c00zizi(czizi) = c00(czizi) =
cr(czizi) and consequently c ? X = c ? Z or c ? X = c ? (Z ∪ {0}), as
required.

This finishes the proof of (8.1) and therefore that of Theorem 8.
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