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1. Introduction. Let (M, g, J) be a connected, n = 2m-dimensional,
m ≥ 2, semi-Riemannian manifold of class C∞ with a not necessarily definite
metric g and an almost complex structure J such that

(1) g(JX, JY ) = g(X, Y ), X, Y ∈ Ξ(M),

where Ξ(M) is the Lie algebra of C∞ vector fields on M . A manifold
(M, g, J) satisfying (1) is called almost Hermitian. The almost Hermitian
manifold (M, g, J) is said to be a para-Kähler manifold ([12], [13], see also
[10], p. 69) if its Riemann–Christoffel curvature tensor R satisfies the Kähler
identity

(2) R(X, Y, Z,W ) = R(X, Y, JZ, JW ), X, Y, Z,W ∈ Ξ(M).

Evidently, every Kähler manifold satisfies (2). The converse statement is
not true; see e.g. [13] or [17].

In this paper we consider para-Kähler manifolds which satisfy curvature
conditions of pseudosymmetric type. In Section 2 we give precise defini-
tions. Pseudosymmetric manifolds constitute a generalization of spaces of
constant (sectional) curvature, along the line of locally symmetric (∇R = 0)
and semisymmetric (R ·R = 0, cf. [14]) spaces, consecutively. Profound in-
vestigation of several properties of semisymmetric manifolds gave rise to
their next generalization: the pseudosymmetric manifolds. Both the study
of the intrinsic aspect and the study of the extrinsic aspect led to this con-
cept. We have e.g. the following two theorems. Every manifold M which
can be mapped geodesically onto a semisymmetric manifold is pseudosym-
metric. Every totally umbilical submanifold, with parallel mean curvature

1991 Mathematics Subject Classification: 53B20, 53C25.
The first author is a postdoctoral researcher of N.F.W.O., Belgium.
Research of the second author supported by a research-grant of the Research Council

of the Katholieke Universiteit Leuven.
Research of the third author supported by the grant OT/TBA/95/9 of the Research

Council of the Katholieke Universiteit Leuven.

[253]



254 F. DEFEVER ET AL.

vector field, of a semisymmetric manifold is pseudosymmetric. This concept
of pseudosymmetry in the proper sense belongs to a larger class of curva-
ture conditions of pseudosymmetric type. For more detailed information on
the geometric motivation for the introduction of pseudosymmetry, and for
a review of results on different aspects of pseudosymmetric spaces, see e.g.
[6] and [16]. We just mention here the following application. Curvature
conditions of pseudosymmetric type often appear in the theory of general
relativity, which is rather surprising in view of the purely geometrical origin
of the concept. For more information on this aspect see e.g. [3].

2. Preliminaries. Let (M, g) be an n-dimensional, n ≥ 3, semi-
Riemannian connected manifold of class C∞. We denote by ∇, S and κ
the Levi-Civita connection, the Ricci tensor and the scalar curvature of
(M, g), respectively. We define on M the endomorphisms R̃(X, Y ), X ∧ Y

and C̃(X, Y ) by

R̃(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z, (X ∧ Y )Z = g(Y, Z)X − g(X, Z)Y,

C̃(X, Y ) = R̃(X, Y ) +
1

n− 2

(
κ

n− 1
X ∧ Y − (X ∧ S̃Y + S̃X ∧ Y )

)
,

respectively, where X, Y, Z ∈ Ξ(M), Ξ(M) being the Lie algebra of vector
fields on M , and the Ricci operator S̃ of (M, g) is defined by S(X, Y ) =
g(X, S̃Y ). The (0, 4)-tensor G is defined by

G(X1, . . . , X4) = g((X1 ∧X2)X3, X4).

The Riemann curvature tensor R and the Weyl curvature tensor C of (M, g)
are defined by

R(X1, X2, X3, X4) = g(R̃(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C̃(X1, X2)X3, X4).

Further, for a symmetric (0, 2)-tensor field A on M , we define the endomor-
phism X ∧A Y of Ξ(M) by (X ∧A Y )Z = A(Z, Y )X − A(Z,X)Y , where
X, Y, Z ∈ Ξ(M). Evidently, we have X ∧g Y = X ∧ Y . For a (0, k)-tensor
field T on M , k ≥ 1, and a symmetric (0, 2)-tensor field A on M , we define
the (0, k + 2)-tensor fields R · T and Q(A, T ) by

(R · T )(X1, . . . , Xk;X, Y ) = − T (R̃(X, Y )X1, X2, . . . , Xk)

− . . .− T (X1, . . . , Xk−1, R̃(X, Y )Xk),
Q(A, T )(X1, . . . , Xk;X, Y ) = − T ((X ∧A Y )X1, X2, . . . , Xk)

− . . .− T (X1, . . . , Xk−1, (X ∧A Y )Xk).

Curvature conditions involving tensors of the form R · T and Q(A, T ) are
called curvature conditions of pseudosymmetric type. E.g. manifolds satis-
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fying the condition

(3) R ·R = LRQ(g,R)

on the set UR = {x ∈ M | R − κ
n(n−1)G 6= 0 at x} are called pseudosym-

metric; in particular, for LR = 0 they contain the semisymmetric spaces
(R ·R = 0). Manifolds satisfying the condition

(4) R · S = LSQ(g, S)

on the set US = {x ∈ M | S − κ
ng 6= 0 at x} are called Ricci-pseudo-

symmetric; in particular, for LS = 0 they contain the Ricci-semisymmetric
spaces (R · S = 0). Manifolds satisfying the condition

(5) R · C = LCQ(g, C)

on the set UC = {x ∈ M | C 6= 0 at x} are called Weyl-pseudosymmetric;
in particular, for LC = 0 they contain the Weyl-semisymmetric spaces
(R · C= 0).

The inclusions among the above mentioned classes of manifolds can be
summarized in the following table; in general, for manifolds with dimension
≥ 4, all inclusions are strict [6].

R · S = LSQ(g, S) ⊃ R ·R = LRQ(g,R) ⊂ R · C = LCQ(g, C)
∪ ∪ ∪

R · S = 0 ⊃ R ·R = 0 ⊂ R · C = 0

In the present paper, we prove that on para-Kähler manifolds the cur-
vature conditions of pseudosymmetric type R · T = LQ(g, T ) for T = R,S
and C reduce to the corresponding curvature conditions of semisymmetric
type, e.g. R ·T =0 for T =R,S and C, respectively. This question for Ricci-
generalized pseudosymmetric para-Kähler manifolds (i.e. manifolds realizing
a curvature condition of the form R ·R = LQ(S, R)) was treated in [2].

Let L denote the class of all almost Hermitian manifolds (M, g, J). Fur-
ther, the class of all para-Kähler manifolds will be denoted by L1. According
to [10], we denote by L2 and L3 the classes of all almost Hermitian manifolds
realizing the relations

R(X, Y, Z,W ) = R(JX, JY, Z, W ) + R(JX, Y, JZ, W ) + R(JX, Y, Z, JW )
and

R(X, Y, Z,W ) = R(JX, JY, JZ, JW ),

respectively, where X, Y, Z,W ∈ Ξ(M). As shown in [10] (Lemma 5.1,
p. 68), we have the following inclusions:

L1 ⊂ L2 ⊂ L3 ⊂ L.

Some results on the above classes of manifolds are presented in Chapter II
of [10].
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3.Para-Kähler manifolds of pseudosymmetric type. Let (M, g, J),
n = dim M ≥ 4, be a para-Kähler manifold covered by a system of coordi-
nate neighbourhoods {U ;uh}. We denote by Jk

h = J k
h the local components

of the almost complex structure J . Morever, let Chijk, Rhijk, Sij and gij

be the local components of the Weyl conformal curvature tensor C, the
Riemann–Christoffel curvature tensor R, the Ricci tensor S and the metric
tensor g, respectively. Thus, by (1), we have

(6) Js
kJ l

s = −δl
k, Jr

kJs
l grs = gkl, Jkl = gksJ l

s.

Further, (2) takes the form

(7) Jr
hJs

i Rrsjk = Rhijk,

whence, by (6), we obtain

(8) Js
hRsljk − Js

l Rshjk = 0.

Further, using the above relations, we find

(9) JrsRrsjk = 2Ajk, JrsRrijs = −Aij ,

where Ajk = −Js
j Ssk.

3.1. Ricci-semisymmetric para-Kähler manifolds

Proposition 3.1. Every semi-Riemannian Ricci-pseudosymmetric para-
Kähler manifold (M, g, J), dim M ≥ 4, is Ricci-semisymmetric.

P r o o f. Let x be a point of the set US and let Ũ ⊂ US be a coordinate
neighbourhood of x. Then the equality

(R · S)hirs = LSQ(g, S)hirs

holds on Ũ . Transvecting this with Jr
j Js

k and using the Ricci identity and
(7) we obtain

(R · S)hirs = LSQ(g, S)hirsJ
r
s Js

k .

Thus by (4) we have

LSQ(g, S)hirsJ
r
j Js

k = LSQ(g, S)hijk.

Suppose that the function LS is non-zero at x. Then the last equality gives

Q(g, S)hirsJ
r
j Js

k = Q(g, S)hijk,

which, by contraction with ghk, yields Sij = κ
ngij , a contradiction. Thus

the function LS vanishes identically on US , which completes the proof.

The above proposition generalizes Theorem 1 of [11].

3.2. Pseudosymmetric para-Kähler manifolds

Proposition 3.2. Every semi-Riemannian pseudosymmetric para-
Kähler manifold (M, g, J), dim M ≥ 4, is semisymmetric.
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P r o o f. Let x be a point of the set UR and let Ũ ⊂ UR be a coordinate
neighbourhood of x. Then the equality

(R ·R)hijkrs = LRQ(g,R)hijkrs

holds on Ũ . Now, in the same way as in the proof of Proposition 3.1 we
obtain

LRQ(g,R)hijkrsJ
r
l Js

m = LRQ(g,R)hijklm.

Suppose that the function LR is non-zero at x. Then the last equality gives

(10) Q(g,R)hijkrsJ
r
l Js

m = Q(g,R)hijklm.

Since every pseudosymmetric manifold is Ricci-pseudosymmetric, from
Proposition 3.1 it follows that the equality

(11) Sij =
κ

n
gij

holds at x. Contracting (10) with ghm and using (11), (7), and (9), we get

(12) Jr
l Js

j Rrkis − Jr
l Js

kRrjis +
2κ

n
JliJjk −

κ

n
JljJki +

κ

n
JlkJji

= (n− 3)Rlijk −
κ

n
Glijk,

where Jli = Js
l gsi and Glijk = glkgij − gljgik are the local components of

the tensor G. Transvecting (12) with Jj
h and and using (6) and (7), we find

−Jr
l Rrkih − Js

kRsihl −
2κ

n
Jlighk −

κ

n
Jkighl −

κ

n
Jlkghi

= (n− 3)Js
hRskli −

κ

n
gklJhi +

κ

n
gikJhl.

Contracting this with ghi and applying (6), (7), (8) and (11), we find κJkl

= 0, whence κ = 0. Thus (11) yields Sij = 0. Now (9) reduces to

(13) JrsRrsjk = 0, JrsRrijs = 0,

respectively. Further, from (7), by (8), we have

Jr
hJs

i (R ·R)rsjkab = (R ·R)hijkab,

which, by virtue of (3), (7) and the assumption that LR is non-zero at x,
turns into

giaRbhjk + ghbRaijk − ghaRbijk − gibRahjk

= JhaJs
i Rsbjk + JibJ

s
hRsajk − JiaJs

hRsbjk − JhbJ
s
i Rsajk.

This yields

gia(R ·R)bhjklm + ghb(R ·R)aijklm − gha(R ·R)bijklm − gib(R ·R)ahjklm

= JhaJs
i (R ·R)sbjklm + JibJ

s
h(R ·R)sajklm

− JiaJs
h(R ·R)sbjklm − JhbJ

s
i (R ·R)sajklm.
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Finally, applying (3) and contracting the resulting equality with gam and
ghb we get Rlijk = 0, a contradiction. Thus LR vanishes at x. But this
completes the proof.

The above proposition generalizes Theorem 4 of [4].

3.3. Weyl-pseudosymmetric para-Kähler manifolds

Proposition 3.3. Every semi-Riemannian Weyl-pseudosymmetric para-
Kähler manifold (M, g, J), dim M ≥ 4, is Weyl-semisymmetric.

P r o o f. Let x be a point of UC . First assume that dim M ≥ 5. Thus, in
view of Theorem 1 of [7] and our Proposition 3.2, the tensor R ·R vanishes
at x. Thus R · C = 0 holds at x, completing the proof of this case. Now
assume that dim M = 4. Transvecting the equality

(R · C)hijklm = LCQ(g, C)hijklm

with J l
aJm

b and using the Ricci identity and (7) we obtain

(R · C)hijkab = LCJ l
aJm

b Q(g, C)hijklm,

whence
LCQ(g, C)hijkab = LCJ l

aJm
b Q(g, C)hijklm.

Suppose that the function LC is non-zero at x. Thus the last equality
reduces to

Q(g, C)hijkab = J l
aJm

b Q(g, C)hijklm.

This, by contraction with ghb, gives

2Caijk = Js
aJr

i Csrjk + Js
aJr

j Cskir − Js
aJr

kCsjir(14)
− Jai JsrCsrjk − JajJ

srCskir + JakJsrCsjir,

which, by transvection with Ja
h , turns into

2Js
hCsijk = Jr

i Crhjk − Jr
j Chkir + Jr

kChjir(15)
+ ghjJ

srCskir − ghkJsrCsjir + ghiJ
srCsrjk.

Next, contracting (15) with ghi we obtain

(16) JsrCsrjk = 0,

which reduces (15) to

(17) 2Js
hCsijk = Js

i Cshjk − Js
j Csikh + Js

kCsijh.

Next, summing (17) cyclically in h, j, k we get

Js
hCsijk + Js

j Csikh + Js
kCsihj = 0.

Now (17), by making use of the above relation, yields

Js
kCsijk = Js

i Cshjk.



PSEUDOSYMMETRIC PARA-KÄHLER MANIFOLDS 259

From this, by (8) and (5), it follows that

JhaCbijk + giaJs
hCsbjk − JhbCaijk − gibJ

s
hCsajk

= JiaCbhjk + ghlJ
s
i Csbjk − JibCahjk − ghbJ

s
i Csajk

and

JhaQ(g, C)bijklm − JhbQ(g, C)aijklm

+ giaJs
hQ(g, C)sbjklm − gibJ

s
hQ(g, C)sajklm

= JiaQ(g, C)bhjklm − JibQ(g, C)ahjklm

+ ghlJ
s
i Q(g, C)sbjklm − ghbJ

s
i Q(g, C)sajklm.

Contracting the last equality with gam and ghb, after some calculations, we
obtain

Js
i Csljk = 0.

Applying this and (15) in (14) we get at x the relation C = 0, a contradic-
tion. Our theorem is thus proved.

R e m a r k 3.1. An example of a non-conformally flat and non-semisym-
metric Weyl-semisymmetric manifold (M, g),dim M = 4, which is a Kähler
manifold was described in [5] (Lemme 1.1).

R e m a r k 3.2. Let B be the Bochner curvature tensor ([1], [18], [15]) of a
para-Kähler semi-Riemannian manifold (M, g, J), n = 2m ≥ 4. In [8] Kähler
Riemannian manifolds with semisymmetric Bochner tensor (R ·B = 0) were
considered. From the main results of [8] (Theorem) we can conclude that
if the tensor B of a para-Kähler Riemannian manifold (M, g, J), n = 2m ≥
4, is semisymmetric then the Riemann–Christoffel curvature tensor R of
(M, g, J) is semisymmetric on the subset UB ⊂ M consisting of all points
of M at which B is non-zero. Most recently this statement was generalized
as follows [9]: if the Bochner tensor B of a para-Kähler semi-Riemannian
manifold (M, g, J), n = 2m ≥ 4, is pseudosymmetric, i.e. R·B = LBQ(g,B)
holds on UB , then the tensor R of (M, g, J) is semisymmetric on the set UB .
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[8] M. Hot lo ś, On a certain class of Kählerian manifolds, Demonstratio Math. 12
(1979), 935–945.

[9] —, On holomorphically pseudosymmetric Kählerian manifolds, in: Geometry and
Topology of Submanifolds, VII, World Scientific, River Edge, N.J., 1995, 139–142.

[10] C. C. Hs iung, Almost Complex and Complex Structures, World Scientific, Singa-
pore, 1995.

[11] Z. Olszak, Bochner flat Kählerian manifolds with a certain condition on the Ricci
tensor , Simon Stevin 63 (1989), 295–303.
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