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ON COMPACT ELEMENTS IN SOLVABLE LIE GROUPS

BY

MICHAEL WÜSTNER (DARMSTADT)

1. Introduction. In considering solvmanifolds, L. Auslander investi-
gated rigid Lie groups, i.e., simply connected solvable Lie groups where all
elements x of their Lie algebra meet the following condition: spec ad(x) ⊆ iR
(cf. [2]). In a sense, these groups are opposite to those solvable Lie groups
whose exponential map is a homeomorphism. While in the latter case the
structure of the group is uniquely determined by the structure of its Lie
algebra, the infinitesimal properties of rigid Lie groups do not reflect all
global properties. We will consider a class of Lie groups which are close to
rigid Lie groups, namely Lie groups generated by their compact elements:
If G is a real Lie group and g ∈ G, then g will be called compact if it is an
element of a compact subgroup of G. The set of all compact elements of G
is denoted by compG. It is exactly the union of all compact subgroups of
G. In general, comp G is not a subgroup. The subgroup which is generated
by the compact elements will be denoted by κ(G) := 〈compG〉. Since the
group κ(G) contains a maximal torus, it is closed. If H is a subgroup of
G with H ⊇ κ(G) we get κ(H) ⊆ κ(G). On the other hand, all compact
subgroups of G are in H and κ(H) = κ(G). If we set H = κ(G) we get
κ(κ(G)) = κ(G). Our aim is to characterize solvable Lie groups G such that
κ(G) = G and those satisfying compG = G.

The Lie algebra of a Lie group G is denoted by L(G) or, simply, by g.
We remark that in a solvable Lie algebra g the commutator subalgebra g′

is a nilpotent ideal. Analogously, in a solvable connected Lie group G the
commutator subgroup G′ is a nilpotent normal subgroup. Furthermore, if
G is connected then so is G′. We denote the intersection of the descending
central series of g by C∞ and the center of g by z. Since the compact con-
nected subgroups of a solvable Lie group are tori and all maximal tori are
conjugate under Γ̃ = Iexp C∞ , where Ig denotes the inner conjugation with
g, we get compG = Γ̃ .T for a maximal torus T .

It is clear that we also have to look at Lie algebras in which we shall call
an element compact if it lies in a compactly embedded subalgebra t, which
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means that ead t is compact in Aut(g). We note that 〈ead g〉 is a solvable an-
alytic subgroup of Aut(g). Thus its closure is solvable as well. But the only
compact subgroups of a solvable Lie group are tori, which are, in particular,
abelian. So, each compactly embedded subalgebra of a solvable Lie algebra
is abelian. Compact elements in Lie algebras are exactly those elements
where ad(x) is semisimple and has only pure imaginary eigenvalues. The
set of all compactly embedded subalgebras of g is denoted by comp g. In
particular, comp g is the union of all compactly embedded subalgebras of g.
Since comp g, in general, is not a subalgebra, we set κ(g) = 〈comp g〉. Let
Γ := ead C∞ ⊆ Inn(g). In [6] it is proved that in the solvable case we have
comp g = Γ.k for a maximal compactly embedded subalgebra k and that
κ(g) = span comp g. In Theorem 3.2, we shall show that κ(κ(g)) = κ(g).
In [6] and [9] one may find more information about compact elements in
solvable Lie algebras.

In Section 4, we shall show that the solvable connected Lie groups G
which are generated by their compact elements are characterized by g =
κ(g) = 〈Γ.t〉 where t is the Lie algebra of a maximal torus of G. This
statement is equivalent to the conditions that g = t + g′ and z ∩ k ⊆ 〈Γ.t〉
and k ⊇ t. Furthermore, in Section 5, we shall characterize Lie algebras
where comp g is dense, and in Section 6 Lie groups where compG is dense.
For this, we need Cartan subgroups, which we now introduce.

An element x in a Lie algebra g is called regular if the nilspace g0(adx)
has minimal dimension. This dimension is called the rank of g. Remember
that this nilspace is a Cartan algebra and each Cartan algebra can be written
in this manner. The set of all regular elements of g is denoted by reg g. We
remark that reg g is open and dense in g. An element y ∈ g is called exp-
regular if the exponential function is regular in y. The set of all exp-regular
elements of g is denoted by reg exp. The set reg exp is open and dense in g
as well. An element g ∈ G is called regular if the nilspace N(Ad(g)− id) of
Ad(g)− id has minimal dimension, i.e., if dim N(Ad(g)− id) is equal to the
rank of the Lie algebra L(G). The set of all regular elements of G is denoted
by Reg G. Analogously, Reg G is open and dense in G (cf. [8, Lemma 4]).

Now we define Cartan subgroups: Let N(h) = {g ∈ G : Ad(g).h = h}
denote the normalizer of h in G. Then N(h) acts on the root space Λ on
the right via (λ, g) 7→ λ ◦ Ad(g). We set C(h) = {g ∈ N(h) : λ ◦ Ad(g) = λ
for all λ ∈ Λ}. We say that a subgroup H of a connected Lie group G is a
Cartan group if L(H) is a Cartan algebra and H = C(L(H)). In solvable Lie
groups, Cartan subgroups H are connected (cf. [8, Proposition 19]), hence
H = expL(H), and are conjugate under Γ̃ .

We shall prove that the connected solvable Lie groups with a centerfree
Lie algebra whose set of compact elements is dense are characterized by
the fact that their Cartan subgroups are exactly the maximal tori. If the
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Lie algebra has a center the condition is that g = Γ.t where t is the Lie
algebra of a maximal torus of G. This is equivalent to the fact that Cartan
subgroups of G/exp z are maximal tori and that z ⊆ Γ.t.

2. The weight decomposition. As a useful tool, we need the weight
decomposition of a Lie algebra with respect to some nilpotent subalgebra n.
First, we assume that g is a complex Lie algebra. Let n∗ denote the dual space
of n, i.e., all linear maps from n into C. A λ ∈ n∗ is called a weight if there is
an 0 6= x ∈ g and an n ∈ N such that (ad(u)−λ(u) id)nx = 0 for all u ∈ n. If
λ is not the trivial map it is called a root . The set of all roots is denoted by
Λ. We define gλ = {x ∈ g : (∀u ∈ n)(∃n ∈ N) (ad(u)− λ(u) id)nx = 0}. By
[3, VII.1.3, Proposition 9], we can decompose g as follows: g = g0+

∑
λ∈Λ gλ.

This is the weight decomposition of g with respect to n. We note that each
λ ∈ Λ maps u ∈ n onto an eigenvalue of adu.

In the real case, the situation is more complicated. But in view of our sub-
ject, we can confine ourselves to compactly embedded abelian subalgebras
(cf. [4, III.6]). Let g be a real Lie algebra and k be a compactly embedded
abelian subalgebra. Now we turn to the complexification gC and consider
the weight decomposition with respect to kC. Since each µ ∈ spec ad k for
all k ∈ kC is purely imaginary, −µ is in spec ad k as well. Thus, if λ is a
weight then so is −λ. If we set ω = −iλ|k then ω is a real linear form on
k. We denote by Ω the set {ω ∈ k∗ : (∃λ ∈ Λ) ω = −iλ|k}. Now we set
gω = g ∩ (gλ

C ⊕ g−λ
C ). We observe that gω = g−ω. So, we can decompose

Ω into Ω+ and Ω− where Ω− = −Ω+. (Note that ω 6= 0 for all ω ∈ Ω.)
The decomposition g = g0 ⊕

∑
ω∈Ω+ gω is called the real weight decomposi-

tion of g. We abbreviate
∑

ω∈Ω+ gω to g+, which is also called the Fitting
one-component . Note that the Fitting one-component depends on k. We
observe that g0 = zg(k) where zg(k) denotes the centralizer of k in g.

Next we introduce a complex structure on g+. Let V be a real vector
space. We call a linear map I a complex structure on V if I2 = − id. On
g+ we can define a complex structure as follows: Let u be any element of
k and x ∈ g+. Then we can write x as

∑
ω∈Λ+ xω and define I : g+ → g+,

x 7→
∑

ω∈Λ+ [u, xω]/ω(u). Note that this definition does not depend on u.

3. κ(g) in a solvable Lie algebra. Let g be a real solvable Lie algebra.
First, we show that κ(κ(g)) = κ(g).

3.1. Lemma. Let g be a solvable Lie algebra and u a subalgebra with
comp g ⊆ u. Then comp g ⊆ comp u.

P r o o f. If x ∈ comp g then x is compact in u as well. Thus comp g ⊆
comp u.

3.2. Theorem. In a solvable Lie algebra g we have κ(κ(g)) = κ(g).
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P r o o f. By the preceding lemma, we get

κ(g) = span comp g ⊆ span compκ(g) = κ(κ(g)).

The inclusion κ(κ(g)) ⊆ κ(g) is clear.

Now we characterize solvable Lie algebras which are generated by their
compact elements.

3.3. Lemma. Let g be a Lie algebra.

(i) If ϕ : g → g is an automorphism then ϕ(comp g) ⊆ comp g.
(ii) The subalgebra κ(g) is a characteristic ideal of g.

P r o o f. (i) Let t be a compactly embedded subalgebra of g. Then ϕ(t)
is compactly embedded in ϕ(g) = g. Thus ϕ(comp g) ⊆ comp g.

(ii) Condition (i) implies

ϕ(κ(g)) = ϕ(span comp g) = spanϕ(comp g) ⊆ span comp g = κ(g).

In particular, κ(g) is invariant under inner derivations.

3.4. Lemma. Let g be a Lie algebra and der g the set of all derivations
of g. If x ∈ comp k then (der g).x ⊆ κ(g).

P r o o f. Assume that δ ∈ der g. Then etδ ∈ Aut(g) for all t ∈ R. The
invariance of comp g implies etδx ∈ g for all t ∈ R. So t−1(etδx− x) ∈ κ(g)
for all t ∈ R. By a limiting process we get

δ(x) = lim
t→0, t6=0

1
t
(etδx− x) ∈ κ(g).

Thus der(g).x ⊆ κ(g).

3.5. Lemma. Let g be a solvable Lie algebra and k a maximal compactly
embedded abelian subalgebra. Then g+ ⊆ comp g.

P r o o f. We know that g+ =
∑

ω∈Ω+ gω. Assume that x ∈ gω, r ∈ R,
ω 6= 0. We find u ∈ k with ω(u) = r. Now let I be a complex structure on g+.
Lemma 3.4 implies rIx = ω(u)Ix = [u, x] = − ad(x)(u) ∈ der(g).k ⊆ κ(g).
Thus we have RIx ⊆ κ(g), and because of Igω = gω we get gω ⊆ κ(g).

Using these facts we prove the following theorem which gives information
about the structure of κ(g).

3.6. Theorem. Let g be a solvable Lie algebra and suppose that k is a
compactly embedded abelian subalgebra. We have κ(g) = k + 〈g+〉.

P r o o f. By Lemma 3.5 we have g+ ⊆ κ(g). Since κ(g) is a subalgebra
we get 〈g+〉 ⊆ κ(g). Of course, k lies in κ(g), hence k + 〈g+〉 ⊆ κ(g). On
the other hand, we have [g0, k + 〈g+〉] = [g0, 〈g+〉] ⊆ 〈g+〉 ⊆ k + 〈g+〉. Thus,
k + 〈g+〉 is an ideal in g. So, comp g = Γ.k ⊆ k + 〈g+〉 and, consequently,
κ(g) = spanΓ.k ⊆ k + 〈g+〉.
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3.7. Corollary. In a solvable Lie algebra κ(g) = g holds if and only if
g = k + 〈g+〉.

4. κ(G) in a solvable Lie group. If we investigate Lie groups, we
cannot simply transfer the results for the Lie algebras. The reason is that,
in general, the exponential function need not map compact elements of the
Lie algebra to compact elements of the Lie group.

4.1. Proposition. In any Lie group G, we have exp−1(compG) ⊆
comp g.

P r o o f. Assume that x ∈ exp−1(compG). Then exp x is contained in a
torus T . Thus, there is a maximal compactly embedded subalgebra t with
expx ∈ exp t. Hence, ad(x) is semisimple and has only pure imaginary
eigenvalues. Thus x ∈ comp g.

It is possible to find conditions for G = κ(G) and G = compG which
can be tested by the Lie algebras. Before we turn to this problem we prove
the analogous case of Theorem 3.2. The next proposition is very useful to
reduce a problem given on the level of Lie groups to the level of Lie algebras.

4.2. Proposition. Let (Ai)i∈I be a family of analytic subgroups of the
Lie group G. Then 〈

⋃
i∈I L(Ai)〉 = L(〈

⋃
i∈I Ai〉).

P r o o f. (i) Assume that x ∈
⋃

i∈I L(Ai). Then there is an i ∈ I with
x ∈ L(Ai). This means that there is an i ∈ I with exp Rx ⊆ Ai. Therefore
exp Rx ⊆ 〈

⋃
i∈I Ai〉 and this yields x ∈ L(〈

⋃
i∈I Ai〉). Thus

⋃
i∈I L(Ai) ⊆

L(〈
⋃

i∈I Ai〉) and hence 〈
⋃

i∈I L(Ai)〉 ⊆ L(〈
⋃

i∈I Ai〉).
(ii) We prove that for all Lie algebras m with m ⊇

⋃
i∈I L(Ai) we have

m ⊇ L(〈
⋃

i∈I Ai〉). First, we note that m ⊇ L(Ai) for all i ∈ I. So 〈expm〉 ⊇
Ai holds because the Ai are analytic. Consequently, we get 〈expm〉 ⊇
〈
⋃

i∈I Ai〉. Furthermore, 〈expm〉 is analytic. This yields m = L(〈expm〉) ⊇
L(〈

⋃
i∈I Ai〉). So, L(〈

⋃
i∈I Ai〉) is the smallest Lie algebra which contains⋃

i∈I L(Ai), and hence is equal to 〈
⋃

i∈I L(Ai)〉.

4.3. Theorem. Let G be a solvable connected Lie group and T a maximal
torus of G. Then G = κ(G) if and only if g = κ(g) = 〈Γ.t〉.

P r o o f. We assume that G = κ(G). Since T is a maximal torus in
G, we have G = 〈Γ̃ .T 〉. By Proposition 4.2 we get g = L(〈Γ̃ .T 〉) = 〈Γ.t〉.
On the other hand, we have κ(g) = 〈Γ.k〉, where k is a maximal compactly
embedded Lie algebra. Thus t ⊆ k yields g = 〈Γ.t〉 ⊆ κ(g). Now suppose
that g = κ(g)=〈Γ.t〉. Proposition 4.2 yields 〈Γ.t〉= L(〈Γ̃ .T 〉) = L(κ(G)).

Now we look for an equivalent condition to g = 〈Γ.t〉.
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4.4. Proposition. Let g be a solvable Lie algebra with g = κ(g), k a max-
imal compactly embedded subalgebra and t a subalgebra of k. Then 〈Γ.t〉 = g
if and only if g = t + g′ and z ∩ g′ ⊆ 〈Γ.t〉.

P r o o f. We only have to prove the “only if” direction. Since k is com-
pactly embedded and g′ is nilpotent, we have k∩g′ ⊆ z, hence k∩g′ = z∩g′.
As k+g′ = t+g′ we get k = t+(k∩g′). It follows that Γ.k ⊆ Γ.t+Γ.(k∩g′) =
Γ.t + (z ∩ g′). Thus g = κ(g) ⊆ 〈Γ.t〉.

5. The case g = comp g. Our aim is to find conditions that are
equivalent to G = compG. To this end, we first consider the analogous
problem for Lie algebras.

5.1. Theorem. Let g be a solvable Lie algebra and k a maximal compactly
embedded subalgebra. Moreover , assume comp g = g. Then k = g0 = zg(k).
Consequently , k is a Cartan subalgebra.

P r o o f. Since κ(g) ⊇ comp g = g, we have g = k+g′. Since g′ is nilpotent
and reg g is dense in g, there is a regular t ∈ k. We define the analytic map
ϕ : g0 × g+ → g, (s, x) 7→ ead x(t + s). This map has the derivative

dϕ(s0, x0) : g0 × g+ → g0 × g+, (s, x) 7→ (ead x0s, (d exp(x0) ◦ (ad−t))x).

It is invertible for x0 = 0 because (d exp(x0) ◦ ad(−t)) is invertible. Thus,
there are open zero-neighborhoods U ⊆ g0, V ⊆ g+ and an open neighbor-
hood W of t in g such that ϕ is a local diffeomorphism from U × V to W .
Since comp g is dense in g and W is an open neighborhood of t in g we see
that W∩comp g is dense in W . Since ϕ is a diffeomorphism, ϕ−1(W ) is dense
in U × V , and ϕ(ϕ−1(W )) ⊆ comp g. Now suppose that (u, v) ∈ ϕ−1(W ).
Then we have ead v(t + u) ∈ comp g and hence t + u ∈ comp g ∩ g0.

Now we show comp g ∩ g0 = k. Assume that x ∈ (comp g) ∩ g0. Then
[x, k] = {0}. Thus k1 := Rx + k is compactly embedded and k1 ⊇ k. The
maximality of k implies x ∈ k. This in turn implies t + u ∈ k and hence
u ∈ k. If we consider the projection πU : U ×V → U, (u, v) 7→ u, we see that
πU (ϕ−1(W )) is dense in U ⊆ k. This implies g0 ⊆ k.

The next theorem is based upon [5, Prop. IV.4.4].

5.2. Theorem. Let g be a solvable Lie algebra and k a maximal compactly
embedded subalgebra. Then the following claims are equivalent :

(i) k is a Cartan subalgebra. In particular , all Cartan subalgebras of g
are compactly embedded.

(ii) comp g is dense.
(iii) k = g0 = zg(k), that is, k is its own centralizer.
(iv) We have g = κ(g) and for one (and hence for every) Cartan subal-

gebra h we have h ∩ g′ ⊆ z.
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If these conditions are satisfied then comp g is a neighborhood of each of
its regular points. Moreover , g′ = (z ∩ g′) + g+.

P r o o f. (i)⇒(ii). Each regular point is contained in a Cartan subalgebra,
hence in a subalgebra conjugate to k. But the regular points are dense. Thus
comp g is dense.

(ii)⇒(iii). This follows from Theorem 5.1.
(iii)⇒(i). Since k is an abelian subalgebra only containing semisimple

elements, by [3, VII, §2, No. 3, Prop. 10] each Cartan subalgebra h of zg(k)
is a Cartan subalgebra of g. Furthermore, we get k ⊆ h ⊆ zg(k). Thus k is
a Cartan subalgebra. Since in a solavble Lie algebra all Cartan subalgebras
are conjugate each of them is compactly embedded.

(i)⇒(iv). If k is a Cartan subalgebra we have g = k + g′, hence g = κ(g).
Furthermore, we have k ∩ g′ ⊆ z.

(iv)⇒(i). We have g = k + g′. Moreover, there is a Cartan subalgebra
h ⊇ k. Thus h = k + (h ∩ g′) ⊆ k + z ⊆ k. Thus k is a Cartan subalgebra.

Now we prove the last claim. We observe that g = k + g+ and g+ ⊆ g′.
Thus g′ = g+ + (g′ ∩ k). But since g′ consists of nilpotent and k consists of
semisimple elements we have g′ ∩ k = g′ ∩ z.

6. The case compG = G. We look for necessary and sufficient condi-
tions for compG = G. Of course, a necessary condition is that compG =
κ(G). Moreover, if G is a Lie group we have compG ⊆ exp comp g.

6.1. Lemma. In every Lie group,

compG ∩ Reg G = comp G ∩ Reg G.

P r o o f. Let g = expx0 be regular in G. By [7, Lemma 1.4], x0 is regular
and exp-regular in g. Then there is a Cartan subalgebra h which contains
x0. Now, let U be a zero-neighborhood in h and V a zero-neighborhood in
the Fitting one-component g+ of g. We define the function f : U ×V → W ,
(x, y) 7→ (exp y)g expx(exp(−y)) = exp ead y(x0 ∗ x), where W is an open
neighborhood of g and f is a local diffeomorphism.

Moreover, let g be in compG. Then g = limn→∞ gn, where the gn can be
chosen in such a way that gn ∈ W ∩compG∩Reg G. Since f is a diffeomor-
phism we get gn = (exp yn)g expxn(exp(−yn)) ∈ compG for proper xn and
yn. Since gn converges to g, yn and xn converge to 0. Since g expxn is in H
for a Cartan subgroup H = exp h, we have exp(−yn)gn exp yn = g expxn.
The left side is in compG. Thus g expxn ∈ (compG) ∩H = compH. This
group is closed and central in H, which yields

lim
n→∞

g expxn = g lim
n→∞

expxn = g ∈ compH = comp H ⊆ compG.

Thus we get compG ∩ Reg G = comp G ∩ Reg G.
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Let H be a Cartan subgroup of a Lie group G. By [7, Theorem 3.4] we
get exp−1(H) ∩ reg exp = h ∩ reg exp.

6.2. Lemma. We have exp−1(compG ∩ Reg G) ⊆ comp g ∩ reg g.

P r o o f. First, we note that

exp−1(compG ∩ Reg G) = exp−1((compG) ∩ Reg G)
= exp−1(compG) ∩ exp−1(Reg G).

Proposition 4.1 and [7, Lemma 1.4] imply the claim.

6.3. Proposition. Let G be a solvable connected Lie group and T a
maximal torus. Then G = compG implies g = Γ.t.

P r o o f. By Lemmas 6.1 and 6.2, G = compG implies exp−1(Reg G) ⊆
exp−1(compG). On the other hand,

exp−1(compG) = {x ∈ g : expx lies in a torus} = Γ.t.

Thus, we get Γ.t ⊇ exp−1(Reg G) = reg exp∩ reg g by [7, Lemma 1.4]. By
[5, Lemma IV.4.6] and the fact that reg g is open and dense in g we deduce
that reg exp∩ reg g is open and dense in g. So, Γ.t = g.

6.4. Corollary. Assume that G is a Lie group with compG = G. Then
g = comp g.

6.5. Theorem. Let G be a connected solvable Lie group and T a maximal
torus. Assume that g is centerfree. The following statements are equivalent :

(i) G = compG.
(ii) g = Γ.t.
(iii) T is a Cartan subgroup of G.

P r o o f. (i)⇒(ii) is Proposition 6.3.
(ii)⇒(iii). Since g = Γ.t, we have g = t+g′. Moreover, there is a maximal

compactly embedded Lie algebra k ⊇ t, and t + g′ = k + g′. Thus we get
k = t + (k∩ g′) = t + (z∩ g′) = t. So, t is maximal compactly embedded and
hence g = comp g. By Theorem 5.2, t is a Cartan subalgebra and hence T
is a Cartan subgroup of G.

(iii)⇒(i). If T is a Cartan subgroup, we have compG = Γ̃ .T = G. In
a solvable Lie group the Cartan subgroups are conjugate and connected.
Hence Γ̃ .T ⊇ Reg G. But Reg G = G by [8, Lemma 4] and so Γ̃ .T = G.

If the Lie algebra is not centerfree the problem is more difficult.

6.6. Lemma. Let G be a solvable connected Lie group, z the center of g
and π : G → G/exp z the natural map. Then π(compG) = compπ(G).

P r o o f. Since the image of a compact set under π is compact, we have
π(compG) ⊆ compπ(G). On the other hand, let U be a maximal torus of
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π(G). That means that there is a closed subgroup T of G with T ⊇ exp z
such that π(T ) = U . In particular, T is abelian. By [1, Theorem 9.16] there
is a closed connected T1 with T ∼= T1 × exp z. It follows that π(T ) ∼= T1,
hence T1 is compact. Consequently, comp π(G) ⊆ π(compG). It follows
that comp π(G) = π(compG).

6.7. Theorem. Let G be a connected solvable Lie group and T a maximal
torus. Then compG = G if and only if Γ.t = g.

P r o o f. By Proposition 6.3, compG = G implies Γ.t = g. Now sup-
pose that Γ.t = g. We reduce the problem to the centerless case of The-
orem 6.5. First, for each g ∈ compG there is a sequence (yn)n∈N with
yn ∈ exp−1(compG) such that g = limn→∞ exp yn. Let z be the center of
g. For each z ∈ z we have

exp z · g = exp z · lim
n→∞

exp yn = lim
n→∞

exp(z + yn)

∈ exp g = expΓ.t = expΓ.t = Γ̃ .T = compG.

Thus compG = exp z · compG.
Now we consider the natural map π : G → G/exp z. By Lemma 6.6 we

have π(compG) ⊆ compπ(G). Furthermore,

compπ(G) = π(compG) ⊆ π(compG) ⊆ π(compG) = compπ(G).

Since compG is saturated we deduce that π(compG) is closed in π(G), hence
compπ(G) = π(compG). Now suppose that compπ(G) = π(G). Then

G = π−1(compπ(G)) = π−1(π(compG)) = compG · exp z = compG.

Next, we prove that dπ(1)(g) is centerfree. For this, assume that z ∈
π−1(z(dπ(1)(g))). Then [z, x] ∈ z for all x ∈ g. Since comp g = g, the Cartan
subalgebras are compactly embedded, hence abelian. We consider the root
decomposition belonging to a Cartan subalgebra k. Then z = z0+

∑
ω∈Ω+ zω

with z0 ∈ k and zω ∈ gω. If x ∈ k we have [x, z0] ∈ k and [x, zω] ∈ gω. Since
z ⊆ k we get [x, zω] = 0. Since this is true for each x ∈ k we get zω = 0
for all ω ∈ Ω. This implies z ∈ k. Now let xω ∈ gω. Then [z, xω] ∈
gω ∩ z = {0}. Since k is abelian, we get [z, k] = {0}. It follows that z ∈ z.
So dπ(1)(g) is centerfree. Furthermore, dπ(1)(Γ.t) = Γ.dπ(1)(t) = dπ(1)(g).
By Theorem 6.5 we have π(G) = compπ(G).

6.8. Corollary. If G is a solvable connected Lie group and z the center
of g then G = compG if and only if the Cartan subgroups of G/exp z are
tori and z ⊆ Γ.t with the Lie algebra t of a torus of G.

An example shows that there are Lie groups whose sets of compact ele-
ments are dense and whose Cartan subgroups are not tori:
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6.9. Example. We consider the oscillator group G = T nH with Heisen-
berg group H and torus T . The Lie algebra is given by the Lie brackets
[t, x1] = x2, [t, x2] = −x1 and [x1, x2] = z. Then t = Rt and z = Rz.
Moreover, C∞ = span{x1, x2, z}. In particular, G/exp z is isomorphic to a
covering of the motion group of the real plane and T exp z/exp z is a torus
and a Cartan subgroup of G/exp z. Thus comp(G/exp z) is dense in G/exp z.
Moreover, let z ∈ z. We remark that

−t

n2
+

x2

n
− x1

n
+ z =

en2 ad(x1+x2)(−t)
n2

∈ Γ.t.

Thus

z = lim
n→∞

en2 ad(x1+x2)(−t)
n2

∈ Γ.t.

So, the set of the compact elements of G is dense although Z(H) ∼= R.

The next example shows that there are Lie groups whose Cartan subalge-
bras are of the form T exp z with a maximal torus T and where G 6= compG.

6.10. Example. We look at a Lie group G = T n R6 with the following
Lie brackets: [t, x1] = x2, [t, x2] = −x1, [t, y1] = y2, [t, y2] = −y1, [x1, y1] =
[x2, y2] = z and [x1, x2] = u. Then z = span{z, u} and a Cartan subgroup
is equal to the product of a maximal torus and exp z. But for αi ∈ R with
i = 1, . . . , 4 we get

en2 ad(α1x1+α2x2+α3y1+α4y2)(−t)
n2

=
−t

n2
+

α1x2 − α2x1 + α3y2 − α4y1

n
+ α2

1u− 2α1α4z + α2
2u + 2α2α3z.

Thus

lim
n→∞

en2 ad(α1x1+α2x2+α3y1+α4y2)(−t)
n2

= α2
1u− 2α1α4z + α2

2u + 2α2α3z.

This shows that z 6∈ Γ.t and G 6= compG.
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