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SOME REMARKS ON THE RANDOM WALK ON FINITE GROUPS

BY

ROMAN U R B A N (WROC LAW)

1. Introduction. Let G be a finite group and let S be a set of generators
of G. Suppose that S is not contained in a coset of a subgroup of G. Then
for every probability measure µ such that suppµ = S we have

(1.1) lim
n→∞

‖µ∗n − λ‖X = 0,

where λ is the equidistributed probability measure on G: λ(g) = 1/|G|,
and ‖ · ‖X denotes a suitable norm on the space of functions on G. The
speed of convergence in (1.1) depends on the group and the particular set
of generators as well as the norm ‖ · ‖X chosen. The problem of estimating
this speed has been thoroughly studied by many authors, in particular by
Diaconis; see e.g. [1] and the literature quoted there.

In this note we are interested in questions concerning comparison of
speeds of convergence to λ. On the one hand, we take convolution powers
of a single probability measure supported on a fixed symmetric set S of
generators, and on the other hand, convolution products of sequences of
probability measures each supported on S.

It has been noticed [2] that in the important case of the symmetric group
Sn and the set of generators consisting of the transpositions there exist n
probability measures µ1, . . . , µn supported on S such that

(1.2) λ = µ1 ∗ . . . ∗ µn.

There are, however, groups and symmetric sets S of generators for which
(1.2) does not hold for any finite set of probability measures supported on
S. We exhibit some examples in Section 5. So there are groups and their
generating sets for which to achieve equilibrium by sampling elements from
a given set of generators, infinitely many steps are necessary, regardless of
whether we use the same sampling method or we change it at every step.
It is reasonable to conjecture that in general the latter method should be
faster. In other words, for a given probability measure µ supported on S
the convolution product of a well chosen sequence of probability measures
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supported on S should converge faster to the equilibrium measure λ than
the convolution powers of µ.

In this note our first aim is to prove this conjecture in a number of
cases. A simple compactness argument shows that given a symmetric set S
of generators there is a symmetric probability measure µS such that

‖µ− λ‖l2→l2 ≥ ‖µS − λ‖l2→l2

for every symmetric probability measure µ with support in S. Hence, since
for symmetric measures ν,

(1.3) ‖ν∗n‖l2→l2 = ‖ν‖n
l2→l2

we have
‖µ∗n − λ‖l2→l2 ≥ ‖µ∗nS − λ‖l2→l2

for every symmetric probability measure µ with support in S.
In several cases we identify the measure µS explicitly.
As the first step in showing that the convolution products of a suitable

sequence of probability measures converge faster than the convolution pow-
ers of single measure we study the following question. Given a probability
measure µ supported in S, do there exists two probability measures µ1, µ2

both supported in S such that

(1.4) ‖µ∗2n − λ‖X ≥ qn‖(µ1 ∗ µ2)∗n − λ‖X ,

for all n, where q > 1 ?
Of course for applications the most interesting case is when the distance

between measures is measured by the l1-norm. In Section 6 we make a few
remarks about (1.4) for the case X = l1(G).

2. Preliminaries. A representation π of G is a homomorphism of
G into the group of invertible linear maps of a finite-dimensional complex
vector space V. We write dπ for the dimension of V and think of π(x)
as a dπ × dπ matrix. Without loss of generality we may assume that all
representations π considered are unitary, i.e. π(x) is a unitary matrix for
all x ∈ G. A representation π is irreducible if V admits no π(G) invariant
subspaces other than {0} or V. Two representations π1 : G → GL(V1) and
π2 : G → GL(V2) are equivalent if there is a linear isomorphism % : V1 → V2

such that %π1(x) = π2(x)% for all x ∈ G.
Let G be the product G1×G2 of two groups with multiplication defined

coordinatewise. Let π1 : G1 → GL(V1) and π2 : G2 → GL(V2) be repre-
sentations. Define a representation π1 ⊗ π2 : G1 × G2 → GL(V1 ⊗ V2) by
π1 ⊗ π2(x, y)v1 ⊗ v2 = π1(x)v1 ⊗ π2(y)v2. Then if π1 and π2 are irreducible,
then π1 ⊗ π2 is irreducible. Moreover, each irreducible representation of
G1×G2 is equivalent to a representation π1⊗π2, where πi is an irreducible
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representation of Gi. If f is a function on G and π is a representation, define

f̂(π) =
∑
x∈G

f(x)π(x).

The transform f̂ is the analog of the Fourier transform. It converts convo-
lution into multiplication: f̂ ∗ g(π) = f̂(π)ĝ(π).

If f is a function on G we denote by Tf the operator from l2(G) into l2(G)
defined by Tfg = g∗f. If µ is a symmetric probability measure (i.e.

∑
µ(x) =

1, µ ≥ 0, µ(x) = µ(x−1)), then the operator Tµ has real eigenvalues 1 =
β0 ≥ . . . ≥ β|G|−1 ≥ −1. Moreover, if the support of µ is not contained
in a coset of a subgroup, then 1 = β0 > β1 ≥ . . . ≥ β|G|−1 > −1. The
operator norm ‖f‖l2→l2 of a function f is, by definition, the l2 → l2 norm
of the convolution operator Tf , i.e. ‖f‖l2→l2 = ‖Tf‖l2→l2 . Let λ denote the
probability measure which is uniformly distributed on a finite group G, i.e.
λ(x) = |G|−1 for all x ∈ G. Of course,

λ̂(π) =
{

Id for the trivial representation,
0 for every nontrivial irreducible representation.

It is well known that for every probability measure µ (not necessarily
symmetric), ‖µ− λ‖l2→l2 = max ‖µ̂(π)‖l2→l2 , where the maximum is taken
over all irreducible and nontrivial unitary representations of a group G.

3. Main results. Let S = S−1 be a symmetric set of generators of a
group G. Define a function

(3.1) νε(x) =

{ ε, x = e,
−ε/(|S| − 1), x ∈ S\{e},
0, otherwise.

Theorem 3.1. Let G be a finite group, and S = S−1 6= G be a set of
generators of G such that :

(i) the neutral element e ∈ S,

(ii) |S| ≥ 3.

Let µ be a symmetric probability measure with support S such that

µ ∗ νε = νε ∗ µ,

where νε is defined in (3.1). Then there exist symmetric probability measures
µ1 and µ2 with support S such that , for all n,

(3.2) ‖(µ1 ∗ µ2)∗n − λ‖l2→l2 < ‖µ∗2n − λ‖l2→l2 .

P r o o f. We define µ1 = µ + νε and µ2 = µ− νε.
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It is enough to prove inequality (3.2) in the case when n = 1. Indeed,
(3.2) for n = 1 implies

‖(µ1 ∗ µ2)∗n − λ‖l2→l2 = ‖(µ1 ∗ µ2 − λ)∗n‖l2→l2 ≤ ‖µ1 ∗ µ2 − λ‖∗nl2→l2

< ‖µ∗2 − λ‖n
l2→l2 = ‖µ∗2n − λ‖l2→l2 .

Now we notice that ν̂ε(π) is invertible when π is an irreducible, nontrivial
unitary representation. In fact,

‖I− ν̂ε(π)‖l2→l2 =
∥∥∥∥(1− ε)I +

ε

|S| − 1

∑
x∈S\{e}

π(x)
∥∥∥∥

l2→l2

≤ 1− ε + ε

∥∥∥∥ 1
|S| − 1

∑
x∈S\{e}

π(x)
∥∥∥∥

l2→l2
< 1,

because ∥∥∥∥ 1
|S| − 1

∑
x∈S\{e}

π(x)
∥∥∥∥

l2→l2
< 1.

Since µ and νε commute and are symmetric, µ̂ and ν̂ε are diagonal (in a
suitable basis) and all eigenvalues of ν̂ε are nonzero, since ν̂ε is invertible.
We have

max ‖ ̂µ1 ∗ µ2(π)‖l2→l2 = max ‖(µ̂(π) + ν̂ε(π))(µ̂(π)− ν̂ε(π))‖l2→l2

= max ‖µ̂(π)2 − ν̂ε(π)2‖l2→l2 ,

where the maximum is taken over all irreducible, nontrivial representations
of G. Thus for sufficiently small ε the right side of the above equality is less
than max ‖(µ̂(π))2‖l2→l2 .

Recall that if a function f on G has the property

(3.3) ∀t, x ∈ G, f(t−1xt) = f(x),

then f is central, i.e. f ∗ g = g ∗ f for every function g on G.
Theorem 3.1 implies the following

Corollary 3.4. Let G be a finite group, and S = S−1 6= G be a set of
generators of G such that :

(i) e ∈ S0,

(ii) |S| ≥ 3,
(iii) ∀t ∈ G, t−1St = S.

Let µ be a symmetric probability measure with support S. Then there exist
symmetric probability measures µ1 and µ2 with support S such that (3.2)
holds.

P r o o f. Indeed, (iii) implies that νε as defined in (3.1) is central.
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4. Examples. A direct application of Corollary 3.2 gives the following
result about the symmetric group Sn.

Proposition 4.1. Let S = the set of all transpositions in Sn. Let µ
be a probability measure such that suppµ = S. Then the measures µ1, µ2

defined in the proof of Theorem 3.1 have the property that

‖(µ1 ∗ µ2)∗n − λ‖l2→l2 < ‖µ∗2n − λ‖l2→l2 .

Given a group G and a symmetric set S of generators with e ∈ S and
|S| ≥ 3, if the measure µS is central and symmetric, then (1.3) implies that
the modification of µS as in Theorem 3.1 yields two probability measures
µ1, µ2 and a q < 1 such that

‖(µ1 ∗ µ2)∗n − λ‖l2→l2 < qn‖µ∗2n − λ‖l2→l2

for any probability measure µ supported in S.
In the examples which follow we identify the measure µS for some finite

groups G and some particular sets S of generators.

Example 1. Let G = Zm
2 , S = S−1 = {e1, . . . , em,0}, where ei =

(0, . . . , 0, 1, 0, . . . , 0) with 1 on the ith place and 0 = (0, . . . , 0). Then µS is
uniformly distributed on S.

Indeed,

‖µS − λ‖l2→l2 = max
χ6=0

∣∣∣∣ 1
m + 1

+
1

m + 1

m∑
j=1

cos πχj

∣∣∣∣,
where χ = (χ1, . . . , χm) and χj ∈ {0, 1}. It is easy to see that the maximum
is attained for χ = (1, 0, . . . , 0) and is equal to (m− 1)/(m + 1). Let µ be a
probability measure with support in S. Let

γ0 = µ(0) and γj = µ(ej) for j = 1, . . . ,m.

Then

‖µ− λ‖l2→l2 = max
χ6=0

∣∣∣γ0 +
m∑

j=1

γj cos πχj

∣∣∣.
We consider three cases:

(i) γ0 ≥ 1/2,
(ii) γ0 ≤ 1/(m + 1),
(iii) 1/(m + 1) < γ0 < 1/2.

In case (i), γi ≤ 1/2 for some i. Then

‖µ− λ‖l2→l2 ≥ |γ0 + . . . + γi−1 − γi + γi+1 + . . . + γm| = 1− 2γi.

Here the character χ has 1 on the ith place and zero elsewhere. Also 1−2γi ≥
(m− 1)/(m + 1), because γi ≤ 1/(2m).
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In case (ii),

‖µ− λ‖l2→l2 ≥
∣∣∣γ0 −

m∑
j=1

γj

∣∣∣ = |γ0 − (1− γ0)| = 1− 2γ0.

Here χ = (1, . . . , 1). Also 1− 2γ0 ≥ (m− 1)/(m + 1) since γ0 ≤ 1/(m + 1).
In case (iii), γi ≤ 1/(m + 1) for some i. Thus if χ has 1 on the ith place

and zero elsewhere we obtain ‖µ− λ‖l2→l2 ≥ 1− 2γi ≥ (m− 1)/(m + 1).

Example 2. Let G = Zk1 ⊕ . . . ⊕ Zkm , where kj are odd integers > 3.
Let S = S−1 = {±e1, . . . ,±em}, where ei = (0, . . . , 0, 1, 0, . . . , 0). Define

xi = cos
2π

ki
, γ0

i = ((1− xi)((1− x1)−1 + . . . + (1− xm)−1))−1,

for i = 1, . . . ,m. Then for m large,

µS(±ei) = γ0
i /2, i = 1, . . . ,m.

In particular, for k1 = . . . = km the measure µS is uniformly distributed on
the set S of generators.

Let µ be a symmetric probability measure with support in S and let

µ(±ei) = γi/2, i = 1, . . . ,m.

The characters of G are of the form χ = (χ1, . . . , χm), where each χj ∈
{0, 1, . . . , kj − 1}. Let A = {χ : χj = 1 for one fixed j and zero elsewhere}.
Then

‖µ− λ‖l2→l2 = max
χ6=0

∣∣∣∣ m∑
j=1

γj cos
2πχj

kj

∣∣∣∣ ≥ max
χ∈A

∣∣∣∣ m∑
j=1

γj cos
2πχj

kj

∣∣∣∣
= max{1− γ1(1− x1), . . . , 1− γm(1− xm)}.

We have

max{1− γ1(1− x1), . . . , 1− γm(1− xm)}
≥ 1− ((1− x1)−1 + . . . + (1− xm)−1)−1.

Indeed, if γi = γ0
i for all i, then

1− γ1(1− x1) = . . . = 1− γm(1− xm)

= 1− ((1− x1)−1 + . . . + (1− xm)−1)−1.

If γ 6= γ0 then γi < γ0
i for some i. Then

1− γi(1− xi) ≥ 1− ((1− x1)−1 + . . . + (1− xm)−1)−1.

Now it suffices to show that

‖µS − λ‖l2→l2 = 1− ((1− x1)−1 + . . . + (1− xm)−1)−1,
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i.e. that

‖µS − λ‖l2→l2 = max
χ∈A

∣∣∣∣ m∑
j=1

γ0
j cos

2πχj

kj

∣∣∣∣.
But this follows from the fact that the only character χ̃ 6∈ A for which

|µ̂S(χ̃)| > max
χ∈A

|µ̂S(χ)|

is χ̃ = ((k1 − 1)/2, . . . , (km − 1)/2). However, for m large the opposite
inequality holds:

1
a

m∑
j=1

cos π
kj

1− cos 2π
kj

≤ 1
a

+
1
a

m∑
j=2

1
1− cos 2πi

kj

, m � 1,

where a = ((1− x1)−1 + . . . + (1− xm)−1)−1.

Example 3. Let G = Q2 = {±1,±i,±j,±k} be the quaternion group
(see [4], p. 52). Let S = S−1 = {1,±i,±j}. Then µS(±i) = µS(±j) = 1/6,
µS(1) = 1/3.

Q2 has four one-dimensional representations (characters):

χ0 ≡ 1,

χ1(±1) = +1, χ1(±i) = +1, χ1(±j) = −1, χ1(±k) = −1,

χ2(±1) = +1, χ2(±i) = −1, χ2(±j) = +1, χ2(±k) = −1,

χ3(±1) = +1, χ3(±i) = −1, χ3(±j) = −1, χ3(±k) = +1,

and one (faithful) two-dimensional representation π:

±1 7→ ±
(

1 0
0 1

)
, ±i 7→ ±

(
i 0
0 −i

)
,

±j 7→ ±
(

0 −1
1 0

)
, ±k 7→ ±

(
0 −i
−i 0

)
.

Let µ be a symmetric probability measure supported in S. Let

µ(±i) = α/2, µ(±j) = β/2, µ(1) = γ.

Then

µ̂(χ0) = 1, µ̂(χ1) = 1− 2β, µ̂(χ2) = 1− 2α, µ̂(χ3) = −1 + 2γ,

µ̂(π) =
(

γ 0
0 γ

)
.

Hence

‖µ− λ‖l2→l2 = max{|1− 2α|, |1− 2β|, |−1 + 2γ|, γ} ≥ 1/3.

Indeed, we see that either γ ≥ 1/3 or |−1 + 2γ| ≥ 1/3. We also calculate
that ‖µS − λ‖l2→l2 = 1/3.
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Example 4. Let G = D4 be the dihedral group (see [4], p. 51). It has
two generators a and b such that a4 = e, b2 = e, bab = a3.

Let S = S−1 = {e, a, a3, b}. Then µS(a) = µS(a3) = µS(b) = µS(e) =
1/4. Let µ be a symmetric probability measure supported in S. As before we
calculate the Fourier transform of µ. We write µ(e) = γ, µ(a) = µ(a3) = α/2,
µ(b) = β. Then

µ̂(χ0) = 1, µ̂(χ1) = 1− 2β, µ̂(χ2) = −1 + 2γ, µ̂(χ3) = 1− 2α,

µ̂(π) =
(

γ − β 0
0 γ + β

)
.

Thus

‖µ− λ‖l2→l2 = max{|1− 2α|, |1− 2β|, |−1 + 2γ|, γ + β} ≥ 1/2.

Hence
‖µ− λ‖l2→l2 ≥ max{|1− 2β|, |−1 + 2γ|} ≥ (|1− 2β|+ |−1 + 2γ|)/2

≥ |2− 2β − 2γ|/2 = α.

But ‖µS − λ‖l2→l2 = 1/2.

5. Factorization. Now we present a few examples of groups G and
their generating symmetric sets S for which the equidistributed probability
measure λ on G does not admit a factorization (1.2) with the measures
µ1, . . . , µn being supported on S. We also exhibit some cases when such a
factorization exists.

Proposition 5.1. Let G = Zp, S = S−1 = {−a, . . . ,−1, 1, . . . , a},
where a < p/4. Then λ has no factorization.

P r o o f. For every probability measure µ supported by S we have

µ̂(k) =
a∑

j=1

γj cos
2πkj

p

where 0 ≤ k ≤ p − 1, γj = 2µ(j) = 2µ(−j). Thus µ̂(1) > 0, because
cos 2πj

p > 0 for 1 ≤ j ≤ a. Consequently, for every sequence µ1, µ2, . . . of
such measures,

∏n
j=1 µ̂j(1) > 0.

Proposition 5.2. Let G = Zm
k , where k is odd and k > 3, S = S−1 =

{±e1, . . . ,±em}, where ej = (0, . . . , 0, 1, 0, . . . , 0). Then λ has no factoriza-
tion.

P r o o f. We have

µ̂(χ) =
m∑

j=1

γj cos
2πχj

k
,
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where
χ = (χ1, . . . , χm), χj ∈ {0, . . . , k − 1},
γj = 2µ((0, . . . , 0, 1, 0, . . . , 0)) = 2µ(−(0, . . . , 0, 1, 0, . . . , 0)).

Notice that µ̂((1, 1, . . . , 1)) = cos 2π
k

∑m
j=1 γj = cos 2π

k > 0, because k is
odd and greater than 3. Thus

∏n
j=1 µ̂j((1, 1, . . . , 1)) > 0 for any sequence

µ1, µ2, . . .

Proposition 5.3. Let G = Zm
2 and S = {±e1, . . . ,±em,0}, where

0 = (0, . . . , 0) and ej = (0, . . . , 0, 1, 0, . . . , 0). Then λ has a factorization.

P r o o f. Let µ be a probability measure with support in S. The Fourier
transform of µ is

µ̂(χ) = µ(0) +
m∑

j=1

µ(ej) cos πχj ,

where χ = (χ1, . . . , χm), χj ∈ {0, 1}.
Let χ be a nontrivial character. It is sufficient to construct a probability

measure µχ supported in S such that µ̂χ(χ) = 0. Assume that χj1 = . . . =
χjk

= 1 and χl = 0 for l 6= j1, . . . , jk. Then µ̂ = µ(0)−µ(ej1)− . . .−µ(ejk
).

For µχ we take a measure such that µχ(0) = µχ(ej1) + . . . + µχ(ejk
) and

µχ(0) > 0; then indeed µ̂χ(χ) = 0.

Proposition 5.4. Let G be the generalized quaternion group Qm, where
m ≥ 5 (see [4], p. 52). G is a group of order 4m with two generators a and
b such that a has order 2m, b4 = 1, b2 = am, bab−1 = a2m−1 = a−1. Let

S = S−1 = {a0, a, a2m−1, b, amb}.
Then λ has no factorization.

P r o o f. For every probability measure µ supported on S we have (using
notation from [4]), for % = exp(πi/m),

µ̂(π%2) =
(

γ − β + α cos 2π
m 0

0 γ + β + α cos 2π
m

)
,

where γ = µ(e), α/2 = µ(a) = µ(a2m−1) and β/2 = µ(b) = µ(amb). We see
that

γ + β + α cos
2π

m
> 0.

Proposition 5.5. Let G be the generalized quaternion group Qm, where
2 ≤ m ≤ 4. Let S = S−1 = {a0, a, a2m−1, b, amb}. Then λ has a factoriza-
tion.

P r o o f. It is easy to check that for every representation π of G there is
a measure µπ such that µ̂π(π) = 0.
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Proposition 5.6 [2]. Let G = Sn be the symmetric group and S =
{(i, j) : i, j ∈ {1, . . . , n}}. Then λ has a factorization.

P r o o f. We define n − 1 measures as follows. Let µ1 be the proba-
bility measure which is uniformly distributed on {(1, 1), (1, 2), . . . , (1, n)},
µ2 uniformly distributed on {(2, 2), (2, 3), . . . , (2, n)} and so on. It is clear
µ1 ∗ . . . ∗ µn−1 = λ.

6. The l1-norm. We begin by showing

Proposition 6.1. Let G be a finite group and S an arbitrary subset of
G. Then for every n such that |G| ≥ |S|n ≥ |Sn| we have

(6.1) ‖µ1 ∗ . . . ∗ µn − λ‖l1 ≥ ‖µ∗nS − λ‖l1

for µS being the probability measure uniformly distributed on S and {µn}
an arbitrary sequence of probability measures with supports in S.

P r o o f. We have

‖µ1 ∗ . . . ∗ µn − λ‖l1 =
∑

x∈Sn

∣∣∣∣µ1 ∗ . . . ∗ µn(x)− 1
|G|

∣∣∣∣ +
∑

x∈G\Sn

1
|G|

(6.2)

≥ 1− |Sn|
|G|

+
|G| − |Sn|

|G|
= 2− 2|Sn|

|G|
.

We rewrite (6.2) for µ1 = . . . = µn = µS :

‖µ∗nS − λ‖l1 =
∑

x∈Sn

∣∣∣∣µ∗nS (x)− 1
|G|

∣∣∣∣ +
∑

x∈G\Sn

1
|G|

.

Since µ∗nS (x) ≥ |S|−n for all x ∈ Sn and |G| ≥ |S|n, we have µ∗nS (x)− |G|−1

≥ 0, whence

‖µ∗nS − λ‖l1 = 2− 2|Sn|
|G|

and so (6.1) is proved.

Proposition 6.1 shows that for the l1-norm for small n no sequence can
be better than a convolution power of the measure uniformly distributed on
S. For large n, however, the situation may be different.

We need some notions and facts from [3].
Let G be (as before) a finite group. For a symmetric set S of generators

we define the volume growth function V (n) by

V (n) = |Sn|.
The diameter γ of G with respect to S is defined by

γ = min{n : V (n) = |G|}.
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We say that the group G has (A, d)-moderate growth with respect to S if
there are positive constants A and d such that

V (n)
V (γ)

≥ 1
A

(
n

γ

)d

, 1 ≤ n ≤ γ.

Theorem 6.2 ([3], Theorem 3.2). Let G be a finite group with generating
set S. Suppose G has (A, d)-moderate growth with respect to S. Let µ be a
symmetric probability measure on G with η = inf{µ(x) : x ∈ S\{e}} > 0.
Then

‖µ− λ‖n
l2→l2 ≤ ‖µ∗n − λ‖l1 ≤ 2B‖µ− λ‖n−γ2

l2→l2 ,

where B = 2d(d+3)/4A1/2η−d/4.

Now we are able to formulate

Theorem 6.3. Let G be a finite group with symmetric set S of gener-
ators which contains e and is invariant under inner automorphisms of G.
Suppose G has (A, d)-moderate growth with respect to S. Let µS be uniformly
distributed on S. Clearly , µS is central. Then there exists n0 ∈ N such that

(6.3) ∀n ≥ n0, ‖(µ1 ∗ µ2)∗n − λ‖l1 < ‖µ∗2n
S − λ‖l1

and

(6.4) ∀n ∈ N,
‖µ∗2n

S − λ‖l1

‖(µ1 ∗ µ2)∗n − λ‖l1
≥ Kan, K > 0, a > 1,

where
µ1 = µ + νε, µ2 = µ− νε

and ν is defined by (3.1).

P r o o f. Because

‖µ∗2n
S − λ‖l1 ≥ ‖µ∗2n

S − λ‖l2→l2 = ‖µS − λ‖2n
l2→l2 ,

it is sufficient to show (using Theorem 6.2) that for large n,

‖µS − λ‖2n
l2→l2 > C‖µ1 ∗ µ2 − λ‖n

l2→l2 ,

where C = 2d(d+3)/42A1/2(1/|S|)−d/4‖µ1 ∗µ2−λ‖−γ2

l2→l2 . But from the proof
of Theorem 3.1 we know that

‖µ∗2S − λ‖l2→l2 > ‖µ1 ∗ µ2 − λ‖l2→l2 .

Thus (6.4) follows from Theorem 6.2, since

‖µ∗2n
S − λ‖l1

‖(µ1 ∗ µ2)∗n − λ‖l1
≥
‖µ∗2S − λ‖n

l2→l2

C
‖µ1 ∗ µ2 − λ‖n

l2→l2 .

R e m a r k 6.4. Theorem 6.3 remains true without the assumption of
(A, d)-moderate growth, but then one might need more iterations of the
measure µ1 ∗ µ2.
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P r o o f. Instead of Theorem 6.2 we use the inequality

‖µ− λ‖l2→l2 ≤ ‖µ− λ‖l1 ≤
√
|G| ‖µ− λ‖l2→l2 ,

which is true for every probability measure µ on G. Then we obtain

‖µ∗2n
S − λ‖l1 ≥ ‖µ∗2n

S − λ‖l2→l2

> |G|1/2‖µ1 ∗ µ2 − λ‖n
l2→l2 (for large n)

= |G|1/2‖(µ1 ∗ µ2)n − λ‖l2→l2 (µ1 ∗ µ2 is hermitian)
≥ ‖(µ1 ∗ µ2)n − λ‖l1 .
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