REPRESENTATION TYPE OF POSETS AND FINITE RANK BUTLER GROUPS

BY
D. ARNOLD and M. DUGAS (WACO, TEXAS)

Some special classes of finite rank indecomposable Butler groups have recently been classified, up to quasi-isomorphism and near isomorphism, by complete sets of invariants as surveyed in [Arnold, Vinsonhaler, 93]. This leads to the question of determination of representation type, i.e. when is a classification even feasible? The approach in this paper is to use interpretations of classes of Butler groups as representations of finite partially ordered sets (posets) over various rings. In case the ring is a field, there are well known, suitable definitions of representation type. In particular, each poset has exactly one of finite, tame, or wild representation type, the representation type can be determined from the poset, and classification of indecomposable representations of a poset with finite or tame representation type is feasible.

For a ring R and finite poset $S, \operatorname{rep}(S, R)$ denotes the category of finitely generated filtered R-representations of S [Simson, 92, 96]. The objects are $U=\left(U_{0}, U_{i}: i \in S\right)$ such that U_{0} is a finitely generated submodule of a finitely generated free R-module, each U_{i} is a finitely generated submodule of U_{0}, and if $i \leq j$ in S, then U_{i} is contained in U_{j}. A morphism $f: U \rightarrow U^{\prime}$ is an R-module homomorphism $f: U_{0} \rightarrow U_{0}^{\prime}$ such that $f\left(U_{i}\right)$ is contained in U_{i}^{\prime} for each i. Direct sums are given by $U \oplus V=\left(U_{0} \oplus V_{0}, U_{i} \oplus V_{i}\right)$. If k is a field, then $\operatorname{rep}(S, k)$ is also known as the category of S-spaces (or filtered k-linear representations of S) [Simson, 92, Chapter 3].

As an illustration of an interpretation of Butler groups as representations, let T be a finite sublattice of the lattice of types (isomorphism classes of subgroups of \mathbb{Q}) and $B(T)$ the category of finite rank Butler groups with typeset contained in T [Butler, 65]. Each finite rank Butler group G is

[^0]in $B(T)$ for T the lattice generated by typeset G, known to be a finite set. There is a category equivalence from the quasi-homomorphism category $B(T)_{\mathbb{Q}}$ of $B(T)$ to the category $\operatorname{rep}\left(\mathrm{JI}(T)^{\mathrm{op}}, \mathbb{Q}\right)$ of \mathbb{Q}-representations of $\mathrm{JI}(T)^{\mathrm{op}}$, the finite poset of join-irreducible elements of T with inverse ordering [Butler, 68, 87]. The quasi-isomorphism representation type of $B(T)$ can then be determined from $\mathrm{JI}(T)$ as surveyed in [Arnold, 89]. Consequently, strongly indecomposables can be classified up to quasi-isomorphism in case $B(T)_{\mathbb{Q}}$ has finite or tame representation type.

Representation type for the quasi-homomorphism category is not sufficient from the point of view of groups as an indecomposable group can decompose up to quasi-isomorphism. The focus of this paper is on the representation type of $B(T)_{p}$, the isomorphism at p category of $B(T)$. Isomorphism at p is the local version of near isomorphism as introduced in [Lady, 75]. This is relevant to representation type of indecomposable groups as a Butler group G, being a torsion-free abelian group of finite rank, is indecomposable if and only if G is indecomposable up to near isomorphism, i.e. isomorphism at p for each prime p [Arnold, 82].

Let $\mathbb{Z}_{(p)}$ denote the localization of the integers at a prime p and $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}\right)$ the full subcategory of $\operatorname{rep}(S, R)$ consisting of representations $\left(U_{0}, U_{i}: i \in S\right)$ with U_{0} a finitely generated free $\mathbb{Z}_{(p)}$-module and each U_{i} pure in, hence a summand of, U_{0}. Given a positive integer j, define $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right)$ to be the full subcategory of $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}\right)$ with objects $\left(U_{0}, U_{i}: i \in S\right)$ such that $p^{j} U_{0}$ is contained in $\sum_{i} U_{i}$.

If T is a finite p-locally free lattice of types, then there is a category equivalence between $B(T)_{p}$ and $\operatorname{rep}_{\text {fpure }}\left(\mathrm{JI}(T)^{\mathrm{op}}, \mathbb{Z}_{(p)}\right)$, the category of free, pure $\mathbb{Z}_{(p)}$-representations of $\mathrm{JI}(T)$ [Richman, 94]. Not much is known about the representation type of the category $\operatorname{rep}(S, R)$ of R-representations of a finite poset S in case R is not a field, but see [Plahotnik, 76], [Simson, 96], and [Files, Goebel, 96] and references therein.

Section 1 is devoted to the representation type of $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right)$ for a finite poset S. The choice of appropriate definitions of tame and wild representation type for $\mathbb{Z}_{(p)}$-representations remains unclear. In the meantime, we use finite representation type to mean only finitely many isomorphism classes of indecomposables and introduce the notion of wild modulo p representation type in Section 1. One of the main results of Section 1 (Corollary 1.10) asserts that the category $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right)$ has:
(a) wild modulo p representation type if width $S \geq 3, j \geq 0$,
(b) infinite representation type if width $S=2$ and S contains the poset $(1,2), j \geq 0$,
(c) finite representation type if width $S=1, j \geq 0$ or width $S=2$ and S does not contain the poset $(1,2), j \geq 0$.

We conjecture that if width $S=2$ and S contains the poset $(1,2)$, then $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right)$ does not have wild modulo p representation type. Even if this conjecture is resolved in the affirmative, it remains unclear whether or not indecomposables can be classified.

Let S_{n} denote an antichain with n elements. As a special case of Corollary 1.10, together with known results for comparison, we have:
(a) For a field $k, \operatorname{rep}\left(S_{n}, k\right)$ has finite representation type if $n \leq 3$, tame representation type if $n=4$, and wild representation type if $n \geq 5$.
(b) $\operatorname{rep}_{\text {fpure }}\left(S_{n}, \mathbb{Z}_{(p)}, j\right)$ has finite representation type if $n \leq 2, j \geq 0$ and wild modulo p representation type if $n \geq 3, j \geq 0$.
(c) $\operatorname{rep}\left(S_{n}, \mathbb{Z}_{(p)}, j\right)$ has finite representation type if $n=1, j \geq 0$, infinite representation type if $n=2, j \geq 0$, and wild modulo p representation type if $n \geq 3, j \geq 0$.
(d) If $S=(1,2)$, then $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, 0\right)$ has infinite representation type and each indecomposable has rank ≤ 2 (Theorem 1.8(a)).
(e) If $S=(1,2)$, then $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}\right)$ has indecomposables of arbitrarily large rank (Theorem 1.8(b)).

Computations of indecomposables in $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}\right)$ cited in (d) and (e) for the "critical" poset $S=(1,2)$ demonstrate some anomalies that do not occur for fields. In particular, (d) illustrates a distinction between rank finite representation type (there is a bound on the ranks of indecomposables) and finite representation type as defined above. In fact, $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}\right)$ has rank finite representation type if and only if S does not contain the poset $(1,2)$ (Corollary 1.11).

In Section 2, computations of representation type in Section 1 are applied to isomorphism at p categories $B(T, j)_{p}$ of Butler groups (Corollary 2.3). Specifically, the representation type of $B(T, j)_{p}$ is the same as the representation type of $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right)$ for S the finite poset of join-irreducible elements of T in case T is p-locally free. Thus, Corollary 1.10 applies directly. For example, let T_{n} be a finite p-locally free Boolean algebra of types with n atoms.
($\left.\mathrm{a}^{\prime}\right) B\left(T_{n}\right)_{\mathbb{Q}}$ has finite representation type if $n \leq 3$, tame representation type if $n=4$, and wild representation type if $n \geq 5$.
($\left.\mathrm{b}^{\prime}\right) B\left(T_{n}, j\right)_{p}$ has finite representation type if $n \leq 2, j \geq 0$, and wild modulo p representation type if $n \geq 3, j \geq 0$.

While determining the representation type of $\operatorname{rep}_{\mathrm{fpure}}\left(S, \mathbb{Z}_{(p)}, j\right)$, various indecomposable representations are constructed. Included are several examples illustrating how such representations can be translated into indecomposable Butler groups of finite rank (Examples 2.4 and 2.5).

We thank D. Simson for his helpful comments during the preparation of this manuscript.

1. Representation type of $\operatorname{rep}_{\mathrm{fpure}}\left(S, \mathbb{Z}_{(p)}\right)$ and $\operatorname{rep}_{\mathrm{fpure}}\left(S, \mathbb{Z}_{(p)}, j\right)$. A category C has finite representation type if Ind C is finite, where Ind C is the set of isomorphism classes of indecomposables in C, and rank finite representation type if there is a finite bound on ranks of indecomposables in C.

Given $U=\left(U_{0}, U_{i}\right) \in \operatorname{rep}(S, k), k$ a field, define the coordinate vector $\operatorname{cdn} U=\left(u_{0}, u_{i}: i \in S\right)$, where $u_{0}=\operatorname{dim}_{k} U_{0}$ and $u_{i}=\operatorname{dim}_{k} U_{i} / \sum\left\{U_{j}:\right.$ $j<i$ in $S\}$ are non-negative integers [Simson, 92]. The category rep (S, k) has tame representation type provided that it has infinite representation type and for each coordinate vector $w=\left(w_{0}, w_{i}\right)$ there are finitely many $N_{1}, \ldots, N_{m} \in \operatorname{rep}(S, k[x])$ such that if $U \in \operatorname{rep}(S, k)$ is indecomposable with $\operatorname{cdn} U=w$, then U is isomorphic to $N_{i} \otimes_{k[x]} B$ for some finite-dimensional indecomposable $k[x]$-module B [Simson, 92]. In other words, indecomposables U in $\operatorname{rep}(S, k)$ are characterized up to isomorphism by $\operatorname{cdn} U$, finitely many indecomposable $k[x]$-representations of S, and $k[x]$-modules $k[x] /\left\langle g(x)^{e}\right\rangle$, $g(x)$ an irreducible polynomial.

The category $\operatorname{rep}(S, k)$ has wild representation type if there is an exact k-linear functor $\bmod k\langle x, y\rangle \rightarrow \operatorname{rep}(k, S)$ that sends indecomposables to indecomposables and reflects isomorphism classes, where $k\langle x, y\rangle$ is the polynomial ring with non-commuting indeterminates x and y and $\bmod k\langle x, y\rangle$ is the category of $k\langle x, y\rangle$-modules having finite k-dimension (see [Simson, 92, 93]).

The following theorem, due to Drozd, Kleiner, and Nazarova, is well known (see [Simson, 92, Theorems 10.1 and 15.1]). The poset

$$
\{ac<d\}
$$

is denoted by N. Let $j \geq 0, S$ a finite poset, and define a poset (S, j) to be the disjoint union of S and a chain C of length j. The ordering on (S, j) is exactly that on S and C, i.e. there are no relations between elements of C and S. Thus, for example, (i, j, k) denotes the disjoint union of 3 chains of length i, j, and k respectively.

Theorem 1.1. Let S be a finite poset and k a field.
(a) $\operatorname{rep}(S, k)$ has exactly one of finite, tame, or wild representation type.
(b) $\operatorname{rep}(S, k)$ has finite representation type if and only if S does not contain $(1,1,1,1),(2,2,2),(1,3,3),(1,2,5)$, or $(N, 4)$ as a subposet.
(c) $\operatorname{rep}(S, k)$ has tame representation type if and only if S does not contain $(1,1,1,1,1),(1,1,1,2),(2,2,3),(1,3,4),(1,2,6)$, or $(N, 5)$ as a subposet.

Given a finite poset S, let $S^{*}=(S, 1)$ be the disjoint union of S with a point $*$. An additive functor F from a category C to a category D is a fully faithful embedding if $F: \operatorname{Hom}_{C}(U, V) \rightarrow \operatorname{Hom}_{D}(F(U), F(V))$ is an isomorphism for each U, V in C. If F is a fully faithful embedding, then F induces an injection from $\operatorname{Ind} C$ into Ind D.

Lemma 1.2. Suppose that S is a finite poset.
(a) If S^{\prime} is a subposet of S and $j^{\prime} \leq j$, then there is a fully faithful embedding

$$
\operatorname{rep}_{\text {fpure }}\left(S^{\prime}, \mathbb{Z}_{(p)}, j^{\prime}\right) \rightarrow \operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right)
$$

(b) There is a fully faithful embedding

$$
\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right) \rightarrow \operatorname{rep}\left(S^{*}, \mathbb{Z}_{(p)}, 0\right)
$$

The image consists of all $V=\left(V_{0}, V_{i}, V_{*}: i \in S\right)$ with each $V_{0}=\sum_{i} V_{i} a$ free $\mathbb{Z}_{(p)}$-module, each V_{i} pure in V_{0}, and $V_{*} \cap V_{i}=p^{j} V_{i}$ for each i in S.

Proof. (a) Given $U=\left(U_{0}, U_{i}\right) \in \operatorname{rep}_{\text {fpure }}\left(S^{\prime}, \mathbb{Z}_{(p)}, j^{\prime}\right)$, define $F(U)=$ $\left(V_{0}, V_{s}: s \in S\right) \in \operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right)$ by $V_{0}=U_{0}, V_{s}=U_{s}$ if $s \in S^{\prime}$, $V_{s}=\bigcap\left\{U_{t}: s<t, t \in S^{\prime}\right\}$ if $s \notin S^{\prime}$ and there is some $t \in S^{\prime}$ with $s<t$, and $V_{s}=U_{0}$ otherwise. It is routine to see that F is a fully faithful embedding, where $F(f)=f$ (see [Simson, 92, Section 5.3]).
(b) The correspondence $U=\left(U_{0}, U_{i}: i \in S\right) \rightarrow V=\left(\sum_{i} U_{i}, U_{i}, p^{j} U_{0}\right)$ is a functor, where $f \rightarrow g=\left.f\right|_{\sum U_{i}}$. Note that V satisfies the given conditions. This functor is a fully faithful embedding, since if $g: V \rightarrow V^{\prime}$ is a representation morphism, then $f=g / p^{j}: U \rightarrow U^{\prime}$ is a unique extension of g.

Now let $V=\left(V_{0}, V_{i}, V_{*}: i \in S\right) \in \operatorname{rep}\left(S^{*}, \mathbb{Z}_{(p)}, 0\right)$ satisfy the given conditions and define $U=\left(V_{0}+\left(1 / p^{j}\right) V_{*}, V_{i}: i \in S\right)$. Then $U_{0}=V_{0}+$ $\left(1 / p^{j}\right) V_{*}$ is finitely generated torsion-free, hence free, as a $\mathbb{Z}_{(p)}$-module, and $p^{j} U_{0}$ is contained in $\sum_{i} V_{i}=V_{0}$. The fact that each V_{i} is pure in U_{0} follows from the assumption that $V_{*} \cap V_{i}=p^{j} V_{i}$ for each i.

We next consider some cases for which $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right)$ has finite representation type. The first theorem, and proof, is exactly as for fields. Given a finite poset S, the width of $S, w(S)$, is the largest number of pairwise incomparable elements of S.

Theorem 1.3. Assume that $w(S)=1$. Then the poset S is a chain and $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right)$ has finite representation type for each $j \geq 0$. A complete list of Ind $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right)$ is $\left(\mathbb{Z}_{(p)}, 0, \ldots, 0, \mathbb{Z}_{(p)}\right),\left(\mathbb{Z}_{(p)}, 0, \ldots, 0, \mathbb{Z}_{(p)}, \mathbb{Z}_{(p)}\right)$, $\ldots,\left(\mathbb{Z}_{(p)}, \mathbb{Z}_{(p)}, \ldots, \mathbb{Z}_{(p)}, \mathbb{Z}_{(p)}\right)$. Each indecomposable has endomorphism ring isomorphic to $\mathbb{Z}_{(p)}$.

Proof. Since $w(S)=1$, any two elements of S are comparable, from which it follows that S is a chain, say $S=\{1<2<\ldots<m\}$. Let $0 \neq U=$
$\left(U_{0}, U_{1}, \ldots, U_{m}\right) \in \operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right)$ with U_{i} contained in U_{i+1} for $i \geq 1$ and write $U_{0}=U_{m} \oplus V_{0}$. This is possible as pure submodules of finitely generated free $\mathbb{Z}_{(p)}$-modules are summands. Then

$$
U=\left(U_{m}, U_{1}, \ldots, U_{m-1}, U_{m}\right) \oplus\left(V_{0}, 0, \ldots, 0\right)
$$

But U is indecomposable with $0 \neq p^{j} U_{0}$ contained in $\sum_{i} U_{i}=U_{m}$. Thus, $V_{0}=0$ and $U=\left(U_{m}, U_{1}, \ldots, U_{m-1}, U_{m}\right)$. Next write $U_{m}=U_{m-1} \oplus V_{m}$. Then

$$
U=\left(U_{m-1}, U_{1}, \ldots, U_{m-1}, U_{m-1}\right) \oplus\left(V_{m}, 0, \ldots, 0, V_{m}\right)
$$

Since U is indecomposable, either

$$
\begin{array}{r}
U_{m-1}=0 \quad \text { and } \quad U \text { is isomorphic to }\left(\mathbb{Z}_{(p)}, 0, \ldots, 0, \mathbb{Z}_{(p)}\right) \quad \text { or else } \\
V_{m}=0 \quad \text { and } \quad U=\left(U_{m-1}, U_{1}, \ldots, U_{m-1}, U_{m-1}\right) .
\end{array}
$$

Continuing in this fashion completes the list of indecomposables. The endomorphism ring of each indecomposable is $\mathbb{Z}_{(p)}$ since $\mathbb{Z}_{(p)}$ is its own endomorphism ring.

Recall that $S_{n}=(1,1, \ldots, 1)$ denotes the poset of n pairwise incomparable elements.

Theorem 1.4 ([Arnold, Dugas, 93B] or [Files, Goebel, 96]). The category $\operatorname{rep}_{\text {fpure }}\left(S_{2}, \mathbb{Z}_{(p)}, j\right)$ has finite representation type for each $j \geq 0$. A complete list of representations in $\operatorname{Ind} \operatorname{rep}_{\text {fpure }}\left(S_{2}, \mathbb{Z}_{(p)}, j\right)$ for $j \geq 1$ is $\left(\mathbb{Z}_{(p)}, 0,0\right),\left(\mathbb{Z}_{(p)}, \mathbb{Z}_{(p)}, \mathbb{Z}_{(p)}\right),\left(\mathbb{Z}_{(p)}, \mathbb{Z}_{(p)}, 0\right),\left(\mathbb{Z}_{(p)}, 0, \mathbb{Z}_{(p)}\right)$, and $U_{b}=\left(\mathbb{Z}_{(p)} \oplus\right.$ $\left.\mathbb{Z}_{(p)}+\mathbb{Z}_{(p)}(1,1) / p^{j}, \mathbb{Z}_{(p)} \oplus 0,0 \oplus \mathbb{Z}_{(p)}\right)$.

The case $j=0$ has an interpretation as a "matrix problem" over $\mathbb{Z}_{(p)}$ (see [Simson, 92, Chapter 1] for a discussion of matrix problems over fields). In subsequent corollaries, some matrix problems are "solved" over $\mathbb{Z}_{(p)}$ in the sense that representation type is determined.

Theorem 1.5. There is a fully faithful embedding

$$
H: \operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, 0\right) \rightarrow \operatorname{rep}_{\text {fpure }}\left(S^{*}, \mathbb{Z}_{(p)}, 0\right)
$$

with image H those $V=\left(V_{0}=\bigoplus_{i} V_{i}, V_{i}, V_{*}: i \in S\right)$ such that $V_{i} \cap V_{*}=0$ and $V_{i} \oplus V_{*}$ is pure in V_{0} for each $i \in S$.

Proof. Let $U=\left(U_{0}, U_{i}: i \in S\right) \in \operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, 0\right)$ with $U_{0}=\sum_{i} U_{i}$ and define

$$
H(U)=\left(\bigoplus_{i} U_{i}, U_{i}, U_{*}\right)
$$

where U_{*} is the kernel of the epimorphism $\pi: \bigoplus_{i} U_{i} \rightarrow U_{0}$ induced by inclusion of the U_{i} 's in U_{0}. Then $H(U) \in \operatorname{rep}_{\text {fpure }}\left(S^{*}, \mathbb{Z}_{(p)}, 0\right)$ with $U_{i} \cap U_{*}=$ 0 and $U_{i} \oplus U_{*}$ pure in U_{0} for each $i \in S$ as $\left(\bigoplus_{i} U_{i}\right) /\left(U_{i} \oplus U_{*}\right)$, being isomorphic to U_{0} / U_{i}, is torsion-free.

To see that H is a functor, let $f: U \rightarrow U^{\prime}$ be a representation morphism. Then $g=\left.\bigoplus f\right|_{U(i)}: \bigoplus_{i} U_{i} \rightarrow \bigoplus_{i} U_{i}^{\prime}$ with $f \pi=\pi^{\prime} g$. Thus, $g: U_{*}=\operatorname{ker} \pi \rightarrow$ $U_{*}^{\prime}=\operatorname{ker} \pi^{\prime}$ and $H(f)=g: H(U) \rightarrow H\left(U^{\prime}\right)$ is a representation morphism. The reverse of this argument shows that H is a fully faithful embedding.

Finally, to see that image H is as described, let $V=\left(V_{0}=\bigoplus_{i} V_{i}, V_{i}, V_{*}\right.$: $i \in S) \in \operatorname{rep}_{\text {fpure }}\left(S^{*}, \mathbb{Z}_{(p)}, 0\right)$ with $V_{i} \cap V_{*}=0$ and $V_{i} \oplus V_{*}$ pure in V_{0} for each $i \in S$. Define $U=\left(U_{0}, U_{i}: i \in S\right)$ by $U_{0}=V_{0} / V_{*}$ and $U_{i}=\left(V_{i} \oplus V_{*}\right) / V_{*}$ for each $i \in S$. Then U_{0} is a free $\mathbb{Z}_{(p)}$-module since V_{*} is pure in $V_{0}, U_{0}=\sum_{i} U_{i}$, U_{i} is isomorphic to V_{i}, and U_{i} is pure in U_{0} since U_{0} / U_{i}, being isomorphic to $V_{0} /\left(V_{i} \oplus V_{*}\right)$, is torsion-free. It now follows that $U \in \operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, 0\right)$ with $H(U)$ isomorphic to V, as desired.

We say that $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right)$ is wild modulo p if given two $n \times n \mathbb{Z}_{(p)^{-}}$ matrices A and B with $A(\bmod p)$ and $B(\bmod p)$ non-zero $\mathbb{Z} / p \mathbb{Z}$-matrices, there is $U \in \operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right)$ and a $\mathbb{Z}_{(p)}$-algebra epimorphism

$$
\text { End } U \rightarrow C(A(\bmod p), B(\bmod p))
$$

where $A(\bmod p)$ denotes the $\mathbb{Z} / p \mathbb{Z}$-matrix obtained by reducing the entries of A modulo p and $C(A(\bmod p), B(\bmod p))$ is the ring of all $n \times n$ $\mathbb{Z} / p \mathbb{Z}$ matrices that commute with both $A(\bmod p)$ and $B(\bmod p)$. This definition is motivated by the fact that if k is a field and $\operatorname{rep}(S, k)$ has wild representation type, then for each finite-dimensional k-algebra Λ there is some U in $\operatorname{rep}(S, k)$ with End U isomorphic to Λ [Brenner, 74]. Moreover, the latter condition is equivalent to the condition that for each pair of non-zero k-matrices A^{\prime} and B^{\prime} there is some U with End U isomorphic to $C\left(A^{\prime}, B^{\prime}\right)$.

Lemma 1.6. The category $\operatorname{rep}_{\text {fpure }}\left(S_{3}, \mathbb{Z}_{(p)}, 0\right)$ has wild modulo p representation type.

Proof. Note that $S_{3}^{*}=S_{4}$. Let A and B be an $n \times n \mathbb{Z}_{(p)}$-matrices with $A(\bmod p)$ and $B(\bmod p)$ non-zero $\mathbb{Z} / p \mathbb{Z}$-matrices. Define $U \in$ $\operatorname{rep}_{\text {fpure }}\left(S_{3}^{*}, \mathbb{Z}_{(p)}, 0\right)$ by $U_{0}=\mathbb{Z}_{(p)}^{7 n} \oplus \mathbb{Z}_{(p)}^{6 n} \oplus \mathbb{Z}_{(p)}^{5 n}, U_{1}=\mathbb{Z}_{(p)}^{7 n} \oplus 0 \oplus 0, U_{2}=$ $0 \oplus \mathbb{Z}_{(p)}^{6 n} \oplus 0$, and $U_{3}=0 \oplus 0 \oplus \mathbb{Z}_{(p)}^{5 n}$, and $U_{*}=\left(M_{1}, M_{2}, M_{3}\right)$ the free $\mathbb{Z}_{(p)}$-module with the rows of the following matrix as a basis:

$$
\left[\begin{array}{ccccccc|cccccc|ccccc}
I & 0 & 0 & 0 & 0 & 0 & 0 & I & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & I & 0 \\
0 & I & 0 & 0 & 0 & 0 & 0 & -p A & p^{2} I & 0 & 0 & 0 & 0 & I & 0 & 0 & 0 & p^{2} I \\
0 & 0 & I & 0 & 0 & 0 & 0 & -p^{4} I & 0 & p^{6} I & 0 & 0 & 0 & 0 & I & 0 & 0 & p^{5} B \\
0 & 0 & 0 & I & 0 & 0 & 0 & p^{5} I & 0 & 0 & 0 & 0 & 0 & 0 & 0 & I & 0 & p^{6} I \\
0 & 0 & 0 & 0 & p^{2} I & 0 & 0 & 0 & 0 & 0 & I & 0 & 0 & I & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & p^{6} I & 0 & 0 & 0 & 0 & 0 & I & 0 & 0 & I & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & p^{7} I & 0 & 0 & 0 & 0 & 0 & I & 0 & 0 & I & 0 & 0
\end{array}\right]
$$

for I an $n \times n$ identity matrix and 0 an $n \times n$ matrix of 0 's. Now $U_{i} \cap U_{*}=0$ and $U_{i} \oplus U_{*}$ is pure in U_{0} for each $1 \leq i \leq 3$. Thus, $U=H(V)$ for some $V \in \operatorname{rep}_{\text {fpure }}\left(S_{3}, \mathbb{Z}_{(p)}, 0\right)$ with End U isomorphic to End V, by Theorem 1.5.

A routine but quite lengthy computation shows that if A and B are invertible modulo p, then there is an epimorphism $\operatorname{End} U \rightarrow C(A(\bmod p)$, $B(\bmod p))$. This computation is outlined in the Appendix. Finally, if A $(\bmod p)$ and $B(\bmod p)$ are non-zero, then there are elements a, b in $\mathbb{Z}_{(p)}$ with $A^{\prime}=a I+A$ and $B^{\prime}=b I+B$ invertible modulo p. Since $C\left(A^{\prime}(\bmod p)\right.$, $\left.B^{\prime}(\bmod p)\right)=C(A(\bmod p), B(\bmod p))$, the proof is now complete.

The rank of $U=\left(U_{0}, U_{i}\right) \in \operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right)$ is the rank of U_{0} as a (finitely generated) free \mathbb{Z}_{p}-module.

Theorem 1.7. Given $n \geq 2$, let C_{n} denote a chain with n elements so that $C_{n}^{*}=(n, 1)$.
(a) There is a fully faithful embedding $F_{j}: \operatorname{rep}_{\mathrm{fpure}}\left(C_{n-1}^{*}, \mathbb{Z}_{(p)}, j\right) \rightarrow$ $\operatorname{rep}_{\text {fpure }}\left(C_{n}^{*}, \mathbb{Z}_{(p)}, 0\right)$ for each j.
(b) If V is an indecomposable in $\operatorname{rep}_{\text {fpure }}\left(C_{n}^{*}, \mathbb{Z}_{(p)}, 0\right)$ with rank >1, then there is some j and indecomposable U in $\operatorname{rep}_{\mathrm{fpure}}\left(C_{n-1}^{*}, \mathbb{Z}_{(p)}, j\right)$ with $F_{j}(U)=V$.

Proof. (a) Let $U=\left(U_{0}, U_{1}, \ldots, U_{n-1}, U_{*}\right) \in \operatorname{rep}_{\text {fpure }}\left(C_{n-1}^{*}, \mathbb{Z}_{(p)}, j\right)$ and define $F_{j}(U)=V=\left(U_{0}, U_{1}, \ldots, U_{n-1}, U_{0}, U_{*}\right) \in \operatorname{rep}_{\text {fpure }}\left(C_{n}^{*}, \mathbb{Z}_{(p)}, 0\right)$. It is routine to verify that, with $F_{j}(f)=f, F_{j}: \operatorname{rep}_{\text {fpure }}\left(C_{n-1}^{*}, \mathbb{Z}_{(p)}, j\right) \rightarrow$ $\operatorname{rep}_{\text {fpure }}\left(C_{n}^{*}, \mathbb{Z}_{(p)}, 0\right)$ is a fully faithful embedding.
(b) Let $V=\left(V_{0}, V_{1}, \ldots, V_{n}, V_{*}\right)$ be an indecomposable representation in $\operatorname{rep}_{\text {fpure }}\left(C_{n}^{*}, \mathbb{Z}_{(p)}, 0\right)$ with rank >1 and $V_{0}=V_{n}+V_{*}$. Then we have $V_{*}=W_{1} \oplus\left(V_{*} \cap V_{n}\right)$ for some W_{1}, since pure submodules of finitely generated $\mathbb{Z}_{(p)}$-modules are summands. Hence, $V_{0}=V_{n}+V_{*}=W_{1} \oplus V_{n}$ and so

$$
V=\left(W_{1}, 0, \ldots, 0,0, W_{1}\right) \oplus\left(V_{n}, V_{1}, \ldots, V_{n-1}, V_{n}, V_{n} \cap V_{*}\right)
$$

Since W_{1} is a direct sum of rank-1's and V is indecomposable with rank >1, it follows that $W_{1}=0, V_{0}=V_{n}$ contains V_{*}, and $V=\left(V_{n}, V_{1}, \ldots\right.$ $\left.\ldots, V_{n-1}, V_{n}, V_{*}\right)$.

In fact, $p^{j} V_{n}$ is contained in $V_{n-1}+V_{*}$ for some j. To see this, let W be the pure submodule of V_{n} generated by $V_{n-1}+V_{*}$. Then $V_{n}=W^{\prime} \oplus W$ for some W^{\prime} and $V=\left(W^{\prime}, 0, \ldots, 0, W^{\prime}, 0\right) \oplus\left(W, V_{1}, \ldots, V_{n-1}, W, V_{*}\right)$. Again, $W^{\prime}=0$ since V is indecomposable of rank >1 and $V_{n}=W$. Thus there is some j with $p^{j} V_{n}$ contained in $V_{n-1}+V_{*}$ as V_{n} is a finitely generated free \mathbb{Z}_{p}-module. It now follows that $V=F_{j}(U)$ for $U=\left(V_{n}, V_{1}, \ldots, V_{n-1}, V_{*}\right)$ in $\operatorname{rep}_{\text {fpure }}\left(C_{n-1}^{*}, \mathbb{Z}_{(p)}, j\right)$.

Theorem 1.8. Let $S=(1,2)$.
(a) $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, 0\right)$ has infinite representation type and each indecomposable has rank ≤ 2. A rank-2 indecomposable is of the form $U=$ $\left(U_{0}, \mathbb{Z}_{(p)} \oplus 0, U_{0}, 0 \oplus \mathbb{Z}_{(p)}\right)$ and $U_{0}=\mathbb{Z}_{(p)} \oplus \mathbb{Z}_{(p)}+\mathbb{Z}_{(p)}(1,1) / p^{j}$.
(b) $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}\right)$ has indecomposables of arbitrarily large finite rank.

Proof. (a) is a consequence of Theorems 1.4 and 1.7(b).
(b) We construct an indecomposable $U=\left(U_{0}, U_{1}=E \oplus X, U_{2}, U_{3}\right)$ in $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, 2 n+1\right)$ of rank $2 n$ as follows:

$$
\begin{gathered}
U_{1}=E \oplus X, \quad E=\mathbb{Z}_{(p)} e_{1} \oplus \ldots \oplus \mathbb{Z}_{(p)} e_{n}, \quad X=\mathbb{Z}_{(p)} x_{1} \oplus \ldots \oplus \mathbb{Z}_{(p)} x_{n}, \\
U_{2}=\mathbb{Z}_{(p)} f_{1} \oplus \ldots \oplus \mathbb{Z}_{(p)} f_{n}, \quad U_{3}=U_{2} \oplus G_{1}, \quad G_{1}=\mathbb{Z}_{(p)} \varepsilon_{1} \oplus \ldots \oplus \mathbb{Z}_{(p)} \varepsilon_{n}, \\
\varepsilon_{i}=\left(e_{i}+f_{i}\right) / p^{2 i-1}, \\
U_{0}=E \oplus X \oplus G_{2}, \quad G_{2}=\mathbb{Z}_{(p)} \mu_{1} \oplus \ldots \oplus \mathbb{Z}_{(p)} \mu_{n}, \\
\mu_{i}=\left(p\left(e_{i}+f_{i}\right)+e_{i+1}+f_{i+1}+p^{2 i} x_{i}\right) / p^{2 n+1} \quad \text { for } i \leq n-1, \\
\mu_{n}=\left(p\left(e_{n}+f_{n}\right)+p^{2 n} x_{n}\right) / p^{2 n+1} .
\end{gathered}
$$

Notice that $p^{2 n+1} U_{0}$ is contained in $E \oplus X \oplus U_{2}, U_{0}=U_{1} \oplus G_{2}$, and $U_{0}=$ $U_{2} \oplus X \oplus G_{2}$. To see that U_{3} is pure in U_{0}, observe that

$$
\begin{aligned}
\mu_{i} & =\left(\left(e_{i}+f_{i}\right) / p^{2 i-1}+\left(e_{i+1}+f_{i+1}\right) / p^{2 i}+x_{i}\right) / p^{2(n-i)+1} \\
& =\left(\varepsilon_{i}+p \varepsilon_{i+1}+x_{i}\right) / p^{2(n-i)+1}
\end{aligned}
$$

for $1 \leq i \leq n-1$ and

$$
\mu_{n}=\left(\varepsilon_{n}+x_{n}\right) / p .
$$

It follows that $U_{3}=U_{2} \oplus G_{1}$ is a pure submodule of $U_{0}=E \oplus X \oplus G_{2}$ since $\varepsilon_{1}+p \varepsilon_{2}, \ldots, \varepsilon_{n-1}+p \varepsilon_{n}, \varepsilon_{n}$ is a basis of G_{1}.

Let f be a representation endomorphism of U, so that $f\left(U_{i}\right)$ is contained in U_{i} for each i. Then $f(E)$ is contained in E because $U_{3} \cap U_{1}=E$. Restriction induces an embedding of $\operatorname{End} U$ into $\operatorname{End}\left(U_{1} \oplus U_{2}\right)=\operatorname{End}(E \oplus$ $\left.U_{2} \oplus X\right)$ with

$$
f \rightarrow \varphi=\left[\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \beta & 0 \\
\delta & 0 & \gamma
\end{array}\right]
$$

for some $n \times n \mathbb{Z}_{(p)}$-matrix where

- $\alpha=\left(\alpha_{i j}\right)$ represents an endomorphism of E relative to the basis e_{1}, \ldots, e_{n},
- $\beta=\left(\beta_{i j}\right)$ represents an endomorphism of U_{2} relative to the basis f_{1}, \ldots, f_{n},
- $\delta: X \rightarrow E$, and
- $\gamma=\left(\gamma_{i j}\right)$ represents an endomorphism of X relative to the basis x_{1}, \ldots, x_{n}.

It is sufficient to prove that $\varphi(\bmod p)=a I+N$ for some $a \in \mathbb{Z} / p \mathbb{Z}$, where I is the identity matrix and N is a nilpotent $\mathbb{Z} / p \mathbb{Z}$-matrix with zeros on the diagonal. To see this, first note that the embedding End $U \rightarrow \operatorname{End} V$, for $V=E \oplus U_{2} \oplus X$, is pure since E, U_{2}, and X are pure and fully invariant in U_{0}. Thus, End $U / p \operatorname{End} U \rightarrow \operatorname{End} V / p \operatorname{End} V$ is an embedding, whence
elements of End U / p End U are of the form $a I+N, N$ a nilpotent $\mathbb{Z} / p \mathbb{Z}$ matrix with zeros on the diagonal. If f is an idempotent endomorphism of U, then $f(\bmod p)=a I+N$ is idempotent. A matrix multiplication shows that the diagonal elements of $f(\bmod p)$ are $a^{2}=a$, so that a is either 0 or 1 . Since N is in the Jacobson radical of $\operatorname{End} U / p \operatorname{End} U$ and p is in the Jacobson radical of End U, f must be either 0 or 1 . This shows that U is an indecomposable representation, as desired.

Now

$$
\varepsilon_{i} \phi=\left(\left(\left(e_{i}+f_{i}\right) / p^{2 i-1}\right) \alpha,\left(\left(e_{i}+f_{i}\right) / p^{2 i-1}\right) \beta, 0\right)=\sum_{j=1}^{n} r_{i j} \varepsilon_{j}+\left(e, u_{2}, 0\right)
$$

for some $\left(e, u_{2}\right) \in E \oplus U_{2}, r_{i j} \in \mathbb{Z}_{p}$. This is because $U_{3}=G_{1} \oplus E$ is the purification of $E \oplus U_{2}$ in U_{0}. Evaluate and multiply both sides by $p^{2 i-1}$ to get

$$
\sum_{j=1}^{n}\left(\alpha_{i j} e_{j}+\beta_{i j} f_{j}\right) \equiv \sum_{j=1}^{n} p^{2 i-1-(2 j-1)}\left(r_{i j} e_{j}+r_{i j} f_{j}\right) \bmod p^{2 i-1}\left(E \oplus U_{2}\right)
$$

Equate coefficients of the e_{i} 's and f_{i} 's to see that

$$
\begin{equation*}
\alpha_{i j} \equiv p^{2(i-j)} r_{i j} \equiv \beta_{i j} \bmod p^{2 i-1} \tag{*}
\end{equation*}
$$

In particular, $\alpha_{i j} \equiv \beta_{i j} \equiv 0 \bmod p$ if $i>j$.
Similarly,

$$
\mu_{i} \phi \equiv \sum_{j=1}^{n} s_{i j} \mu_{j}+\left(e, u_{2}, x\right) \quad \text { for some }\left(e, u_{2}, x\right) \in E \oplus U_{2} \oplus X, s_{i j} \in \mathbb{Z}_{p}
$$

since $p^{2 n+1} U_{0} \leq E \oplus U_{2} \oplus X$. Evaluate and multiply by $p^{2 n+1}$ to get
$\sum_{j=1}^{n}\left(p \alpha_{i j}+\alpha_{i+1, j}+p^{2 i} \delta_{i j}\right) e_{j}+\left(p \beta_{i j}+\beta_{i+1, j}\right) f_{j}+p^{2 i} \gamma_{i j} x_{j}$
$\equiv \sum_{j=1}^{n}\left(\left(p s_{i j}+s_{i, j-1}\right) e_{j}+\left(p s_{i j}+s_{i, j-1}\right) f_{j}+s_{i j} p^{2 j} x_{j}\right) \bmod p^{2 n+1}\left(E \oplus U_{2} \oplus X\right)$.
Equating coefficients for each $i \leq n-1$ and $j \leq n$ gives
(i) $p \alpha_{i j}+\alpha_{i+1, j}+p^{2 i} \delta_{i j} \equiv p s_{i j}+s_{i, j-1} \bmod p^{2 n+1}$,
(ii) $p \beta_{i j}+\beta_{i+1, j} \equiv p s_{i j}+s_{i, j-1} \bmod p^{2 n+1}$, and
(iii) $p^{2 i} \gamma_{i j} \equiv p^{2 j} s_{i j} \bmod p^{2 n+1}$
and for $i=n, j=n$,
(iv) $p \beta_{n n}+0 \equiv p s_{n n}+s_{n, n-1} \bmod p^{2 n+1}$ and
(v) $\gamma_{n, n-1} \equiv p^{-2} s_{n, n-1} \bmod p^{2 n+1}$.

From (ii) for $j=i$,

$$
p \beta_{i i}+\beta_{i+1, i} \equiv p s_{i i}+s_{i, i-1} \bmod p^{2 n+1}
$$

and from (ii) for $j=i+1$,
(vi) $p \beta_{i, i+1}+\beta_{i+1, i+1} \equiv p s_{i, i+1}+s_{i i} \bmod p^{2 n+1}$.

Combining these equations gives

$$
p \beta_{i i}+\beta_{i+1, i} \equiv p\left(p \beta_{i, i+1}+\beta_{i+1, i+1}-p s_{i, i+1}\right)+s_{i, i-1} \bmod p^{2 n+1}
$$

and so
$\left(\right.$ vii) $p\left(\beta_{i i}-\beta_{i+1, i+1}\right) \equiv-\beta_{i+1, i}+p^{2} \beta_{i, i+1}-p^{2} s_{i, i+1}+s_{i, i-1} \bmod p^{2 n+1}$.
By (*),

$$
\beta_{i+1, i} \equiv p^{2} r_{i+1, i} \bmod p^{2 i-1}
$$

whence p^{2} divides $\beta_{i+1, i}$. Also, (iii) gives

$$
p^{2 i} \gamma_{i j} \equiv p^{2(i-1)} s_{i, i-1} \bmod p^{2 n+1}
$$

so $s_{i, i-1} \equiv 0 \bmod p^{2}$. Using the above two equations in (vii) yields

$$
\beta_{i i} \equiv \beta_{i+1, i+1} \bmod p \quad \text { for each } i \leq n-1
$$

By (iii),

$$
\gamma_{i j} \equiv p^{2(j-i)} s_{i j} \bmod p^{2 n+1}
$$

so that

$$
\gamma_{i j} \equiv 0 \bmod p \quad \text { for } j>i, \quad \gamma_{i i} \equiv s_{i i} \bmod p^{2(n-i)+1}
$$

Combining this with (vi) gives

$$
\gamma_{i i} \equiv s_{i i} \equiv \beta_{i+1, i+1} \bmod p \quad \text { for all } i \leq n-1
$$

Finally, p^{2} divides $s_{n, n-1}$ by (v) and so $\beta_{n n} \equiv s_{n n} \equiv \gamma_{n n} \bmod p$ by (iv).
It now follows that there is an $a \in \mathbb{Z}_{(p)}$ with $a \equiv \alpha_{i i} \equiv \beta_{i i} \equiv \gamma_{i i} \bmod p$ for all i and

$$
a(\bmod p) I+N \equiv \varphi \bmod p \equiv\left[\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \beta & 0 \\
\delta & 0 & \gamma
\end{array}\right] \bmod p
$$

for some $\mathbb{Z} / p \mathbb{Z}$-matrix N with zeros on the diagonal. Since $\alpha(\bmod p)$ and β $(\bmod p)$ are upper triangular matrices and $\gamma(\bmod p)$ is a lower triangular matrix, we conclude that N is nilpotent as desired.

Theorem 1.9. Let S be a poset of width 2 such that S does not contain the poset $(1,2)$. For each $j \geq 0$, $\operatorname{rep}_{\mathrm{fpure}}\left(S, \mathbb{Z}_{(p)}, j\right)$ has finite representation type and each indecomposable has rank ≤ 2.

Proof. Let a and b be pairwise incomparable elements of S. Then the poset S is the disjoint union of $X, Y=\{a, b\}$, and Z, where $x \leq a$ and $x \leq b$
for each $x \in X$ and $a \leq z, b \leq z$ for each $z \in Z$. This is a consequence of the hypothesis that the poset $(1,2)$ is not contained in S.

Let $V=\left(V_{0}, V_{i}\right)$ be an indecomposable in $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}\right)$ and W the purification of $V_{a}+V_{b}$ in V_{0}. Then W is a summand of V_{0} contained in V_{z} for each z in Z and V_{x} contained in $V_{a} \cap V_{b}$ for each x in X, say $V_{0}=W \oplus U$. Also, $V_{z}=W \oplus U \cap V_{z}$ for each z in Z and

$$
\begin{aligned}
V= & \left(U, U_{x}=0, U_{a}=0, U_{b}=0, V_{z} \cap U: x \in X, z \in Z\right) \\
& \oplus\left(W, V_{x}, V_{a}, V_{b}, V_{z} \cap W=W: x \in X, z \in Z\right) .
\end{aligned}
$$

Since V is indecomposable, either $W=0$ or else $U=0$ and $V_{0}=W=V_{z}$ for each z in Z. If $W=0$, the proof is concluded by induction on the cardinality of S.

Next, assume $U=0$ and write $V_{0}=V_{z}=W=U \oplus\left(V_{a} \cap V_{b}\right)$ for each z in Z. Then $V_{a}=\left(U \cap V_{a}\right) \oplus\left(V_{a} \cap V_{b}\right), V_{b}=\left(U \cap V_{b}\right) \oplus\left(V_{a} \cap V_{b}\right)$, and V_{x} is contained in $V_{a} \cap V_{b}$ for x in X. So,

$$
\begin{aligned}
V= & V^{\prime} \oplus V^{\prime \prime}=\left(U, U_{x}=0, U \cap V_{a}, U \cap V_{b}, U_{z}=U\right) \\
& \oplus\left(V_{a} \cap V_{b}, V_{x}, V_{a} \cap V_{b}, V_{a} \cap V_{b}, V_{a} \cap V_{b} \cap V_{z}=V_{a} \cap V_{b}\right) .
\end{aligned}
$$

Since V is indecomposable, either $V=V^{\prime}$ or $V=V^{\prime \prime}$. In the first case, if X is non-empty, then V is induced by a representation of the proper subposet $Y \cup Z$ and so the proof is concluded by induction on the cardinality of S. In the second case, $W=V_{a} \cap V_{b}$. Thus, $V_{a}=V_{b}$ and if Z is non-empty, then $V=V^{\prime \prime}$ is induced by a representation of the proper subposet $X \cup Y$. Once again, the proof follows by induction. We are left with the case where $X=Z=\emptyset$, which is just the case $S=S_{2}$. Now apply Theorem 1.4.

Corollary 1.10. The category $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, j\right)$ has:
(a) wild modulo p representation type if $w(S) \geq 3, j \geq 0$,
(b) infinite representation type if $w(S)=2, S \geq(1,2), j \geq 0$,
(c) finite representation type if $w(S)=1, j \geq 0$ or $w(S)=2, S$ does not contain $(1,2), j \geq 0$.

Proof. The wild modulo p condition comes from Lemmas 1.6 and 1.2(a).
The finiteness conditions arise from Theorems 1.3 and 1.9 while the infinite condition for $w(S)=2$ is Theorem 1.8.

We next examine some conditions for rank finite representation type.
Corollary 1.11. The category $\operatorname{rep}_{\mathrm{fpure}}\left(S, \mathbb{Z}_{(p)}\right)$ has rank finite representation type if and only if S does not contain $(1,2)$.

Proof. A consequence of Theorems 1.8, 1.9, and Lemma 1.2.
Theorem 1.12. If $S=(1,3)$ or $(2,2)$, then $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, 0\right)$ has rank infinite representation type.

Proof. The case of $S=(1,3)$ is a consequence of Theorems 1.8(b) and 1.7.

Let $S=(2,2)$. We construct an indecomposable $U=\left(U_{0}, U_{1}, U_{2}, U_{3}, U_{0}\right)$ in $\operatorname{rep}_{\text {fpure }}\left(S, \mathbb{Z}_{(p)}, 2 n-1\right)$ with rank $U_{0}=2 n$ as follows:

$$
\begin{aligned}
U_{1} & =\mathbb{Z}_{(p)}\left(p^{n-1} e_{1}+\ldots+p e_{n-1}+e_{n}\right) \leq U_{2}=\mathbb{Z}_{(p)} e_{1} \oplus \ldots \oplus \mathbb{Z}_{(p)} e_{n} \\
U_{3} & =\mathbb{Z}_{(p)} f_{1} \oplus \ldots \oplus \mathbb{Z}_{(p)} f_{n} \\
& \leq U_{0}=U_{2} \oplus \mathbb{Z}_{(p)}\left(e_{1}+f_{1}\right) / p \oplus \ldots \oplus \mathbb{Z}_{(p)}\left(e_{n}+f_{n}\right) / p^{2 n-1}
\end{aligned}
$$

Note that each U_{i} is pure in U_{0}.
Let f be a representation endomorphism of U. Then $U_{2} \oplus U_{3}$ is a fully invariant submodule of U_{0} with $p^{2 n-1} U_{0}$ contained in $U_{2} \oplus U_{3}$. The restriction of f to $U_{2} \oplus U_{3}$ is $g=(\alpha, \beta)$ with $\alpha=\left(a_{i j}\right)$ an $n \times n \mathbb{Z}_{(p)}$-matrix representing an endomorphism of U_{2} relative to the basis e_{1}, \ldots, e_{n} and $\beta=\left(b_{i j}\right)$ an $n \times n \mathbb{Z}_{(p)}$-matrix representing an endomorphism of U_{3} relative to the basis f_{1}, \ldots, f_{n}.

Now

$$
\begin{aligned}
f\left(\left(e_{i}+\right.\right. & \left.\left.f_{i}\right) / p^{2 i-1}\right) \\
& =\left(\left(\left(e_{i}+f_{i}\right) / p^{2 i-1}\right) \alpha,\left(\left(e_{i}+f_{i}\right) / p^{2 i-1}\right) \beta\right) \\
& =\left(a_{i 1} e_{1} / p^{2 i-1}+\ldots+a_{i n} e_{n} / p^{2 i-1}, b_{i 1} f_{1} / p^{2 i-1}+\ldots+b_{i n} f_{n} / p^{2 i-1}\right) \\
& =r_{i 1}\left(e_{1}+f_{1}\right) / p+\ldots+r_{i n}\left(e_{n}+f_{n}\right) / p^{2 n-1}+\left(y_{2}, y_{3}\right)
\end{aligned}
$$

for some y_{i} in $U_{i}, r_{i j} \in \mathbb{Z}_{(p)}$. Equate coefficients of the e_{i} 's and f_{i} 's to see that if $i>j$, then $a_{i j} \equiv b_{i j} \equiv 0 \bmod p$.

Next, let $e=p^{n-1} e_{1}+\ldots+p e_{n-1}+e_{n}$, whence $U_{1}=\mathbb{Z}_{(p)} e$ is preserved by f. Then $e \alpha=r e$ for some r in $\mathbb{Z}_{(p)}$. Equating coefficients yields $r p^{n-j}=$ $p^{n-1} a_{1 j}+\ldots+a_{n j}$ for each j. It follows that $r \equiv a_{j j} \bmod p$ for each j. Thus, $g(\bmod p)=(\alpha, \beta)(\bmod p)$ is of the form

$$
r(\bmod p) I+M=\left[\begin{array}{cc}
\alpha(\bmod p) & 0 \\
0 & \beta(\bmod p)
\end{array}\right]
$$

for an upper triangular $\mathbb{Z} / p \mathbb{Z}$-matrix M with zeros on the diagonal. Since M is nilpotent, it follows that 0 and 1 are the idempotents of End U, just as in the proof of Theorem 1.8. This shows that U is an indecomposable representation of rank $2 n$.

Following is a computation of representation types for $\operatorname{rep}\left(S, \mathbb{Z}_{(p)}, j\right)$, although these categories of representations are not directly applicable to Butler groups.

Corollary 1.13. The category $\operatorname{rep}\left(S, \mathbb{Z}_{(p)}, j\right)$ has:
(a) finite representation type if $S=S_{1}, j \geq 0$,
(b) infinite representation type if $w(S)=1, S \neq S_{1}, j \geq 0$ or $w(S)=$ $2, j \geq 0$,
(c) wild modulo p representation type if $w(S) \geq 3, j \geq 0$.

Proof. Indecomposables in $\operatorname{rep}\left(S_{1}, \mathbb{Z}_{(p)}, j\right)$ are of the form $\left(\mathbb{Z}_{(p)}, p^{j} \mathbb{Z}_{(p)}\right)$ as a consequence of the stacked basis theorem. If S is a chain of length 2 , then there are infinitely many non-isomorphic indecomposables $\left(\mathbb{Z}_{(p)}, p^{m} \mathbb{Z}_{(p)}\right.$, $\left.\mathbb{Z}_{(p)}\right)$ in $\operatorname{rep}\left(S, \mathbb{Z}_{(p)}, 0\right)$. Furthermore, $\operatorname{rep}\left(S_{2}, \mathbb{Z}_{(p)}, j\right)$ has infinite representation type for $j \geq 0$ [Arnold, Dugas 93B] or [Files, Goebel 96]. Finally, apply Corollary 1.10 for the wild modulo p case.
2. Representation type of Butler groups. A type is an isomorphism class of a rank-1 group, a subgroup of the additive group of rationals. The set of all types form a lattice [Fuchs, 73]. A Butler group G is a pure subgroup of a finite direct sum $C_{1} \oplus \ldots \oplus C_{m}$ of rank-1 groups C_{i} [Butler, 65]. If G is a Butler group, then typeset G, the set of types of pure rank- 1 subgroups of G, is contained in the lattice of types generated by the types of the C_{i} 's. In particular, typeset G is finite if G is a Butler group.

Let T be a finite sublattice of the lattice of all types with least element τ_{0} and $B(T)$ the category of finite rank Butler groups with typeset contained in T. Fix a prime p. The lattice T is p-locally free if $X_{(p)} \approx \mathbb{Z}_{(p)}$ for each rank-1 group X with type $X \in T$. For $j \geq 0$, let $B(T, j)$ be the full subcategory of $B(T)$ consisting of those G with $p^{j} G$ contained in $\sum\{G(\tau): \tau \in \mathrm{JI}(T)\}$. The isomorphism at p category of $B(T, j)$ is denoted by $B(T, j)_{p}$; the objects are groups in $B(T, j)$ and morphisms are $\operatorname{Hom}(G, H)_{p}=\operatorname{Hom}(G, H) \otimes \mathbb{Z}_{(p)}($ see [Arnold, 82]).

The first proposition shows that, up to isomorphism at p, there is essentially no loss of generality in considering $B(T, j)$. The proof is essentially as in [Arnold, Dugas, 95B].

Proposition 2.1. If G is in $B(T)$ and has no rank-1 summand of type τ_{0}, then G is isomorphic at p to a group $H \in B(T, j)$ for some $j \geq 0$.

Proof. First observe that $\sum\{G(\sigma): \sigma \in \mathrm{JI}(T)\}=G^{*}\left(\tau_{0}\right)$. This is because $\tau_{0} \notin \mathrm{JI}(T)$ and if $\tau \in T \backslash \mathrm{JI}(T)$, then $\tau \geq \sigma$ for some $\sigma \in$ $\mathrm{JI}(T)$, whence $G(\tau)$ is contained in $G(\sigma)$. Since G is a Butler group, $G=$ $G\left(\tau_{0}\right)=G^{\prime} \oplus G^{\#}\left(\tau_{0}\right)$ with $G^{\prime} \tau_{0}$-homogeneous completely decomposable and $G^{\#}\left(\tau_{0}\right) / G^{*}\left(\tau_{0}\right)$ finite, where $G^{\#}\left(\tau_{0}\right)$ is the purification of $G^{*}\left(\tau_{0}\right)$ [Butler, 65]. By the assumption on $G, G^{\prime}=0$ and so $G / G^{*}\left(\tau_{0}\right)$ is finite. Now let H be a subgroup of G with $H / G^{*}\left(\tau_{0}\right)$ the p-component of $G / G^{*}\left(\tau_{0}\right)$. Since G / H is finite with order prime to p, G is isomorphic to H at p. Moreover, for some i, $p^{i}\left(H / G^{*}\left(\tau_{0}\right)\right)=0$ so that $p^{2 i} H$ is contained in $p^{i} G^{*}\left(\tau_{0}\right)$ and $H \in B(T, 2 i)$, as desired.

Theorem 2.2 [Richman, 94]. If T is p-locally free, then there is a category equivalence F from $B(T, j)_{p}$ to $\operatorname{rep}_{\text {fpure }}\left(\mathrm{JI}(T)^{\mathrm{op}}, \mathbb{Z}_{(p)}, j\right)$ given by $F(G)=\left(G_{p}, G(\tau)_{p}: \tau \in \mathrm{JI}(T)\right)$.

Corollary 2.3. If T is p-locally free and $S=\mathrm{JI}(T)^{\mathrm{op}}$, then $B(T, j)_{p}$ has:
(a) wild modulo p representation type if $w(S) \geq 3, j \geq 0$,
(b) infinite representation type if $w(S)=2, S \geq(1,2), j \geq 0$,
(c) finite representation type if $w(S)=1, j \geq 0$ or $w(S)=2, S$ does not contain $(1,2), j \geq 0$.

Proof. Apply Corollary 1.10 and Theorem 2.2.
The next example demonstrates how to transcribe representations in $\operatorname{rep}\left(\mathrm{JI}(T)^{\mathrm{op}}, \mathbb{Z}_{(p)}, j\right)$ into groups in $B(T, j)_{p}$.

Example 2.4. If T_{3} is a p-locally free Boolean algebra of types with three atoms, then $B\left(T_{3}, 2\right)_{p}$ is wild modulo p.

Proof. Let $\tau_{1}, \tau_{2}, \tau_{3}$ be the atoms of T_{3} and choose subgroups A_{i} of \mathbb{Q} with type $A_{i}=\tau_{i}, 1 \in A_{i}$, and $1 / p \notin A_{i}$ for each i. Given two $n \times n \mathbb{Z}$ matrices A and B with $A(\bmod p)$ and $B(\bmod p)$ invertible k-matrices, define $G \leq \mathbb{Q}^{n} \oplus \mathbb{Q}^{n} \oplus \mathbb{Q}^{n} \oplus \mathbb{Q}^{n}$ by

$$
\begin{aligned}
G= & A_{1}^{2 n} \oplus A_{2}^{2 n}+(1+0+0+1) A_{3}^{n}+(0+1+0+1) A_{3}^{n} \\
& +\left(1 / p^{2}\right)(1+0+A+1) \mathbb{Z}^{n}+(1 / p)(0+1+B+0) \mathbb{Z}^{n} .
\end{aligned}
$$

Then $U=\left(G_{p}, G\left(\tau_{1}\right)_{p}, G\left(\tau_{2}\right)_{p}, G\left(\tau_{3}\right)_{p}\right) \in \operatorname{rep}_{\text {fpure }}\left(\mathbb{Z}_{(p)}, S_{3}, 2\right)$ with

$$
\begin{aligned}
U_{0}= & \mathbb{Z}_{(p)}^{n} \oplus \mathbb{Z}_{(p)}^{n} \oplus \mathbb{Z}_{(p)}^{n} \oplus \mathbb{Z}_{(p)}^{n} \\
& +\left(1 / p^{2}\right)(1+0+A+1) \mathbb{Z}_{(p)}^{n}+(1 / p)(0+1+B+0) \mathbb{Z}_{(p)}^{n} \\
U_{1}= & \mathbb{Z}_{(p)}^{n} \oplus \mathbb{Z}_{(p)}^{n} \oplus 0 \oplus 0, \quad U_{2}=0 \oplus 0 \oplus \mathbb{Z}_{(p)}^{n} \oplus \mathbb{Z}_{(p)}^{n} \\
U_{3}= & (1+0+1+0) \mathbb{Z}_{(p)}^{n} \oplus(0+1+0+1) \mathbb{Z}_{(p)}^{n}
\end{aligned}
$$

By Lemma 1.2(b), End U is isomorphic to End V for $V=\left(V_{0}, V_{1}, V_{2}, V_{3}, V_{*}\right)$ with

$$
\begin{aligned}
V_{0}= & \mathbb{Z}_{(p)}^{n} \oplus \mathbb{Z}_{(p)}^{n} \oplus \mathbb{Z}_{(p)}^{n} \oplus \mathbb{Z}_{(p)}^{n}, \\
V_{1}= & \mathbb{Z}_{(p)}^{n} \oplus \mathbb{Z}_{(p)}^{n} \oplus 0 \oplus 0, \quad V_{2}=0 \oplus 0 \oplus \mathbb{Z}_{(p)}^{n} \oplus \mathbb{Z}_{(p)}^{n}, \\
V_{3}= & (1+0+1+0) \mathbb{Z}_{(p)}^{n} \oplus(0+1+0+1) \mathbb{Z}_{(p)}^{n}, \\
V_{*}=p^{2} U_{0}= & p^{2}\left(\mathbb{Z}_{(p)}^{n} \oplus \mathbb{Z}_{(p)}^{n} \oplus \mathbb{Z}_{(p)}^{n} \oplus \mathbb{Z}_{(p)}^{n}\right) \\
& +(1+0+A+1) \mathbb{Z}_{(p)}^{n}+p(0+1+B+0) \mathbb{Z}_{(p)}^{n} .
\end{aligned}
$$

A lengthy but straightforward computation, working modulo p and p^{2}, shows that there is a $\mathbb{Z}_{(p) \text {-algebra epimorphism }}$ End $V \rightarrow C(A(\bmod p), B$
$(\bmod p))$. The idea is to write a representation endomorphism $f: V_{0} \rightarrow V_{0}$ and interpret the equations resulting from $f\left(V_{i}\right) \leq V_{i}$ for each i and $f\left(V_{*}\right) \leq$ V_{*}; the details of this computation are not included. This completes the proof.

Example 2.5 . Let T be a p-locally finite lattice of types with

For example, designate $0=$ type $\mathbb{Z}, 1=$ type $\mathbb{Z}[3], 2=$ type $\mathbb{Z}[5], 3=$ type $\mathbb{Z}[3]+\mathbb{Z}[5], 4=$ type $\mathbb{Z}[5]+\mathbb{Z}[7]$, and $5=$ type $\mathbb{Z}[3]+\mathbb{Z}[5]+\mathbb{Z}[7]$, where $\mathbb{Z}[n]$ is the subgroup of \mathbb{Q} generated by $\left\{1 / n^{i}: 1 \leq i\right\}$, and $p=11$.

Let A_{i} be subgroups of \mathbb{Q} with $1_{\mathbb{Q}} \in A_{i}$, type $A_{i}=i$, and $1_{\mathbb{Q}} / p \notin A_{i}$.
(a) $B(T, 0)_{p}$ has infinite representation type but each indecomposable has rank ≤ 2. The indecomposables in $B(T, 0)_{p}$ of rank 2 are of the form $G=A_{4} \oplus A_{3}+\mathbb{Z}(1,1) / p^{j}$.
(b) $B(T)_{p}$ has indecomposables of arbitrarily large finite rank.

Proof. (a) Note that

$$
\begin{array}{ll}
\mathrm{JI}(T)^{\mathrm{op}}=1 & 2 \\
& \mid \\
& 4
\end{array}
$$

Now apply Theorems 2.2 and 1.8 to see that indecomposables have rank ≤ 2. In fact, if G is as defined above, then

$$
\begin{aligned}
\left(G_{p}, G(1)_{p}, G(4)_{p}, G(2)_{p}\right) & =\left(G_{p}, G(1)_{p}, G(4)_{p}, G_{p}\right) \\
& =\left(U_{0}, 0 \oplus \mathbb{Z}_{(p)}, \mathbb{Z}_{(p)} \oplus 0, U_{0}\right)
\end{aligned}
$$

for $U_{0}=\mathbb{Z}_{(p)} \oplus \mathbb{Z}_{(p)}+\mathbb{Z}_{(p)}(1,1) / p^{j}$, as desired.
(b) is a consequence of Theorems 2.2 and $1.8(\mathrm{~b})$.
3. Appendix. Let $U=\left(U_{0}, U_{1}, U_{2}, U_{3}\right)$ be as defined in Lemma 1.6 and $f: U_{0} \rightarrow U_{0}$ a representation endomorphism of U. Since $f: U_{i} \rightarrow U_{i}$ for $1 \leq i \leq 3, f$ can be represented as (α, β, γ) for $\alpha=\left(a_{i j}\right)$ a 7×7 matrix with entries $a_{i j}$ an $n \times n \mathbb{Z}_{(p) \text {-matrix, }} \beta=\left(b_{i j}\right)$ is a 6×6 matrix with entries
 an $n \times n \mathbb{Z}_{(p)}$-matrix. Since f is a $\mathbb{Z}_{(p)}$-homomorphism and α, β, γ are restrictions of f, it follows that $M_{2} \beta=M_{1} \alpha M_{1}^{-1} M_{2}$ is a 7×6 matrix with
entries $n \times n$ matrices labelled by $\mathrm{II}(i, j)$ and $M_{3} \gamma=M_{1} \alpha M_{1}^{-1} M_{3}$ is a 7×5 matrix with entries $n \times n$ matrices labelled by $\operatorname{III}(i, j)$.

A direct computation of the entries $\mathrm{II}(i, j)$ and $\mathrm{III}(i, j)$ yields the following equations, where the equations with ${ }^{*}$ involve matrices on the main diagonal.

$$
\begin{aligned}
& { }^{*} \operatorname{II}(1,1): b_{11}=-p a_{12} A+p^{5} a_{14}-p^{4} a_{13}+a_{11} \\
& \mathrm{II}(1,2): b_{12}=p^{2} a_{12} \\
& \mathrm{II}(1,3): b_{13}=p^{6} a_{13} \\
& \operatorname{II}(1,4): b_{14}=a_{15} p^{-2} \\
& \mathrm{II}(1,5): b_{15}=a_{16} p^{-6} \\
& \operatorname{II}(1,6): b_{16}=a_{17} p^{-7} \\
& { }^{*} \mathrm{II}(2,1):-p A b_{11}+p^{2} b_{21}=-p a_{22} A+p^{5} a_{24}-p^{4} a_{23}+a_{21} \\
& { }^{*} \mathrm{II}(2,2): p^{2} b_{22}-p A b_{12}=p^{2} a_{22} \\
& \mathrm{II}(2,3):-p A b_{13}+p^{2} b_{23}=p^{6} a_{23} \\
& \mathrm{II}(2,4):-p A b_{14}+p^{2} b_{24}=a_{25} p^{-2} \\
& \mathrm{II}(2,5):-p A b_{15}+p^{2} b_{25}=a_{26} p^{-6} \\
& \operatorname{II}(2,6):-p A b_{16}+p^{2} b_{26}=a_{27} p^{-7} \\
& { }^{*} \operatorname{II}(3,1):-p^{4} b_{11}+p^{6} b_{31}=-p a_{32} A+p^{5} a_{34}-p^{4} a_{33}+a_{31} \\
& \mathrm{II}(3,2): p^{6} b_{32}-p^{4} b_{12}=p^{2} a_{32} \\
& { }^{*} \mathrm{II}(3,3): p^{6} b_{33}-p^{4} b_{13}=p^{6} a_{33} \\
& \mathrm{II}(3,4): p^{6} b_{34}-p^{4} b_{14}=a_{35} p^{-2} \\
& \mathrm{II}(3,5): p^{6} b_{35}-p^{4} b_{15}=a_{36} p^{-6} \\
& \mathrm{II}(3,6): p^{6} b_{36}-p^{4} b_{16}=a_{37} p^{-7} \\
& { }^{*} \mathrm{II}(4,1): p^{5} b_{11}=-p a_{42} A+p^{5} a_{44}-p^{4} a_{43}+a_{41} \\
& \mathrm{II}(4,2): p^{5} b_{12}=p^{2} a_{42} \\
& \mathrm{II}(4,3): p^{5} b_{13}=p^{6} a_{43} \\
& \mathrm{II}(4,4): p^{5} b_{14}=a_{45} p^{-2} \\
& \operatorname{II}(4,5): p^{5} b_{15}=a_{46} p^{-6} \\
& \mathrm{II}(4,6): p^{5} b_{16}=a_{47} p^{-7} \\
& \mathrm{II}(5,1): b_{41}=-p^{3} a_{52} A+p^{7} a_{54}-p^{6} a_{53}+p^{2} a_{51} \\
& \operatorname{II}(5,2): b_{42}=p^{4} a_{52} \\
& \mathrm{II}(5,3): b_{43}=p^{8} a_{53} \\
& { }^{*} \operatorname{II}(5,4): b_{44}=a_{55} \\
& \mathrm{II}(5,5): b_{45}=a_{56} p^{-4}
\end{aligned}
$$

```
    \(\operatorname{II}(5,6): b_{46}=a_{57} p^{-5}\)
    \(\operatorname{II}(6,1): b_{51}=-p^{7} a_{62} A+p^{11} a_{64}-p^{10} a_{63}+p^{6} a_{61}\)
    \(\operatorname{II}(6,2): b_{52}=p^{8} a_{62}\)
    \(\operatorname{II}(6,3): b_{53}=p^{12} a_{63}\)
    \(\operatorname{II}(6,4): b_{54}=p^{4} a_{65}\)
    \({ }^{*} \operatorname{II}(6,5): b_{55}=a_{66}\)
    \(\operatorname{II}(6,6): b_{56}=a_{67} p^{-1}\)
    \(\operatorname{II}(7,1): b_{61}=-p^{8} a_{72} A+p^{12} a_{74}-p^{11} a_{73}+p^{7} a_{71}\)
    \(\operatorname{II}(7,2): b_{62}=p^{9} a_{73}\)
    \(\operatorname{II}(7,3): b_{63}=p^{13} a_{73}\)
    \(\mathrm{II}(7,4): b_{64}=p^{5} a_{75}\)
    \(\operatorname{II}(7,5): b_{65}=p a_{76}\)
\({ }^{*} \operatorname{II}(7,6): b_{66}=a_{77}\)
\(\operatorname{III}(1,1): g_{41}=a_{15} p^{-2}+a_{12}\)
\(\operatorname{III}(1,2): g_{42}=a_{16} p^{-6}+a_{13}\)
\(\operatorname{III}(1,3): g_{43}=a_{17} p^{-7}+a_{14}\)
\({ }^{*} \operatorname{III}(1,4): g_{44}=a_{11}\)
    \(\operatorname{III}(1,5): g_{45}=p^{5} a_{13} B+p^{6} a_{14}+p^{2} a_{12}\)
\({ }^{*} \operatorname{III}(2,1): g_{11}+p^{2} g_{51}=a_{25} p^{-2}+a_{22}\)
\(\operatorname{III}(2,2): p^{2} g_{52}+g_{12}=a_{26} p^{-6}+a_{23}\)
\(\operatorname{III}(2,3): p^{2} g_{53}+g_{13}=a_{27} p^{-7}+a_{24}\)
\(\operatorname{III}(2,4): p^{2} g_{54}+g_{14}=a_{21}\)
\({ }^{*} \operatorname{III}(2,5): p^{2} g_{55}+g_{15}=p^{5} a_{23} B+p^{6} a_{24}+p^{2} a_{22}\)
\(\operatorname{III}(3,1): p^{5} B g_{51}+g_{21}=a_{35} p^{-2}+a_{32}\)
\({ }^{*} \operatorname{III}(3,2): p^{5} B g_{52}+g_{22}=a_{36} p^{-6}+a_{33}\)
\(\operatorname{III}(3,3): p^{5} B g_{53}+g_{23}=a_{37} p^{-7}+a_{34}\)
\(\operatorname{III}(3,4): p^{5} B g_{54}+g_{24}=a_{31}\)
\({ }^{*} \operatorname{III}(3,5): p^{5} B g_{55}+g_{25}=p^{5} a_{33} B+p^{6} a_{34}+p^{2} a_{32}\)
\(\operatorname{III}(4,1): p^{6} g_{51}+g_{31}=a_{45} p^{-2}+a_{42}\)
\(\operatorname{III}(4,2): p^{6} g_{52}+g_{32}=a_{46} p^{-6}+a_{43}\)
\({ }^{*} \operatorname{III}(4,3): p^{6} g_{53}+g_{33}=a_{47} p^{-7}+a_{44}\)
\(\operatorname{III}(4,4): p^{6} g_{54}+g_{34}=a_{41}\)
\({ }^{*} \operatorname{III}(4,5): p^{6} g_{55}+g_{35}=p^{5} a_{43} B+p^{6} a_{44}+p^{2} a_{42}\)
```

$$
\begin{aligned}
& { }^{*} \operatorname{III}(5,1): g_{11}=p^{2} a_{52}+a_{55} \\
& \operatorname{III}(5,2): g_{12}=p^{2} a_{53}+a_{56} p^{-4} \\
& \operatorname{III}(5,3): g_{13}=p^{2} a_{54}+a_{57} p^{-5} \\
& \operatorname{III}(5,4): g_{14}=p^{2} a_{51} \\
& \operatorname{III}(5,5): g_{15}=p^{7} a_{53} B+p^{8} a_{54}+p^{4} a_{52} \\
& \operatorname{III}(6,1): g_{21}=p^{6} a_{62}+p^{4} a_{65} \\
& { }^{*} \operatorname{III}(6,2): g_{22}=p^{6} a_{63}+a_{66} \\
& \operatorname{III}(6,3): g_{23}=p^{6} a_{64}+a_{67} p^{-1} \\
& \operatorname{III}(6,4): g_{24}=p^{6} a_{61} \\
& \operatorname{III}(6,5): g_{25}=p^{11} a_{63} B+p^{12} a_{64}+p^{8} a_{62} \\
& \operatorname{III}(7,1): g_{31}=p^{7} a_{72}+p^{5} a_{75} \\
& \operatorname{III}(7,2): g_{32}=p^{7} a_{73}+p a_{76} \\
& { }^{*} \operatorname{III}(7,3): g_{33}=p^{7} a_{74}+a_{77} \\
& \operatorname{III}(7,4): g_{34}=p^{7} a_{71} \\
& \operatorname{III}(7,5): g_{35}=p^{12} a_{73} B+p^{13} a_{74}+p^{9} a_{72}
\end{aligned}
$$

The next step involves a listing of consequences of the above equations, where \equiv without any modifier denotes congruence $\bmod p$. Relations between main diagonal elements are enclosed in a box for easy identification.
$\operatorname{II}(1,1) \Rightarrow b_{11} \equiv a_{11}$
$\mathrm{II}(2,1), \operatorname{III}(2,4)$, and $\operatorname{III}(5,4) \Rightarrow A b_{11} \equiv a_{22} A$
$\mathrm{II}(3,1)$ and $\operatorname{III}(3,4) \Rightarrow-p^{4} b_{11} \equiv-p a_{32} A-p^{4} a_{33}+a_{31} \bmod p^{5}$
$\operatorname{III}(3,4) \Rightarrow a_{31} \equiv g_{24} \bmod p^{5}$
$\mathrm{III}(6,4) \Rightarrow g_{24} \equiv 0 \bmod p^{6} \Rightarrow a_{31} \equiv 0 \bmod p^{5}$

$$
\Rightarrow-p^{4} b_{11} \equiv-p^{4} a_{33}-p a_{32} A \bmod p^{5}
$$

$\mathrm{II}(3,2) \Rightarrow p a_{32} \equiv-p^{3} b_{12} \bmod p^{5}$
$\mathrm{II}(1,2) \Rightarrow b_{12} \equiv 0 \bmod p^{2} \Rightarrow p a_{32} \equiv 0 \bmod p^{5} \Rightarrow b_{11} \equiv a_{33}$
$\mathrm{II}(3,3)$ and $\mathrm{II}(1,3) \Rightarrow b_{33} \equiv a_{33}$
$\mathrm{II}(4,1) \Rightarrow p^{5} b_{11}=p^{5} a_{44}-p a_{42} A-p^{4} a_{43}+a_{41}$
$\operatorname{III}(4,4) \Rightarrow a_{41}=p^{6} g_{54}+g_{34}$
$\operatorname{III}(7,4) \Rightarrow g_{34} \equiv 0 \bmod p^{7} \Rightarrow a_{41} \equiv 0 \bmod p^{6}$
$\mathrm{II}(4,3) \Rightarrow p^{6} a_{43}=p^{5} b_{13}=p^{11} a_{13} \Rightarrow p^{4} a_{43}=p^{9} a_{13}$
$\operatorname{III}(4,1) \Rightarrow a_{42} \equiv g_{31}-a_{45} p^{-2} \bmod p^{5}$
$\mathrm{III}(7,1) \Rightarrow g_{31} \equiv 0 \bmod p^{5}, \mathrm{II}(4,4) \Rightarrow a_{45} p^{-2} \equiv 0 \bmod p^{5}$

So $a_{42} \equiv 0 \bmod p^{5}$, and $p^{5} b_{11} \equiv p^{5} a_{44}-p^{4} a_{43} \bmod p^{6}$.
Finally, $\mathrm{II}(4,5), \mathrm{II}(4,2) \Rightarrow a_{43} \equiv g_{32} \bmod p^{2} \Rightarrow b_{11} \equiv a_{44}$
$\mathrm{II}(5,4), \mathrm{II}(6,5), \mathrm{II}(7,6) \Rightarrow b_{44} \equiv a_{55}, b_{55} \equiv a_{66}, \quad b_{66} \equiv a_{77}$
$\mathrm{III}(1,4) \Rightarrow g_{44} \equiv a_{11}$
$\mathrm{III}(2,1)$ and $\mathrm{II}(2,4) \Rightarrow g_{11} \equiv a_{22}$
$\operatorname{III}(2,5)$ and $\operatorname{III}(5,5) \Rightarrow g_{55} \equiv a_{22}$
$\operatorname{III}(3,2)$ and $\mathrm{II}(3,5) \Rightarrow g_{22} \equiv a_{33}$
$\operatorname{III}(3,5)$ and $\operatorname{III}(6,5) \Rightarrow p^{5} B g_{55} \equiv p^{5} a_{33} B+p^{2} a_{32} \bmod p^{6}$
$\mathrm{II}(1,2)$ and $\mathrm{II}(3,2) \Rightarrow p^{2} a_{32} \equiv 0 \bmod p^{6} \Rightarrow B g_{55} \equiv a_{33} B$
$\operatorname{III}(4,3)$ and $\mathrm{II}(4,6) \Rightarrow g_{33} \equiv a_{44}$
$\operatorname{III}(4,5) \Rightarrow p^{6} g_{55}+g_{35}=p^{5} a_{43} B+p^{6} a_{44}+p^{2} a_{42}$
$\mathrm{III}(7,5) \Rightarrow g_{35} \equiv 0 \bmod p^{9}$
$\mathrm{II}(4,3)$ and $\mathrm{II}(1,3) \Rightarrow p^{5} a_{43}=p^{4} b_{13}=p^{10} a_{13} \equiv 0 \bmod p^{10}$
$\mathrm{II}(4,2)$ and $\mathrm{II}(1,2) \Rightarrow p^{2} a_{42}=p^{5} b_{12}=p^{7} a_{12} \Rightarrow g_{55} \equiv a_{44}$
$\operatorname{III}(5,1) \Rightarrow g_{11} \equiv a_{55}$
$\mathrm{III}(6,2) \Rightarrow g_{22} \equiv a_{66}$
$\mathrm{III}(7,3) \Rightarrow g_{33} \equiv a_{77}$
$\mathrm{II}(2,2) \Rightarrow p^{2} b_{22}-p A b_{12}=p^{2} a_{22}$
$\mathrm{II}(1,2) \Rightarrow b_{12}=p^{2} a_{12} \Rightarrow b_{22} \equiv a_{22}$
We now see that all diagonal elements are congruent $\bmod p$ to a fixed $n \times n \mathbb{Z} / p \mathbb{Z}$ matrix a with $a A \equiv A a$ and $a B \equiv B a$. Then

$$
\left[\begin{array}{ccc}
\alpha(\bmod p) & 0 & 0 \\
0 & \beta(\bmod p) & 0 \\
0 & 0 & \gamma(\bmod p)
\end{array}\right]=a(\bmod p) I+N
$$

for some nilpotent $\mathbb{Z} / p \mathbb{Z}$-matrix N with zero diagonal elements. In particular, an inspection of the equations for II and III shows that $\alpha(\bmod p)$ is of the form

$$
\left[\begin{array}{lllllll}
a & * & * & * & 0 & 0 & 0 \\
0 & a & * & * & 0 & 0 & 0 \\
0 & 0 & a & * & 0 & 0 & 0 \\
0 & 0 & 0 & a & 0 & 0 & 0 \\
* & * & * & * & a & 0 & 0 \\
* & * & * & * & * & a & 0 \\
* & * & * & * & * & * & a
\end{array}\right],
$$

$\beta(\bmod p)$ is of the form

$$
\left[\begin{array}{llllll}
a & 0 & 0 & * & * & * \\
* & a & 0 & * & * & * \\
* & * & a & * & * & * \\
0 & 0 & 0 & a & * & * \\
0 & 0 & 0 & 0 & a & * \\
0 & 0 & 0 & 0 & 0 & a
\end{array}\right]
$$

and $\gamma(\bmod p)$ is of the form

$$
\left[\begin{array}{lllll}
a & * & * & 0 & 0 \\
0 & a & * & 0 & 0 \\
0 & 0 & a & 0 & 0 \\
* & * & * & a & 0 \\
* & * & * & * & a
\end{array}\right] .
$$

A matrix computation shows that N is nilpotent．It now follows，as in the proof of Theorem 1．8，that there is a $\mathbb{Z}_{(p)}$－algebra epimorphism End $U \rightarrow$ $C(A(\bmod p), B(\bmod p))$ ．

REFERENCES

D．M．Arnold，Finite Rank Torsion－Free Abelian Groups and Rings，Lecture Notes in Math．931，Springer，New York， 1982.
－，Representations of partially ordered sets and abelian groups，in：Contemp．Math．87， Amer．Math．Soc．，1989，91－109．
D．M．Arnold and M．Dugas，Block rigid almost completely decomposable groups and lattices over multiple pullback rings，J．Pure Appl．Algebra 87 （1993），105－121．
－，一，Butler groups with finite typesets and free groups with distinguished subgroups， Comm．Algebra 21 （1993），1947－1982．
－，一，Locally free finite rank Butler groups and near isomorphism，in：Abelian Groups and Modules，Kluwer，Boston，1995，41－48．
一，一，Representations of finite posets and near－isomorphism of finite rank Butler groups， Rocky Mountain J．Math． 25 （1995），591－609．
D．M．Arnold and C．Vinsonhaler，Finite rank Butler groups：A survey of recent results，in：Abelian Groups，Lecture Notes in Pure and Appl．Math．146，Marcel Dekker，New York，1993，17－41．
S．Brenner，Decomposition properties of some small diagrams of modules，Sympos．Math． 13 （1974），127－141．
M．C．R．Butler，A class of torsion－free abelian groups of finite rank，Proc．London Math． Soc．（3） 15 （1965），680－698．
－，Torsion－free modules and diagrams of vector spaces，ibid． 18 （1968），635－652．
－，Some almost split sequences in torsion－free abelian group theory，in：Abelian Group Theory，Gordon and Breach，New York，1987，291－302．
M．Dugas and E．Oxford，Near isomorphism invariants for a class of almost completely decomposable groups，in：Abelian Groups，Lecture Notes in Pure and Appl．Math．146， Marcel Dekker，New York，1993，129－150．
S. Files and R. Goebel, Gauß' theorem for two submodules, submitted for publication, 1996.
L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973.
E. L. Lady, Nearly isomorphic torsion-free abelian groups, J. Algebra 35 (1975), 235-238.
V. V. Plahotnik, Representations of partially ordered sets over commutative rings, Math. USSR-Izv. 10 (1976), 497-514.
F. Richman, Isomorphism of Butler groups at a prime, in: Abelian Group Theory and Related Topics (Oberwolfach, 1993), Contemp. Math. 171, 1994, 333-337.
D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon and Breach, Philadelphia, 1992.
-, On representation types of module subcategories and orders, Bull. Polish Acad. Sci. Math. 41 (1993), 77-93.
-, Socle projective representations of partially ordered sets and Tits quadratic forms with applications to lattices over orders, in: Abelian Groups and Modules, Marcel Dekker, New York, 1996, 73-112.

Department of Mathematics
Baylor University
Waco, Texas 76798
U.S.A.

E-mail: arnoldd@baylor.edu
dugasm@baylor.edu

[^0]: 1991 Mathematics Subject Classification: Primary 20K15; Secondary 16G20.
 Research of the first author supported, in part, by the University of Essen and the German-Israeli Foundation.

 Research of the second author supported, in part, by the Baylor University Summer Sabbatical Program.

