NON-AMENABLE GROUPS WITH AMENABLE ACTION AND SOME PARADOXICAL DECOMPOSITIONS IN THE PLANE

BY
JAN MYCIELSKI (BOULDER, COLORADO)

A finitely additive non-negative (not necessarily finite) measure is called universal iff it is defined over all subsets of the underlying space. A group G is called amenable iff there exists a universal left invariant measure μ over G with $\mu(G)=1$. If an amenable group G acts on a space X, then there exists a universal G-invariant measure ϱ over X with $\varrho(X)=1$. Indeed, we pick $x_{0} \in X$, define $\nu(Y)=0$ if $x_{0} \notin Y$ and $\nu(Y)=1$ if $x_{0} \in Y$ for all $Y \subseteq X$ and define

$$
\varrho(Y)=\int_{G} \nu(g(Y)) \mu(d g),
$$

where μ is given by the amenability of G. It is clear that ϱ has the required properties. In a similar way one can show that if G is amenable, then there exists a left and right invariant universal measure μ in G with $\mu(G)=1$.

When G is not amenable, the theory of Hausdorff-Banach-Tarski paradoxical decompositions gives many examples of actions of G for which no universal invariant measures exist (see [W]). However, in the present paper we will give natural examples of non-amenable group actions which are faithful and transitive and nevertheless such that universal invariant measures, positive and finite on appropriate sets, do exist (Theorems 1, 2 and 3). Moreover, we will prove or conjecture several facts on the existence of Hausdorff-Banach-Tarski paradoxical decompositions of sets in the plane \mathbb{R}^{2} which preclude the existence of other universal measures (Corollaries $1, \ldots, 5$ and Theorem 4). These are related to a well-known theorem of von Neumann about paradoxical decompositions of sets in \mathbb{R}^{2} (see [W], Thm. 7.3) which will be proved again in the present paper as Corollary 3. For related work concerning the hyperbolic plane see $\left[\mathrm{M}_{1}\right]$.

We recall some results of the Banach-Tarski theory of equivalence by finite decomposition which will be used below. If a group G acts on a space X, then a set $Y \subseteq X$ will be called paradoxical iff there exists a partition of

[^0]Y into $2 n$ disjoint subsets
$$
Y=U_{1} \cup \ldots \cup U_{n} \cup V_{1} \cup \ldots \cup V_{n}
$$
and there exist $2 n$ elements $g_{1}, \ldots, g_{n}, h_{1}, \ldots, h_{n} \in G$ such that
$$
Y=g_{1}\left(U_{1}\right) \cup \ldots \cup g_{n}\left(U_{n}\right)=h_{1}\left(V_{1}\right) \cup \ldots \cup h_{n}\left(V_{n}\right)
$$

Two sets $Y_{1}, Y_{2} \subseteq X$ are said to be equivalent by finite decomposition, in symbols $Y_{1} \equiv Y_{2}$, iff there exist partitions of Y_{1} and Y_{2} into the same number n of disjoint sets,

$$
Y_{1}=U_{1} \cup \ldots \cup U_{n} \quad \text { and } \quad Y_{2}=V_{1} \cup \ldots \cup V_{n}
$$

and there exist n transformations $g_{1}, \ldots, g_{n} \in G$ such that $g_{i}\left(U_{i}\right)=V_{i}$ for $i=1, \ldots, n$.

We will use the following two theorems of Banach and Tarski (see [W]).
Theorem A (A variant of the Cantor-Bernstein Theorem). If $Y_{1} \subseteq$ $Y_{2} \subseteq Y_{3} \subseteq X$ and $Y_{1} \equiv Y_{3}$, then $Y_{1} \equiv Y_{2}$.

Theorem B (A Cancellation Theorem). If $Y_{1} \cup \ldots \cup Y_{n}=Y \subseteq X$, $Y_{1} \equiv Y_{2} \equiv \ldots \equiv Y_{n}$ and Y is paradoxical, then each Y_{i} is paradoxical.

Theorem A does not require the Axiom of Choice, but Theorem B apparently does (see [W], Corollary 8.8). The Axiom of Choice will be freely used in the present paper.
\mathbb{Z}, \mathbb{Q} and \mathbb{R} denote the rings of integers, rational numbers and real number respectively; $J=\{x \in \mathbb{R}: 0<x \leq 1\} ; \omega=\{k \in \mathbb{Z}: k \geq 0\}$. For any commutative ring R with unity, $S L_{n}(R)$ denotes the group of $n \times n$ matrices with entries in R and determinant 1.

Theorem 1. There exists a finitely additive measure @ over all bounded subsets of \mathbb{Q}^{n} satisfying $\varrho\left((J \cap \mathbb{Q})^{n}\right)=1$, invariant under $S L_{n}(\mathbb{Z})$ and under the group \mathbb{Q}^{n} of rational translations. Moreover, $\varrho(\alpha Y)=|\alpha|^{n} \varrho(Y)$ for all $\alpha \in \mathbb{Q}$.

Proof. Let F be any non-principal ultrafilter of subsets of ω. For any bounded function $f: \omega \rightarrow \mathbb{R}$ we define the generalized $\operatorname{limit}_{\lim }^{k \rightarrow F} \boldsymbol{f}(k)$ to be the unique real number λ such that for every open neighborhood V of λ we have

$$
\{k: f(k) \in V\} \in F
$$

Now we define an auxiliary measure ν over all bounded sets $Y \subset \mathbb{Q}^{n}$:

$$
\nu(Y)=\lim _{k \rightarrow F}(k!)^{-n}\left|Y \cap \frac{1}{k!} \mathbb{Z}^{n}\right|
$$

where $|U|$ denotes the cardinality of U. Since the lattice $\frac{1}{k!} \mathbb{Z}^{n}$ is invariant under $S L_{n}(\mathbb{Z})$, it follows that ν is invariant under $S L_{n}(\mathbb{Z})$.

Now, the multiplicative group \mathbb{Q}^{*} of rational numbers different from zero is abelian and hence amenable. Let μ be an invariant universal measure in \mathbb{Q}^{*} given by its amenability. For all bounded $Y \subset \mathbb{Q}^{n}$ we define

$$
\varrho(Y)=\int_{\mathbb{Q}^{*}}|q|^{-n} \nu(q Y) \mu(d q)
$$

It is easy to check that the integrated function is bounded and hence the integral exists. The finite additivity of ϱ is obvious. Since ν is invariant under $S L_{n}(\mathbb{Z})$ so is ϱ. Notice that if $v \in \mathbb{Q}^{n}$ and k is large enough such that $k!v \in \mathbb{Z}^{n}$, then

$$
\left|(Y+v) \cap \frac{1}{k!} \mathbb{Z}^{n}\right|=\left|k!(Y+v) \cap \mathbb{Z}^{n}\right|=\left|k!Y \cap \mathbb{Z}^{n}\right|=\left|Y \cap \frac{1}{k!} \mathbb{Z}^{n}\right| .
$$

Hence ν is invariant under the action of \mathbb{Q}^{n}. Thus it is easy to check that ϱ is also invariant under \mathbb{Q}^{n}. It is also clear that

$$
\nu\left((J \cap \mathbb{Q})^{n}\right)=1
$$

and hence the same is true for ϱ. Finally, since $\mu(\alpha d q)=\mu(d q)$ for $\alpha \in \mathbb{Q}^{*}$, we get $\varrho(\alpha Y)=|\alpha|^{n} \varrho(Y)$.

Remark 1. Of course one can extend ϱ from \mathbb{Q}^{n} to \mathbb{R}^{n} putting $\widetilde{\varrho}(Y)=$ $\varrho\left(Y \cap \mathbb{Q}^{n}\right)$ and $\widetilde{\varrho}$ still has the same invariance and homogeneity properties. Such a $\widetilde{\varrho}$ is an extension of the Jordan measure, i.e., the Lebesgue measure restricted to bounded sets whose boundaries have measure zero.

Remark 2. We conjecture that there exists no finitely additive measure ϱ over all bounded subsets of $\mathbb{R}^{2}-\{(0,0)\}$ invariant under $S L_{2}(\mathbb{R})$ with $\varrho\left(J^{2}\right)=1$. Compare with Theorem 4 below.

Remark 3. There exists no finitely additive measure ϱ over all bounded subsets of \mathbb{R}^{2} with $\varrho\left(J^{2}\right)=1$ invariant under $S L_{2}(\mathbb{Z})$, under the group of integer translations \mathbb{Z}^{2} and any single translation τ such that $\tau\left(\mathbb{Q}^{2}\right) \cap \mathbb{Q}^{2}=$ \emptyset. This follows from the fact that J^{2} is paradoxical relative to the group generated by the above transformations (a theorem of von Neumann, see [W], Thm. 7.3). For another proof see Corollary 3 below.

Remark 4. The set $\mathbb{Z}^{2}-\{(0,0)\}$ has a paradoxical decomposition relative to the group $S L_{2}(\mathbb{Z})$. Thus it has no universal finitely additive measure ϱ invariant under $S L_{2}(\mathbb{Z})$ satisfying $\varrho\left(\mathbb{Z}^{2}-\{(0,0)\}\right)=1$. This follows from the observation that infinitely many disjoint copies of a quadrant of $\mathbb{Z}^{2}-\{(0,0)\}$ can be packed into $\mathbb{Z}^{2}-\{(0,0)\}$ by means of this group (see [W], Addendum to Second Printing, p. 235). For related assertions see Corollary 4 and Theorem 4 below.

Remark 4 is related to the following problems which were already raised in $[\mathrm{MW}], \S 9$.

Problem 1. Does the group of transformations of \mathbb{Z}^{2} generated by $S L_{2}(\mathbb{Z})$ and by \mathbb{Z}^{2} have a free non-abelian subgroup F such that for any $x \in \mathbb{Z}^{2}$ the subgroup $\{\varphi \in F: \varphi(x)=x\}$ is cyclic?

If the answer was positive, then \mathbb{Z}^{2} would be paradoxical relative to the action of that free group. This follows from a general theorem of T. J. Dekker (see [W], Cor. 4.12).

Problem 2. Does the group of transformations of \mathbb{R}^{3} generated by $S L_{3}(\mathbb{Z})$ and \mathbb{Z}^{3} have a free non-abelian subgroup whose elements different from the identity have no fixed point in \mathbb{R}^{3} ?

The following remark shows that for \mathbb{R}^{2} no such free group is possible.
Remark 5. If $A, B \in S L_{2}(\mathbb{R}), A B \neq B A, \varphi(x)=A(x)+u$ and $\psi(x)=$ $B(x)+v$, where $u, v \in \mathbb{R}^{2}$, then at least one of the four equations $\varphi(x)=x$, $\psi(x)=x, \varphi \psi(x)=x, \varphi \psi^{-1}(x)=x$ has a solution $x \in \mathbb{R}^{2}$. Indeed, if neither $\varphi(x)=x$ nor $\psi(x)=x$ can be solved, then $\operatorname{det}(A-I)=\operatorname{det}(B-I)=0$. Hence $\operatorname{tr}(A)=\operatorname{tr}(B)=2$, i.e., A and B are parabolic. Then it follows by an easy calculation that since $A B \neq B A$ either $A B$ or $A B^{-1}$ is hyperbolic, i.e., has trace larger than 2 , and that $\varphi \psi(x)=x$ or $\varphi \psi^{-1}(x)=x$ has a solution.

For other remarks about Problems 1 and 2, see [MW], $\S 9$. See also $[K]$, [B] and [S].

Remark 6. Let $S A_{n}(\mathbb{R})$ denote the group of transformations of \mathbb{R}^{n} generated by $S L_{n}(\mathbb{R})$ and by \mathbb{R}^{n}. Then a generic element of $S A_{n}(\mathbb{R})$ has exactly one fixed point in \mathbb{R}^{n}. The proof is similar to the argument in Remark 8 below.

For generic isometries of \mathbb{R}^{n} and of the spheres S^{n-1} the situation may be different depending on the parity of n. The following remarks describe this situation.

Remark 7. All the elements of $S O_{2 n+1}(\mathbb{R})$ have eigenvectors in $\mathbb{R}^{2 n+1}$, but the generic orientation-preserving isometries of $\mathbb{R}^{2 n+1}$ have no fixed points. Indeed, for all $A \in S O_{2 n+1}(\mathbb{R})$ we have $\operatorname{det}(A-I)=0$, whence $A(x)+v$ has no fixed points unless v is in the (proper) linear subspace $(A-I)\left[\mathbb{R}^{2 n+1}\right]$ of $\mathbb{R}^{2 n+1}$.

Remark 8. For even dimensions the situation is the opposite. The generic elements of $S O_{2 n}(\mathbb{R})$ have no eigenvectors in $\mathbb{R}^{2 n}$, but generic isometries of $\mathbb{R}^{2 n}$ have single fixed points. Indeed, for generic $A \in S O_{2 n}(\mathbb{R})$ we have $\operatorname{det}(A-I) \neq 0$. Hence $A(x)+v$ has one fixed point in $\mathbb{R}^{2 n}$.

Remarks 7 and 8 suggest further problems.
Problem 3. Does the group $S O_{2 n}(\mathbb{Q})(n>1)$ have a free non-abelian subgroup whose elements other than unity have no fixed points in $\mathbb{Q}^{2 n}-\{0\}$?

For n even the answer is yes. This was shown recently by Kenzi Satô, by an adaptation of a proof of T. J. Dekker (see [W], proof of Theorem 5.2). Thus it is easy to see that Problem 3 fully reduces to the case $n=3$.

Problem 4. Does the group $S O_{2 n+1}(\mathbb{Q})(n \geq 1)$ have a free non-abelian subgroup F whose elements other than unity have no fixed points in the rational unit sphere in $\mathbb{Q}^{2 n+1}$ and such that for all $x \in \mathbb{Q}^{2 n+1}-\{0\}$ the subgroup $\{\varphi \in F: \varphi(x)=x\}$ is cyclic?

For $n=1$ the answer is yes. This follows easily from a recent theorem of Kenzi Satô [S]. And if the answer to Problem 3 is yes, then the answer to Problem 4 is also yes with the only possible exception for the case $n=2$.

Problem 5. Does the group of isometries of \mathbb{Q}^{3} have a free non-abelian subgroup whose elements other than unity have no fixed points in \mathbb{Q}^{3} ?

Problems 3 and 5 have positive solutions if \mathbb{Q} is replaced by \mathbb{R}, see [DS], [B] and a theorem of Dekker, Mycielski and Świerczkowski ([W], Thm. 5.7).

Theorem 2. There exists a finitely additive measure @ over all bounded subsets of \mathbb{R}^{n} which is invariant under $S L_{n}(\mathbb{Z})$, satisfies $\varrho\left(J^{n}\right)=1$ and $\varrho(\alpha Y)=|\alpha|^{n} \varrho(Y)$ for all $\alpha \in \mathbb{R}$.

Proof. The proof is very similar to that of Theorem 1, only integration over \mathbb{Q}^{*} should be replaced by integration over \mathbb{R}^{*} (the multiplicative group of non-zero real numbers).

Remark 9. The measure ϱ of Theorem 2 is an extension of the Jordan measure.

Problem 6. Unlike in Theorem 1 we do not know if Theorem 2 can be strengthened by requiring also the invariance of ϱ under some group of translations, e.g., under \mathbb{Z}^{n}.

Theorem 3. There exists a universal measure @ over the rational torus $(\mathbb{Q} / \mathbb{Z})^{n}$ which is invariant under the natural action of $S L_{n}(\mathbb{Z})$ and of \mathbb{Q}^{n}, and such that $\varrho\left((\mathbb{Q} / \mathbb{Z})^{n}\right)=1$.

Proof. This follows from Theorem 1. It suffices to identify $(\mathbb{Q} / \mathbb{Z})^{n}$ with $(J \cap \mathbb{Q})^{n}$ and to treat the transformations of $S L_{n}(\mathbb{Z})$ and \mathbb{Q}^{n} over $(\mathbb{Q} / \mathbb{Z})^{n}$ as unions of finitely many restrictions of appropriate transformations of the space \mathbb{Q}^{n} to appropriate disjoint subsets of $(J \cap \mathbb{Q})^{n}$.

Lemma 1. (i) If $A \in S L_{2}(\mathbb{R})$ and $\operatorname{tr}(A) \neq 2$, then $A(x) \neq x$ for all $x \in \mathbb{R}^{2}-\{(0,0)\}$.
(ii) If $A \in S L_{2}(\mathbb{Z})$ and $\operatorname{tr}(A) \neq 2$, then $A(x) \neq x$ for all $x \in(\mathbb{R} / \mathbb{Z})^{2}-$ $(\mathbb{Q} / \mathbb{Z})^{2}$.

Proof. (i) It is easy to check that if $A \in S L_{2}(\mathbb{R})$ and $\operatorname{tr}(A) \neq 2$, then $\operatorname{det}(A-I) \neq 0$. Hence, if $A(x)=x$, then $(A-I) x=0$ and $x=(0,0)$ follows.
(ii) We show in the same way that $\operatorname{det}(A-I) \neq 0$. Thus if $A(x)=x$ for $x=\widetilde{x} / \mathbb{Z}^{2}$, then $A(\widetilde{x})-\widetilde{x} \in \mathbb{Z}^{2}$. Hence $(A-I) \widetilde{x} \in \mathbb{Z}^{2}$ and $\widetilde{x} \in(A-I)^{-1}\left[\mathbb{Z}^{2}\right] \subseteq$ \mathbb{Q}^{2}. Thus $x \in \mathbb{Q}^{2} / \mathbb{Z}^{2}$.

Corollary 1. $S L_{2}(\mathbb{Z})$ has free non-abelian subgroups whose elements other than unity act without fixed point on $\mathbb{R}^{2}-\{(0,0)\}$ and on $(\mathbb{R} / \mathbb{Z})^{2}$ $(\mathbb{Q} / \mathbb{Z})^{2}$.

Proof. It is known that $S L_{2}(\mathbb{Z})$ has free non-abelian subgroups all of whose elements other than unity are hyperbolic, i.e., have traces larger than 2. The pair of matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)
$$

generates such a subgroup (a theorem of B. H. Neumann, see [W], p. 86 and references therein). Hence Corollary 1 follows from Lemma 1.

Corollary 2. $J^{2}-\mathbb{Q}^{2}$ is paradoxical relative to the group of transformations of \mathbb{R}^{2} generated by $S L_{2}(\mathbb{Z})$ and by \mathbb{Z}^{2}, and also relative to $S L_{2}(\mathbb{Z})$ acting on $(\mathbb{R} / \mathbb{Z})^{2}$.

Proof. This follows from the second conclusion of Corollary 1 and the general theory of equivalence by finite decompositions (see [W], Corollary 4.12).

Corollary 3. J^{2} is paradoxical relative to the group of transformations of \mathbb{R}^{2} generated by $S L_{2}(\mathbb{Z})$, by \mathbb{Z} and by any single translation τ of \mathbb{R}^{2} such that $\tau\left(\mathbb{Q}^{2}\right) \cap \mathbb{Q}^{2}=\emptyset$.

Proof. This follows from Corollary 2 and the fact that $\tau\left(J^{2}\right) \equiv J^{2}$ relative to the group \mathbb{Z}^{2}.

Corollary 4. If $A, B \subseteq \mathbb{R}^{2}$ are two bounded sets with non-empty interiors, then $A \equiv B$ relative to the group of transformations of \mathbb{R}^{2} generated by $S L_{2}(\mathbb{Z})$, by \mathbb{Q}^{2} and by any single translation τ of \mathbb{R}^{2} such that $\tau\left(\mathbb{Q}^{2}\right) \cap \mathbb{Q}^{2}=\emptyset$.

Proof. It follows from Theorem B and Corollary 3 that for every positive integer k the square $\left(\frac{1}{k} J\right)^{2}$ is paradoxical relative to this group. Since A and B have interior points, there are translations $\tau_{1}, \tau_{2} \in \mathbb{Q}^{2}$ and a k such that $\left(\frac{1}{k} J\right)^{2} \subseteq \tau_{1}(A) \cap \tau_{2}(B)$. Hence there are sets A^{\prime} and B^{\prime} [containing sufficiently many disjoint translates of $\left.\left(\frac{1}{k} J\right)^{2}\right]$ such that $A \equiv A^{\prime} \supseteq B$ and $B \equiv B^{\prime} \supseteq A$. Thus, by the Cantor-Bernstein theorem (Theorem A at the beginning of this paper), we have $A \equiv B$.

Lemma 2. If $A, B \in S L_{2}(\mathbb{R})$ and $A(x)=B(x)=x$ for some $x \in$ $\mathbb{R}^{2}-\{(0,0)\}$, then $A B=B A$.

Proof. Choose an orthonormal basis x_{0}, x_{1} in \mathbb{R}^{2} such that $A\left(x_{0}\right)=$ $B\left(x_{0}\right)=x_{0}$. Then, relative to this basis,

$$
A=\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right)
$$

for some $a, b \in \mathbb{R}$. Thus

$$
A B=\left(\begin{array}{cc}
1 & a+b \\
0 & 1
\end{array}\right)=B A
$$

Corollary 5. $\mathbb{R}^{2}-\{(0,0)\}$ is paradoxical relative to every free nonabelian subgroup of $S L_{2}(\mathbb{R})$.

Proof. By Lemma 2 and the general decomposition theorem of Dekker (see [W], Thm. 4.12).

For related theorems about \mathbb{R}^{n}, see $\left[\mathrm{M}_{2}\right]$ and $[\mathrm{W}]$.
Corollaries $2-5$ suggest the problem if there are any natural bounded sets in $\mathbb{R}^{2}-\{(0,0)\}$ which are paradoxical relative to the group $S L_{2}(\mathbb{R})$. The problem remains unsolved but I will reduce it to a certain conjecture (C) and will explain why I believe that (C) is true. (The idea of the reduction is similar to that in $\left[\mathrm{M}_{1}\right]$.)

Let $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq r^{2}\right\}$, and $f \upharpoonright Y=f \cap(Y \times X)$ for $Y \subseteq X$, $f: X \rightarrow X$.

Lemma 3. For any $\varphi \in S L_{2}(\mathbb{R})$ there exists a rotation $\varrho_{\varphi} \in S O_{2}(\mathbb{R})$ such that

$$
D-\varphi(D)=\varrho_{\varphi}\left(D-\varphi^{-1}(D)\right)
$$

Proof. This follows since the ellipses $\varphi(D)$ and $\varphi^{-1}(D)$ are congruent.
From now on our arguments are incomplete in the sense that they depend on the following conjecture.
(C) There exists a free non-abelian group F acting on D such that if $f \in$ $F-\{e\}$ and $x \in D-\{(0,0)\}$, then $f(x) \neq x$, and for every $f \in F$ there exists a finite partition $D=D_{1} \cup \ldots \cup D_{n}$ and $\varphi_{1}, \ldots, \varphi_{n} \in S L_{2}(\mathbb{R})$ such that $f \upharpoonright D_{i}=\varphi_{i} \upharpoonright D_{i}$ for $i=1, \ldots, n$.

An incomplete argument supporting this conjecture (on the basis of Lemma 1(i) and Lemma 3) will be given at the end of this paper.

Lemma 4 (Assuming (C)). The punctured disk $D-\{(0,0)\}$ is paradoxical relative to the group $S L_{2}(\mathbb{R})$.

Proof. This follows by (C) and the general decomposition theorem (see [W], Cor. 4.12).

Lemma 5 (Assuming (C)). If D_{1} and D_{2} are two disks both with center $(0,0)$, then $D_{1} \equiv D_{2}$ relative to $S L_{2}(\mathbb{R})$.

Proof. Let radius $D_{1} \leq$ radius D_{2}. A transformation in $S L_{2}(\mathbb{R})$ can turn D_{1} into an ellipse E whose long axis is longer than the diameter of D_{2}. Then finitely many rotations of E can cover D_{2}. Hence, by Lemma $4, D_{2} \equiv D_{2}^{\prime}$ for some set $D_{2}^{\prime} \subseteq D_{1}$. Of course, $D_{1} \subseteq D_{2}$. Hence by the Cantor-Bernstein Theorem (Theorem A) we have $D_{1} \equiv D_{2}$.

Lemma 6 (Assuming (C)). If $A \subseteq \mathbb{R}^{2}$ is a bounded set which contains a neighborhood of $(0,0)$, then $A \equiv D$ relative to $S L_{2}(\mathbb{R})$.

Proof. There are disks D_{1} and D_{2} centered at $(0,0)$ such that $D_{1} \subseteq$ $A \subseteq D_{2}$. Thus Lemma 6 follows from Lemma 5 and the Cantor-Bernstein Theorem.

Lemma 7 (Assuming (C)). If T is an open triangle in \mathbb{R}^{2} which has a vertex at $(0,0)$, then $T \equiv D-\{(0,0)\}$ relative to $S L_{2}(\mathbb{R})$.

Proof. A union of finitely many rotations of T covers a punctured disk $D_{0}-\{(0,0)\}$. Hence, by the Cancellation Theorem (Theorem B) and Lemmas 4 and $5, T$ is paradoxical. Thus there exists a set $S \equiv T$ such that S contains $D_{0}-\{(0.0)\}$. And by Lemma $6, T \equiv D-\{(0,0)\}$.

Theorem 4 (Assuming (C)). If $A, B \subseteq \mathbb{R}^{2}-\{(0,0)\}$ are bounded sets and either (α) both A and B include open triangles with one vertex at $(0,0)$, or (β) both A and B have non-empty interior and both distances from $(0,0)$ to A and from $(0,0)$ to B are positive, then $A \equiv B$ relative to the group $S L_{2}(\mathbb{R})$.

Proof. Case (α). This case follows immediately from Lemmas 5 and 7, and the Cantor-Bernstein Theorem.

Case (β). Instead of disks we have to work with annuli $\left\{x \in \mathbb{R}^{2}: r_{1} \leq\right.$ $\left.\|x\| \leq r_{2}\right\}$, and prove for them lemmas similar to Lemmas $4, \ldots, 7$. We omit these proofs as they are quite similar to the previous ones.

Incomplete argument for the conjecture (C). Using Lemma 3 for all $\varphi \in$ $S L_{2}(\mathbb{R})$ and all $x \in D$ we define

$$
\widehat{\varphi}(x)= \begin{cases}\varphi(x) & \text { if } \varphi(x) \in D \\ \varrho_{\varphi}(x) & \text { if } \varphi(x) \notin D\end{cases}
$$

Thus $\widehat{\varphi}: D \rightarrow D$ is a piecewise linear bijection. It is easy to check that there are three nonempty open sets $A, B, C \subseteq S L_{2}(\mathbb{R})$ such that if $(\varphi, \psi, \chi) \in$ $A \times B \times C$ then the composed map $\widehat{\varphi} \widehat{\psi} \widehat{\chi}$ has the following property:
(P) For every $x \in D, \widehat{\varphi} \widehat{\psi} \widehat{\chi}(x)=f g h(x)$, where

$$
(f, g, h) \in\left\{\varphi, \varrho_{\varphi}\right\} \times\left\{\psi, \varrho_{\psi}\right\} \times\left\{\chi, \varrho_{\chi}\right\}-\left\{\left(\varrho_{\varphi}, \varrho_{\psi}, \varrho_{\chi}\right)\right\}
$$

Thus out of the eight possible forms of $\widehat{\varphi} \widehat{\psi} \widehat{\chi}(x)$ only seven involving at least one of the functions φ, ψ or χ may actually occur (although those forms which occur depend on φ, ψ, χ and on x).

Now the conjecture (C) reduces to the following more specific conjecture: There exist two triples $\left(\varphi_{1}, \psi_{1}, \chi_{1}\right),\left(\varphi_{2}, \psi_{2}, \chi_{2}\right) \in A \times B \times C$ such that the pair of transformations $\widehat{\varphi}_{1} \widehat{\psi}_{1} \widehat{\chi}_{1}, \widehat{\varphi}_{2} \widehat{\psi}_{2} \widehat{\chi}_{2}: D \rightarrow D$ generates a free group as required in (C). I feel that (P) and Lemma 1(i) suggest that (C) is true.

REFERENCES

[B] A. Borel, On free subgroups of semi-simple groups, Enseign. Math. 29 (1983), 151-164.
[DS] P. Deligne and D. Sullivan, Division algebras and the Hausdorff-BanachTarski Paradox, ibid., 145-150.
[K] M. Kuranishi, On everywhere dense imbedding of free groups in Lie groups, Nagoya Math. J. 2 (1951), 63-71.
[M_{1}] J. Mycielski, The Banach-Tarski paradox for the hyperbolic plane, Fund. Math. 132 (1989), 143-149.
$\left[\mathrm{M}_{2}\right]$-, Finitely additive measures I, Colloq. Math. 42 (1979), 309-318.
[MW] J. Mycielski and S. Wagon, Large free groups of isometries and their geometrical uses, Enseign. Math. 30 (1984), 247-267.
[S] K. Satô, A free group acting without fixed points on the rational unit sphere, Fund. Math. 148 (1995), 63-69.
[W] S. Wagon, The Banach-Tarski Paradox, Cambridge Univ. Press, 1985 (3rd printing).

Department of Mathematics
University of Colorado
Boulder, Colorado 80309-0395
U.S.A.

E-mail: jmyciel@euclid.colorado.edu

[^0]: 1991 Mathematics Subject Classification: 51, 28.

